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Constant Acceleration

• So far we have considered motion when the 

acceleration is constant in both magnitude

and direction.

• Another situation is where the acceleration is 

constant in magnitude, but its direction 

constantly changes with time.

• We expect that Newton’s Laws will still apply.
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Be sure you know how to:

• Find the direction of acceleration using a 

motion diagram (Section 1.6).

• Draw a force diagram (Section 2.1).

• Use a force diagram to help apply Newton's 

second law in component form (Sections 3.1 

and 3.2).

4



Forces in More Complex Situations:
• First we addressed constant forces that act along only one axis 

(Chapter 2).

• Then we addressed constant forces along two dimensions 

(Chapter 3).

• Most forces are not constant; they can change in both 

magnitude and direction.

• Now we deal with the simplest case of continually changing 

forces: circular motion.

5



The Qualitative Changes in Velocity

• At any instant, the instantaneous velocity is tangent to the 

path along which the object moves.

• In circular motion, the system object travels in a circle and the 

velocity is always tangent to the circle.

• Even if an object is moving with constant speed around a 

circle, its velocity changes direction.

• A change in velocity means there is acceleration. 6



Estimating the Direction of the 

Acceleration

• This method is used to estimate the direction 

of the acceleration of any object during a 

small time interval ∆� = �� − ��.
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Tips for Estimating the Direction of the 

Acceleration

• Make sure that you choose initial and final points 
at the same distance before and after the point at 
which you are estimating the acceleration 
direction. 

• Draw long velocity arrows so that when you put 
them tail to tail, you can clearly see the direction 
of the velocity change arrow.

• Make sure that the velocity change arrow points 
from the head of the initial velocity to the head 
of the final velocity so that ��� + ∆�� = ���.
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Conceptual Exercise: Direction of a 

Racecar’s Acceleration

• Determine the direction of the acceleration of the 

race car at points A, B, and C as it travels at constant 

speed around a circular path.
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Testing the Idea: Swing a pail on a rope

• Tie a pail to the end of a rope and swing it 

around in a circle.

• A rope (or string) can only exert force along 

the string, not perpendicular to it.

• Force diagram:
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– Vertical force components 
balance.

– The horizontal component 
points towards the center of 
the circle, as expected.



Newton’s Second Law and Circular 

Motion

• The sum of the forces exerted on an object 

moving at constant speed along a circular path 

points towards the center of that circle in the 

same direction as the object’s acceleration.

• When the object moves at constant speed 

along a circular path, the net force has no 

tangential component.
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Factors that might affect acceleration

• Imagine your experience in a car driving 
around one of Lafayette’s various traffic 
circles.

– The faster the car moves around the traffic circle, 
the greater the risk that the car will skid off the 
road.

– For the same speed, there is a greater risk of 
skidding on the inner lane (smaller radius).

– We guess that the acceleration depends on both 


 and �.
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Factors that might affect acceleration

– Curves on highways are banked, but not in traffic 
circles.

– Go ahead!  Drive up Northwestern Avenue and try it 
out…  

– Just be careful of other motorists and pedestrians.  

– And don’t blame me if anything unfortunate happens.
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Dependence of acceleration on speed

• Velocity change when speed is �:

• Velocity change when speed is 2�:

• But the time interval is only half as long, because 
the object is moving twice as fast
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Dependence of Acceleration on Speed
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∆��� = 2∆��
∆�� = ∆�/2

• Acceleration is ��� =
∆��

∆��
= 4

∆�

∆�
= 4��

• The magnitude of the acceleration is 

proportional to the square of the 

velocity.

�� ∝ ��



Dependence of Acceleration on Radius

• If � remains constant, how long does it take the 
object to move in a circle of radius �?

• The circumference of a circle is

� = 2��

• If the radius increases by a factor of 2, then the 
circumference increases by the same factor.

• The net change in velocity is the same.

• Since the velocity is constant, it will take twice as 
long to travel around the circle.

∆�� = 2	∆�
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Dependence of Acceleration on Radius

��� =
∆���

∆��
=

∆��

2	∆�
=
��

2
• The magnitude of the acceleration is inversely 

proportional to the radius.

�� ∝
1

�
• In fact, the radial acceleration is:

�� =
��

�
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Radial Acceleration

• For motion in a circle of radius � with constant 
speed �, the radial acceleration is

�� =
��

�
• The acceleration points towards the center of 

the circle.

• The SI  units for radial acceleration are m/s2

• In the limiting case of a straight line, the 
radius goes to infinity and the acceleration 
goes to zero.  This kinda makes sense…
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Period of Circular Motion

• The period is the time interval it takes for an 
object to travel once around an entire circular 
path.

• The period has units of time, so the SI unit is 
seconds.

• For constant speed, circular motion, we divide 
the circumference by the velocity to get:

 

�

�!�

�
• Do not confuse the symbol " for period with 

the symbol " for tension in a string.
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Example
• What is your radial 

acceleration when you 

sleep in a hotel in Quito, 

Ecuador?
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Quito, 

Ecuador



Example

• Remember that the earth turns on its axis once 
every 24 hours and everything on its surface 
undergoes constant-speed circular motion with a 
period of 24 hours.

• The radius of the earth is � = 6400	%&

�� =
��

�
• We know �, so we need to find �.

� =
�

"
=
2��

"
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Example

� =
�

"
=
2��

"

� =
��

�
=
1

�

2��

"

�

=
4���

"�

=
4��(6.4 × 10*	&)

24	ℎ 3600 . ℎ⁄ � = 0.034& .�⁄

• Compare this with the acceleration of gravity:

0 = 9.8	&/.�

• The ratio is 0.35%...
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Example

• What is your radial acceleration as you sleep 

in your dorm room in West Lafayette?

3

– Latitude of West Lafayette is

3 = 40°	56��ℎ

– Radius of circular path is

�78 = �	 cos 3

– Using our previous result for 
3 = 0°,

�� =
=!>�

?>
� �78 =

=!>� @AB C

?>

cos 40° = 0.77 so �78 = 0.026	&/.�



Is the Earth a Non-Inertial Reference 

Frame?

• Newton's laws are valid only for observers in inertial 

reference frames (nonaccelerating observers).

– Observers on Earth's surface are accelerating due to 

Earth's rotation. 

• Does this mean that Newton's laws do not apply? 

– The acceleration due to Earth's rotation is much smaller 

than the accelerations we experience from other types of 

motion. 

• In most situations, we can assume that Earth is not 

rotating and, therefore, does count as an inertial 

reference frame.
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Newton’s Second Law for Radial 

Components of Circular Motion
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Another Example

• Highway curves are banked to prevent cards 

from skidding off the road.

• The angle of the bank depends on the 

expected speed and the radius of curvature.
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Banked Highway Curves

• The radial acceleration is �� = �� �⁄

• The radial force is E� = &	�� = &��/�
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• EF is zero when the curve is 

banked correctly.

&0

&
��

�

5	 3
5	 cos 3 = &0

5	 sin 3 = &	��/�

tan 3 =
sin 3

cos 3
=
��

0�



Banked Highway Curves

• Suppose � = 250	& and � = 100%& ℎ⁄

tan 3 =
��

0�
=

10L& ℎ⁄
1

3600
ℎ
.

�

(9.8& .�⁄ )(250	&)
= 0.31

3 = tanMN(0.31) = 17°

• The component of the normal force in the 
radial direction provides the force needed to 
maintain the circular path.

• If the road were flat, we would rely on static 
friction to provide this radial force.
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Tip for Circular Motion

• There is no special force that causes the radial 
acceleration of an object moving at constant 
speed along a circular path. 

• This acceleration is caused by all of the forces 
exerted on the system object by other objects.

• Add the radial components of these regular 
forces. 

• This sum is what causes the radial acceleration 
of the system object.
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Conceptual Difficulties with Circular 

Motion

• When sitting in a car 

that makes a sharp 

turn, you feel 

thrown outward, 

inconsistent with 

the idea that the net 

force points toward 

the center of the 

circle (inward)
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Conceptual Difficulties with Circular 

Motion

• Because the car is 
accelerating as it 
rounds the curve, 
passengers in the car 
are not in an inertial 
reference frame.
– A roadside observer 

would see the car turn 
left and you continue 
to travel straight 
because the net force 
exerted on you is zero
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