PURDUE D) epaRTMENT OF Physics

Physics 22000
General Physics

Lecture 22 — Review

Fall 2016 Semester

Prof. Matthew Jones



Second Midterm Exam

Wednesday, November 16", 8:00-9:30 pm
Location: Elliot Hall of Music - ELLT 116.

Covering material in chapters 6-10

Multiple choice, probably about 25 questions, 15 will be
conceptual, 10 will require simple computations.

A formula sheet will be provided.
You can bring one page of your own notes.

| put a couple exams from previous years on the web page...
solutions will be posted soon.



Topics on Midterm

Work and Energy

— Collisions: elastic and inelastic
Extended bodies at rest
— Static equilibrium
Rotational motion

— Kinematics

— Rotational inertia

— Rotational momentum
Gases

— Atomic mass

— ldeal gas law

Static fluids

— Pascal’s laws

— Archimedes’ principle




SUPPLEMENTALINSTRUCTION

Rachel Hoagburg

Come to Sl for more help in PHYS 220

Tuesday and Thursday 7:30-8:30PM Shreve C113

Office Hour
Tuesday 1:30-2:30 4th floor of Krach

For other SiI-linked courses and schedules, visit purdue.edu/si or purdue.edu/boilerguide




Work and Energy

Generalized work-energy principle The sum of the initial energies of a system
plus the work done on the system by external forces equals the sum of the final
energies of the system:

or
(I’(l e & Ugl + Usi) + W = (Kf = Ugf - Usf + A[}int) (63)

Note that we have moved U, ; to the right hand side (AU, = Ujpes — Uine;) since
values of internal energy are rarely known, while internal energy changes are.

® 2014 Pearson Education, In c.
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Momentum and Energy Conservation

e Momentum is always conserved
p = mv
MmqVq; + MyVUy; = mlvlf T mMyVU;y¢
 Energy is also always conserved

(Ki + Uy + Ug;) + W
— (Kf + Ugf + USf + AUint)
AUint = Uine f — Uine

 The different types of energy are not necessarily
conserved individually.



Elastic Collisions

* Total kinetic energy is conserved in elastic
collisions

* Linear momentum is always conserved (in both
elastic and inelastic collisions)

* |nelastic collisions usually involve kinetic energy
being transformed to internal energy

— For example, frictional forces exerted between the
objects



Elastic Collisions

- L

e Linear momentum is conserved:
MV + MUy = MV + MyVyy

e Kinetic energy is conserved:

1 2 1 , _ 1 ;1 2
imlvli + Emzvzi = 5m1U1f + Emzvzf



Inelastic Collisions

* Objects might stick together, become bent,
deformed, squished, etc...

e Linear momentum is conserved:
myVq1; + MyVy; = MV + MUy

e Kinetic energy is not conserved.



Rigid Bodies

 Arigid body is a model for an extended object.

e We assume that the object has a nonzero size but
the distances between all parts of the object
remain the same (the size and shape of the
object do not change).
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Torque Produced by a Force

____—Axis of rotation

e |dentify the axis of rotation =

e Calculate the torque about m\\“‘ |/
that axis:
T==1Flsin@

/

F , and F , do not rotate the door,
whereas F, moves it easily.
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Extended Bodies at Rest

e Conditions for static equilibrium
— Net force on the object is zero
— Net torque on the object is zero

e Center of mass:

— All the gravitational forces exerted by the earth
can be summarized by a single force acting
through the center of mass of the rigid body



Rotational Motion

y Object or point

A F 1 A ;
of 1?tcrest Arc length

to object

* Description of rotational motion: ) v
— Arc length: \a “
s=10 L
— Rotational velocity (angular velocity): posifiomef
AH the object
W = E 6 (in radians) =
V=Tw
— Rotational acceleration (angular acceleration):
Aw
Y’

a=ra



Rotational Motion at Constant Angular
Acceleration

* B,is an object's rotational position at t, = 0.
* w,is an object's rotational velocity at t, = 0.

* O and w are the rotational position and the rotational
velocity at some later time t.

o is the object's constant rotational acceleration
during the time interval from time 0 to time t.

Translational motion Rotational motion
v, = vy, T at W= wy + at (8.6)
1 1
X = xg t vpt + Eﬂxtz 0 = 0y + wot + Eaft2 (8.7)

2a,(x = x0) = v; = Vi 2a(6 — 6p) = »* — g (8.8)



Newton’s Second Law

e For linear motion, Newton’s 2" law is

YF
a = ——
m
e For rotational motion, this implies that
YT
a=—
I

 The rotational inertia, I, depends on the mass
of the object and on where its mass is
distributed.



Rotational Inertia

Table 8.6 Expressions for the rotational inertia of standard shape objects.

Axis of rotation

2 cylinder

i:§< \

ji= % mR: \ \ Hoop, a.)us
Q@ along diameter

o ;ﬁ//j)
I1=5mL ////
12
/ Thin rod, axis
{/ through center

X

I~2mR2/////////
Solid
cylinder
(flywheel)

Thin rod, axis
through end

| will provide a figure like this on the exam.
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Angular (rotational) Momentum

L=Iw
When external torques are applied:

Li+z7: At:Lf

When no external torques are applied, angular
momentum does not change:

Il-a)i — Ifa)f
Changes in rotational inertia:
[

a)f = Wi

I¢



Gases

Relation between temperature and kinetic energy
of gas particles:

1 — 3 T
2" T2
Boltzmann’s constant: k = 1.38 x 10723 J /K

Charles’ Law (constant pressure):
Vi 13
T, T,
Boyle’s Law (constant temperature):
P,V = PV,



ldeal Gas Law

PV = NkT
Avogadro's number:
N, = 6.02 x 1043

One “mole” consists of N, objects
PV = nRT
R = 8.3]/K /mole

Atomic mass scale: a water molecule has an atomic

mass of approximately 18 units. One mole of water
has a mass of 18 grams.

1amu=1g/mole



Static Fluids

e Pascal’s first law:

— In a static fluid, a change in pressure at one point

is “instantaneously” communicated to all points in
the fluid

e Pascal’s second law:

— Pressure increases with depth due to the “weight”
of liquid above that depth:

P, —P, =pg(y; — y1)



Static Fluids

 Buoyant forces — Archimedes’ principle:

Frono = pfluidvfluidg
— The buoyant force is equal to the weight of
displaced fluid.



Have | forgotten anything?



