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Rotational Motion

¢ Instead of using the linear position, x, we use
an angle, 8, to describe the orientation of an
object.

e This is typical for an extended object that
rotates about a fixed axis.

* The distance to a point on the object, r, is
measured perpendicular to the fixed axis.




Rotational Motion

y Object or point
of |rilcrm( Arc length
to object

s=r0

Rotational
position of
the object

The angle, 0, is measured
0 (in radians) = 3 in radians (which are
dimensionless).
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Rotational Motion

¢ The angular velocity describes how fast the
object is rotating about the fixed axis.
AG
At
¢ A point located a distance r from the fixed axis
moves with velocity
As AG

U=E=T‘E=

w =

rw

Rotational Motion

¢ Angular acceleration is defined as the rate of
change of angular velocity:
Aw
At
¢ A point located a distance r from the fixed axis
will have linear acceleration
Av Aw

a=E=T‘E=

a

ra




Rotational Motion

* When an object rotates with constant angular
acceleration, the angular velocity is
w(t) = wy + at
¢ The angle of a point on the object at any time
is then

1
0(t) = 6y + wpt +§at2
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Comparison with Linear Motion

Linear Motion Rotational Motion
x 6
v(t) = vy +at w(t) = wy +at
1 1
x(t)=x0+v0t+zat2 9(t)=90+w0t+zat2
2a(x —xy) = v —v? 2a(6 — 6y) = w? — w3
s=r0
v=rw
a=ra
Torque

¢ Aforce acting on a point, located a distance r
from a fixed axis, produces a torque,

T =+Frsinf

T = Fr when 8 = 90°

¢ A positive torque causes an object to rotate
counter-clockwise.




Newton’s Second Law

* For linear motion, Newton’s 2" law is

>F
a =——
m
¢ For rotational motion, this implies that
Yt
a=—
I

* The rotational inertia, I, depends on the mass
of the object and on where its mass is
distributed.
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Rotational Inertia

Table 8.6 Expressions for the rotational inertia of standard shape objects.

1=1mk?

N

S

| Thin rod, axis
through end

‘Thin rod, axis
through center

Some Examples

¢ The part of the wheel touching the pavement is
stationary (unless the car skids).

¢ The angular velocity of the wheelis w = —v/r
¢ The negative sign indicates that the wheel rotates
clockwise.




Some Examples

©

What is the acceleration of the block down the ramp?

10/24/2016

Some Examples

mg

Some Examples

N T @

m
0 g

Acceleration down the ramp:
mgsinf —T
a=—

m




Some Examples

Torque on the wheel: t=+Tr
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A Tr 2T
Angular acceleration: a =1/I a= =—
. . . 1 2 lM 2 Mr
Rotational inertia: I = ~Mr 7 MT
Some Examples
The rim of the wheel and the block have the
same linear acceleration:
= 7sind _ 2T
a = gsin = ra = i
Solve for T:
2 1 . Mm sin 6
T(—+—) =gsing>T = "
M m 2m+M

Some Examples

T

Substitute back into the equation for acceleration:
a=gsinfd —T/m

T_ngsin9
~ 2m+M
= osing gM sin 6
I A Py,




Some Examples

* Check the limiting cases:
— What if M were very large? M > m

— We expecta = 0
in8 gM sin 6 in8 gM sin 6 0
= _—_— X e ———————
¢=gsm 2m+ M gsm M

e Whatif M = m?

=gsing|1 N2 ]
a = gsin 3)=39sin
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More Examples

¢ Angular acceleration of a pendulum:

r

mg Torque: T = +mgr
Rotational inertia: I = mr?
Angular acceleration: a = /I = g/r

More Examples

¢ Angular acceleration of a pendulum:

Total torque: T = +MgR + mgr
Rotational inertia: I = MR? + mr?
Angular acceleration: a« = 7/1

MR + mr

~ IRz + mr?




Angular (rotational) Momentum

L=Iw
When external torques are applied:

Li+ZT Atsz

When no external torques are applied, angular
momentum does not change:
Iiwi = Ifwf
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Even More Examples

¢ A merry-go-round at
the park has a radius of
r=2 m and rotational
inertial = 50 kg - m?

e |tis initially rotating
withw = 15 ' whena
kid with mass
m = 50 kg gets on.

¢ What is the final
angular velocity?

Even More Examples

I; =50kg -m?
w; = 15_1
L; = Lw; =50kg -m?/s

Ir =50 kg - m?
+ (50 kg)(2 m)?
= 250 kg - m?
L; )
wf = I_ =0.2s
f




Even More Examples

* The kid then moves to aradiusof r = 0.5 m
e What is the final angular velocity?

Ir = 50 kg - m?
+(50 kg) - (0.25 m)?
=62.5kg - m?
L .
wf =—=0.8s
Iy
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Comparison with Linear Motion

Linear Motion Rotational Motion
p=mv L=Iw
K L w2 K 1I 2
=-mv =-lw
2 2

Rotational momentum is always conserved.
Kinetic energy is not conserved in inelastic collisions.

Even More Examples

¢ The merry-go-round is initially at rest.

¢ Akid, with a mass of 50 kg is running with a speed of 2
m/s and jumps on at r=2 m.

¢ What is the final angular velocity?

i
(Ufz_
I

L; = mvr
=200 kg -m?/s
Ir =50 kg -m?
+ (50 kg)(2 m)?
=250 kg - m?
w;=0.8s"1




A Final Example

* How much kinetic energy was lost?
* Initial K; = ~mv? = (50 kg)(2m/s)? = 100 ]

* Final moment of inertia is [y = 250 kg - m?

¢ Final angular velocity
was wy = 0.8571

* Final kinetic energy is
1
— 2 _
AK =20]
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