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Rotational Motion

* Instead of using the linear position, x, we use
an angle, 8, to describe the orientation of an

object.
e This is typical for an extended object that
rotates about a fixed axis.

 The distance to a point on the object, 7, is
measured perpendicular to the fixed axis.



Rotational Motion
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Rotational Motion

 The angular velocity describes how fast the

object is rotating about the fixed axis.
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* A point located a distance r from the fixed axis
moves with velocity
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Rotational Motion

 Angular acceleration is defined as the rate of

change of angular velocity:
Aw

T At
* A point located a distance r from the fixed axis

will have linear acceleration
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Rotational Motion

e When an object rotates with constant angular
acceleration, the angular velocity is
w(t) = wy + at

 The angle of a point on the object at any time
is then

1
0(t) = 0y + wyt +§at2



Comparison with Linear Motion

Linear Motion Rotational Motion
X 0
v(t) = vy + at w(t) = wy + at
1 1
x(t) = xg + vt + Eat2 O(t) = 0y + wot + Eatz
2a(x — xg) = v? — v¢ 2a(0 — 0y) = w? — w§
s =10
V=rw



Torque

e A force acting on a point, located a distance r
from a fixed axis, produces a torque,

T=+1+Frsin@

T = Fr when 8 = 90°

F

e A positive torque causes an object to rotate
counter-clockwise.



Newton’s Second Law

e For linear motion, Newton’s 2" law is

YF
a = ——
m
e For rotational motion, this implies that
YT
a=—
I

 The rotational inertia, I, depends on the mass
of the object and on where its mass is
distributed.



Rotational Inertia

Table 8.6 Expressions for the rotational inertia of standard shape objects.

: ; A\ T
Axis of rotation |_, [ R

; 1
=tmr \\ Hoop. axis I=3mR?
X along diameter

Solid
cylinder
(flywheel)

| Thin rod, axis
through end

L/
Hollow o o /
! = lsz ;
cylinder Thin rod, axis

/ through center
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Some Examples

>V

The part of the wheel touching the pavement is
stationary (unless the car skids).

The angular velocity of the wheel is w = —v/r
The negative sign indicates that the wheel rotates
clockwise.
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Some Examples

What is the acceleration of the block down the ramp?



Some Examples

mg
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Some Examples

m
0 g

Acceleration down the ramp:
mgsin — T

a
m
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Some Examples

Torque on the wheel: Tt =4Tr
, Tr 2T
Angular acceleration: a =t/ L a = -

. o 1
Rotational inertia: I = EMTZ §MT2




Some Examples

T

The rim of the wheel and the block have the
same linear acceleration:

B 6 T_ _ZT
a = g sin m—ra—M
Solve for T:
2 1 . Mm sin 6
T( | )=gsm8%T=g
M m 2m+M



Some Examples

T

Substitute back into the equation for acceleration:
a=gsinf —T/m

T_ngsinH
- 2m+M
_ gM sin 6
a=gsinf —

2m+ M



Some Examples

 Check the limiting cases:
— What if M were very large? M > m

— We expecta = 0
gM sin 6 gM sin 6

a=gsm9—2m+Mzgsm9— W

e Whatif M =m?

= gsing|1 ) =24 v
a = gsin 3] =39sin



More Examples

 Angular acceleration of a pendulum:

r

mg Torque: T = +mgr
Rotational inertia: [ = mr
Angular acceleration:a =t /1 = g/r

2
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More Examples

 Angular acceleration of a pendulum:
R
Mg ng
Total torque: T = +MgR + mgr

Rotational inertia: I = MR? + mr?

Angular acceleration: @ = 7/1
MR + mr

MR? 4+ mr? y

=9



Angular (rotational) Momentum

L=Iw
When external torques are applied:

Li+ZT AtZLf

When no external torques are applied, angular
momentum does not change:
Il-a)l- — Ifa)f



Even More Examples

e A merry-go-round at
the park has a radius of
r=2 m and rotational
inertial = 50 kg - m?

e |tisinitially rotating
with w = 1 s~ when a
kid with mass
m = 50 kg gets on.

* What is the final
angular velocity?
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Even More Examples

I, =50 kg - m?
w; = 1S_1
L; = Lw; =50kg-m?/s

Ir =50 kg - m?
+ (50 kg)(2 m)*>
= 250 kg - m?
L;

we=—=0.2s"1
f
If
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Even More Examples

e The kid then moves to a radiusof r = 0.5 m
 What is the final angular velocity?

Ir =50 kg -m?*
+(50 kg) - (0.25 m)?>
= 62.5 kg - m?
L

wf=1—;=0.85‘1
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Comparison with Linear Motion

Linear Motion Rotational Motion
p = mv L=Ilw
K L 2 K 1I 2
= —mv =—]w
2 2

Rotational momentum is always conserved.
Kinetic energy is not conserved in inelastic collisions.



Even More Examples

e The merry-go-round is initially at rest.

e Akid, with a mass of 50 kg is running with a speed of 2
m/s and jumps on at r=2 m.

e What is the final angular velocity?

L; = mvr
=200 kg -m?/s
+ (50 kg)(2m)>
= 250 kg - m?*
wr=0.8s"1
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A Final Example

e How much kinetic energy was lost?

* Initial K; = ~mv? =~ (50 kg)(2m/s)? = 100 ]
2

* Final moment of inertiais Iy = 250 kg - m

* Final angular velocity
was wr = 0.8 s~1

* Final kinetic energy is
1
_ 2 _
AK = 20]
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