

Physics 22000 **General Physics**

Lecture 15 – Rotational Motion

Fall 2016 Semester

Prof. Matthew Jones

Free Study Sessions!

Rachel Hoagburg

Come to SI for more help in PHYS 220

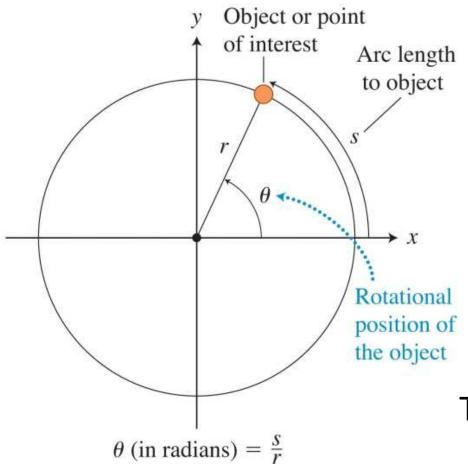
Tuesday and Thursday

7:30-8:30PM Shreve C113

Office Hour Tuesday 1:30-2:30 4th floor of Krach

For other SI-linked courses and schedules, visit purdue.edu/si or purdue.edu/boilerguide

- Instead of using the linear position, x, we use an angle, θ , to describe the orientation of an object.
- This is typical for an extended object that rotates about a fixed axis.
- The distance to a point on the object, r, is measured perpendicular to the fixed axis.



$$s = r\theta$$

The angle, θ , is measured in radians (which are dimensionless).

 The angular velocity describes how fast the object is rotating about the fixed axis.

$$\omega = \frac{\Delta \theta}{\Delta t}$$

 A point located a distance r from the fixed axis moves with velocity

$$v = \frac{\Delta s}{\Delta t} = r \frac{\Delta \theta}{\Delta t} = r \omega$$

 Angular acceleration is defined as the rate of change of angular velocity:

$$\alpha = \frac{\Delta\omega}{\Delta t}$$

 A point located a distance r from the fixed axis will have linear acceleration

$$a = \frac{\Delta v}{\Delta t} = r \frac{\Delta \omega}{\Delta t} = r \alpha$$

 When an object rotates with constant angular acceleration, the angular velocity is

$$\omega(t) = \omega_0 + \alpha t$$

The angle of a point on the object at any time is then

$$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

Comparison with Linear Motion

Linear Motion

 χ

$$v(t) = v_0 + at$$

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

$$2a(x - x_0) = v^2 - v_0^2$$

Rotational Motion

 θ

$$\omega(t) = \omega_0 + \alpha t$$

$$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

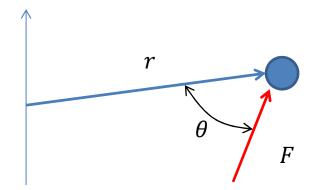
$$2\alpha(\theta - \theta_0) = \omega^2 - \omega_0^2$$

$$s = r\theta$$
$$v = r\omega$$
$$a = r\alpha$$

Torque

A force acting on a point, located a distance r
 from a fixed axis, produces a torque,

$$\tau = \pm Fr \sin \theta$$



$$\tau = Fr$$
 when $\theta = 90^{\circ}$

 A positive torque causes an object to rotate counter-clockwise.

Newton's Second Law

For linear motion, Newton's 2nd law is

$$a = \frac{\sum F}{m}$$

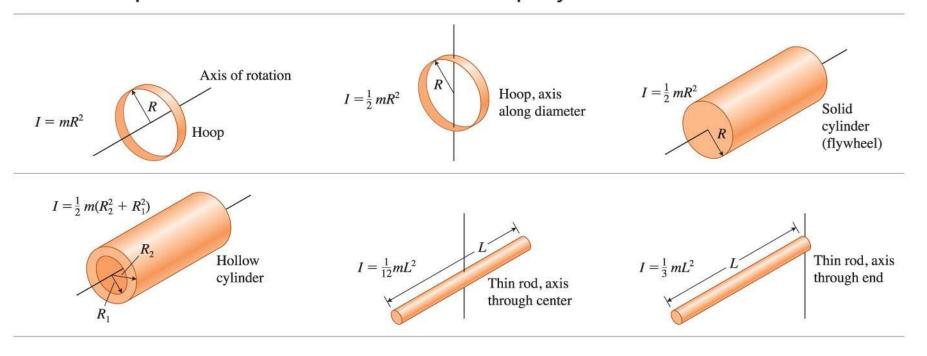
For rotational motion, this implies that

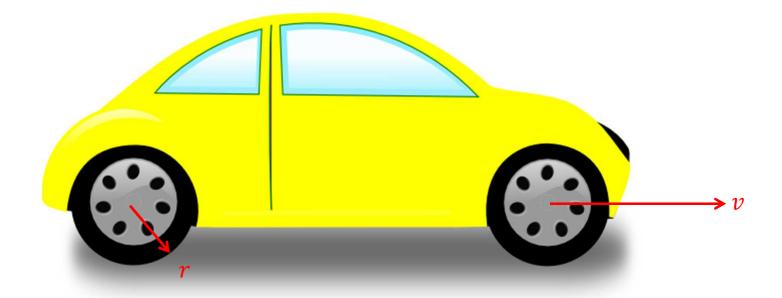
$$\alpha = \frac{\sum \tau}{I}$$

• The rotational inertia, *I*, depends on the mass of the object and on where its mass is distributed.

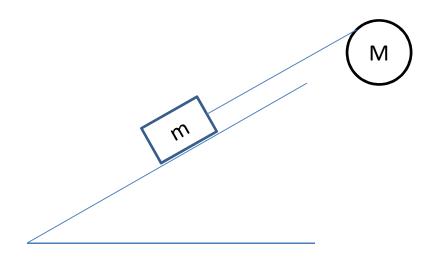
Rotational Inertia

Table 8.6 Expressions for the rotational inertia of standard shape objects.

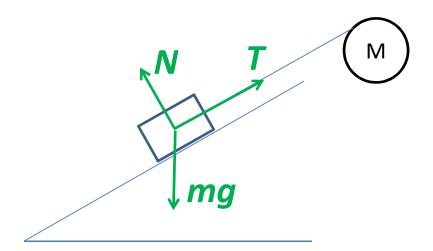


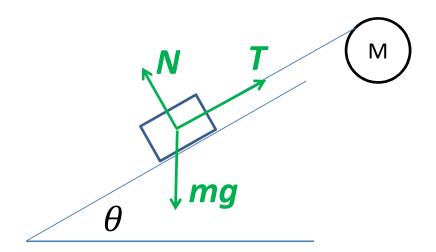


- The part of the wheel touching the pavement is stationary (unless the car skids).
- The angular velocity of the wheel is $\omega = -v/r$
- The negative sign indicates that the wheel rotates clockwise.



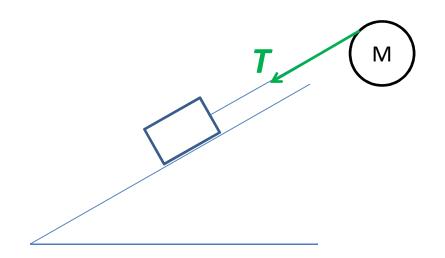
What is the acceleration of the block down the ramp?



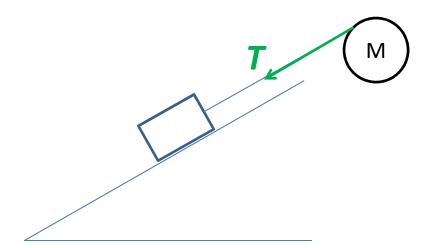


Acceleration down the ramp:

$$a = \frac{mg\sin\theta - T}{m}$$



Torque on the wheel: $\tau = +Tr$ Angular acceleration: $\alpha = \tau/I$ Rotational inertia: $I = \frac{1}{2}Mr^2$ $\alpha = \frac{Tr}{\frac{1}{2}Mr^2} = \frac{2T}{Mr}$

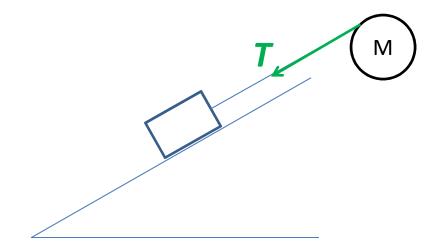


The rim of the wheel and the block have the same linear acceleration:

$$a = g\sin\theta - \frac{T}{m} = r\alpha = \frac{2T}{M}$$

Solve for *T*:

$$T\left(\frac{2}{M} + \frac{1}{m}\right) = g\sin\theta \to T = \frac{gMm\sin\theta}{2m + M}$$



Substitute back into the equation for acceleration:

$$a = g \sin \theta - T/m$$

$$T = \frac{gMm \sin \theta}{2m + M}$$

$$a = g \sin \theta - \frac{gM \sin \theta}{2m + M}$$

- Check the limiting cases:
 - What if M were very large? $M \gg m$
 - We expect $a \rightarrow 0$

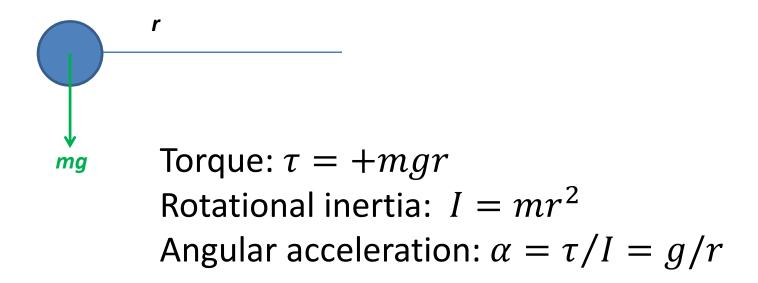
$$a = g \sin \theta - \frac{gM \sin \theta}{2m + M} \approx g \sin \theta - \frac{gM \sin \theta}{M} \to 0$$

• What if M=m?

$$a = g\sin\theta\left(1 - \frac{1}{3}\right) = \frac{2}{3}g\sin\theta$$

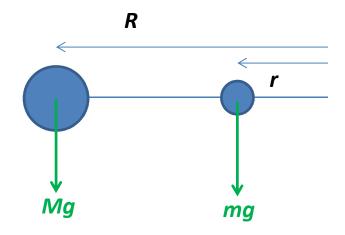
More Examples

Angular acceleration of a pendulum:



More Examples

Angular acceleration of a pendulum:



Total torque: $\tau = +MgR + mgr$ Rotational inertia: $I = MR^2 + mr^2$ Angular acceleration: $\alpha = \tau/I$ MR + mr $=g\,\frac{}{MR^2+mr^2}$

Angular (rotational) Momentum

$$L = I\omega$$

When external torques are applied:

$$L_i + \sum \tau \ \Delta t = L_f$$

When no external torques are applied, angular momentum does not change:

$$I_i \omega_i = I_f \omega_f$$

- A merry-go-round at the park has a radius of r=2 m and rotational inertia $I = 50 \ kg \cdot m^2$
- It is initially rotating with $\omega = 1 \, s^{-1}$ when a kid with mass $m = 50 \, kg$ gets on.
- What is the final angular velocity?

$$I_i = 50 kg \cdot m^2$$

$$\omega_i = 1 s^{-1}$$

$$L_i = I_i \omega_i = 50 kg \cdot m^2/s$$

$$I_{f} = 50 kg \cdot m^{2} + (50 kg)(2 m)^{2} + (50 kg) \cdot m^{2}$$

$$= 250 kg \cdot m^{2}$$

$$\omega_{f} = \frac{L_{i}}{I_{f}} = 0.2 s^{-1}$$

- The kid then moves to a radius of r = 0.5 m
- What is the final angular velocity?

$$I_{f} = 50 \ kg \cdot m^{2}$$

$$+(50 \ kg) \cdot (0.25 \ m)^{2}$$

$$= 62.5 \ kg \cdot m^{2}$$

$$\omega_{f} = \frac{L_{i}}{I_{f}} = 0.8 \ s^{-1}$$

Comparison with Linear Motion

Linear Motion

$$p = mv$$

$$K = \frac{1}{2}mv^2$$

Rotational Motion

$$L = I\omega$$
$$K = \frac{1}{2}I\omega^2$$

Rotational momentum is always conserved.

Kinetic energy is not conserved in inelastic collisions.

- The merry-go-round is initially at rest.
- A kid, with a mass of 50 kg is running with a speed of 2 m/s and jumps on at r=2 m.
- What is the final angular velocity?

$$\omega_f = \frac{L_i}{I_f}$$

$$L_i = mvr$$

$$= 200 kg \cdot m^2/s$$

$$I_f = 50 kg \cdot m^2$$

$$+ (50 kg)(2 m)^2$$

$$= 250 kg \cdot m^2$$

$$\omega_f = \mathbf{0.8 s^{-1}}$$

A Final Example

- How much kinetic energy was lost?
- Initial $K_i = \frac{1}{2}mv^2 = \frac{1}{2}(50 \ kg)(2 \ m/s)^2 = 100 \ J$
- Final moment of inertia is $I_f = 250 \ kg \cdot m^2$

- Final angular velocity was $\omega_f = 0.8 \, s^{-1}$
- Final kinetic energy is

$$K_f = \frac{1}{2}I_f\omega_f^2 = 80 \text{ J}$$
$$\Delta K = 20 \text{ J}$$