
PHYSICS 220 FINAL

PRINT NAME:	P	ID:		
SIGN:				
	ESTIONS 1 - 35 EAC		JIN1S .	
MULTIPLE CHOICE. (Choose the best answer	ers	oot?	
1) Which of the following	statements concerning	speed is/are come	Ol!	
A) Speed must change in o	rder to have an acceler	C) Speed is	a vector	
B) Constant speed implies D) All of the above are con	a constant acceleration	the above are com	rect	
D) All of the above are cor	Tect.	the above are con		
2) "At any two points alon	g the same streamline	in a non-viscous,	incompressible fluid in	
steady flow, the sum of the	pressure, the kinetic	energy per unit vo	tume, and the potential	
energy per unit volume has	s the same value." This	s is a statement of	low	
A) Law of Continuity		C) Eddy F	10W	
D) Archimedes' Principle	E) Buoyant Law	•		
3) A pipe with a diameter fluid flowing in it. Which	of 2-in tapers down to	a 1-in diameter pinents is correct?	ipe and has an incompressib	ble
A) Pressure in the 2-in pip	e is greater than in the	1-in pipe.		
B) Velocity of fluid in 1-in	n the pipe is higher tha	n in the 2-in pipe.		
C) The volume of fluid flo	wing per unit time is t	he same in both p	ipes.	
D) All of the above are co	rrect. E) None of	of the above is cor	rect.	
4) A simple harmonic osc	illator oscillates with f	requency f when 1	ts amplitude is A. If the	
amplitude is now doubled		frequency?	$\mathbf{E} \setminus \mathbf{f}$	
A) 4f B) 2f	C) f/2	D) f/4	$\mathrm{E})f$	
5) The total energy of a si	mala harmania ascilla	ting system is		
A) A non-zero constant.	B) Zero as it pass	es the equilibrium	point.	
C) A minimum when it pa	asses through the equil	ibrium point.		
D) A maximum when it p	asses through the equi	librium point.		
E) Zero when it reaches the	ne maximum displacer	nent.		
distance from the equilibr	rium position, which o	f the following sta	the mass is at its maximun atements about it is true?	n
A) Its acceleration is zero	B) Its speed is	zero. C) Its t	total energy is zero.	
D) Its elastic potential en	ergy is zero. E) I	ts kinetic energy 1	s a maximum.	
	· 1 C	et soumes et e dista	ince d from the source is I	
7) The intensity of a sphe	rical wave from a poli	n source at a dista	nnce d from the source is I .	
What is the intensity at a	distance 2a from the s	ource? D) $I/\sqrt{2}$	E) 2 <i>I</i>	
A) 4 <i>I</i> B) <i>I</i> /2	C) I/4	שוועם	11) 21	

8) What is the wavelength of the wave shown in the figure?

A) 4 m.

B) 1 m.

C) 8 m.

D) 2 m.

E) It cannot be determined from the given information.

9) A train passes you standing by the track blowing its whistle. You note that:

A) The wavelength went from shorter to longer

B) The wavelength went from longer to shorter

C) The frequency remains constant

D) The frequency and wavelength remain constant

E) Nothing changed

10) Object 1 has three times the specific heat capacity and four times the mass of Object 2. The two objects are given the same amount of heat. If the temperature of Object 1 changes by an amount ΔT , the change in temperature of Object 2 will be

A) $4/3 \Delta T$.

B) 12ΔT.

C) $3/4\Delta T$.

D) ΔT .

Ε) 6ΔΤ

. . of 88

11) Complete the following statement: The transfer of heat by convection will occur:

A) Only in metals

B) Only in a vacuum

C) Only in non-metallic solids

D) With or without the presence of matter

E) Only in the presence of a liquid or a gas

12) The specific heat capacity of iron is approximately half that of aluminum. Two balls of equal mass, one made of iron and the other of aluminum, both at 80 °C, are dropped into a thermally insulated jar that contains an equal mass of water at 20 °C. Thermal equilibrium is eventually reached. Which one of the following statements concerning the final temperatures is true?

A) Both balls will reach the same final temperature.

B) The iron ball will reach a higher final temperature than the aluminum ball.

C) The aluminum ball will reach a higher final temperature than the iron ball.

D) The difference in the final temperatures of the balls depends on the initial mass of the water.

E) The difference in the final temperatures of the balls depends on the initial temperature of the water.

13) A spinning ice skater on extremely smooth ice is able to control the rate at which she rotates by pulling in her arms. Which of the following statements are true about the skater during this process?

A) She is subject to a constant non-zero torque.

B) Her kinetic energy remains constant.

C) Her angular momentum remains constant.

D) Her moment of inertia remains constant.

E) All of the above

A) The second law of thermody A) The entropy of the universe r B) The total energy of the universe	emains constant. rse is constant.		· • • • • • • • • • • • • • • • • • • •
C) Disorder in the universe is in D) The average temperature of t E) It is theoretically possible to a	he universe is increas	sing with the passage of	
15) Suppose you have a grandfar bob would make it more accurat A) Raise the bob. B) Lower D) Remove mass from the bob.	e? or the bob.	dd more mass to the bo	b.
16) When is the average velocity A) Only when the velocity is income. B) Only when the velocity is dec. C) When the velocity is constant.	y of an object equal t creasing at a constant creasing at a constant	o the instantaneous velo	
17) A spider sits on a turntable r A) Greater the closer the spider B) Greater the farther the spider C) Nonzero and independent of D) Zero. E) None of t	is to the central axis. is from the central a the location of the sp	xis.	n of the spider is:
18) A bicycle has wheels that ar when it is moving at 4.0 m/s?	e 60 cm in diameter.	What is the angular spe	ed of these wheels
A) 13 rad/s B) 1.2 rad/s	C) 4.8 rad/s	D) 0.36 rad/s	E) 7.6 rad/s
19) A 75-N box rests on a perfectore needed to start the box mod A) 75 N. B) 7.5 N. CE) Need to know mass of the box	ving is: C) 750 N. D) A	ess) horizontal surface. ny horizontal force grea	
20) An object moves in a circular velocity and acceleration vector A) The vectors point in opposite B) The acceleration is zero but to C) Both vectors point in the same D) The vectors are perpendicular E) The velocity vector is zero significant.	s. c directions. che velocity is constance direction. cr to each other.	nt.	ection of the object's

the Earth. Wha	tical planet has at is the acceler ue to gravity at	ation due to gra	vity on the surf	Earth and a radius of ace of the planet in	of twice that of terms of g, the
A) $g/16$		g/8		D) g	E) g/4
magnitude of i	its momentum v	will increase by	what factor?	e mass and speed o	of the tiger, the
A) 8	B) 4	C) 16	D) √2	E) 2	
23) You slam road. If you hat the same cond	ad been travelin	f your car in a pg twice as fast,	panic, and skid a what distance v	a certain distance o would the car have	n a straight level skidded, under
C) It would ha	ave skidded one ave skidded 1.4 sible to tell fron	times farther.	D) It would ha	ave skidded twice ave skidded 4 time	as far. s farther.
24) Two men, moving. Jerry work they do	stops after 10 n	push against a nin, while Joel	car that has stal	led, trying unsucce for 5.0 min longer.	essfully to get it Compare the
C) Jerry does	75% more work 50% more work them does any	than Joel. I		% more work than work than .	
25) On a cold due to the diff A) Density	erence in which	one of the foll	lowing physical	touch than a piece properties of these nal conductivity	e materials?
Where is the l	ll sinks in wate buoyant force o d in the water	n the ball great		y, which is much d th cases.	lenser than water.
C) Floating or		D) Need	to know the der	sity of the steel ba	11
extends twice in both reserv	the horizontal voirs. Which of	distance behind the following re	l it as that of dategarding these of	water reservoir beh m B . The depth of dams is correct?	ind dam A water is the same
A) The force B) The horizonthem.	exerted by the contal distance o	water on dam B f the water behi	is greater than and the two dam	that on dam A. as does not determine	ne the force on
C) Dam B is	more likely to	collapse than da	m A if the water	er level rises.	
E) The force	exerted by the	water on dam A	am B if the water is greater than	that on dam B.	

A) L		e on the string? C) L/2	D) 2L/3	E) 3L/2	2
A) Kelvin	B) Fahrenheit	at scale is used for C) Celsion ay be used since	us D) All	temperature sc	cales will work for both.
	es a box 4.00 m ork does she do? B) 10.0 J			applying a 25.	0-N horizontal force. E) 6.25 J
	falls from a tree.	It hits the groun	nd at a speed		is the fall time?
32) When an oa A) The vector B) The object	object is in trans sum of the forc must be stationa	lational equilibrates acting on the ary. C) The constant. E) A	ium, which oobject is zerobject has a c	of the following o. constant velocity	is <u>NOT</u> true?
building at the ball. Ignoring A) The red ball C) Both balls D) Both balls	same instant. Tair resistance: If reaches the grand at the same	ot for color, are point initial speed ound first. B) is instant with different tound first but ha	of the red ba The blue bal ferent speeds ne speeds.	Il is twice the in I reaches the gross.	nitial speed of the blue ound first.
impulse, the o A) A speed of	bject has:	t rest. It receives A momentum of e 15 kg m/s		5 kg m/s C) A	5 Ns. After the A speed of 7.5 m/s
					circle. The string ll the rock follow?
		P	A B		
A) Path A	B) Path B	C) Path	C	D) Path D	E) Path E

28) A violin string of length L is fixed at both ends. Which one of the following is **NOT** a

QUESTIONS 36 - 40 EACH WORTH 9 P	POINTS
----------------------------------	--------

36) Water flowing through a cylindrical pipe suddenly comes to a section of pipe where the diameter decreases to 86% of its previous value. If the speed of the water in the larger section of the pipe was 32 m/s what is its speed in this smaller section if the water behaves like an ideal incompressible fluid?

A) 43 m/s

B) 24 m/s

C) 28 m/s

D) 37 m/s

E) None of the above

37) What is the frequency of the fundamental mode of vibration of a steel piano wire stretched to a tension of 440 N? The wire is 0.600 m long and has a mass of 5.60 g.

A) 234 Hz

B) 517 Hz

C) 366 Hz

D) 312 Hz

E) 181 Hz

38) A 1200-kg car is pulling a 500-kg trailer along level ground. Friction of the road on the trailer is negligible. The car accelerates with an acceleration of 1.3 m/s². What is the force exerted by the car on the trailer?

A) 600 N

B) 650 N

C) 550 N

D) 700 N

E) 750 N

39) How much work must be done by frictional forces in slowing a 1000-kg car-from 26.1 m/s to rest?

A) 4.77×10^5 J

of expenses to the

B) $3.41 \times 10^5 \,\text{J}$

C) $4.09 \times 10^5 \text{ J}$ D) $2.73 \times 10^5 \text{ J}$

E) Need the coefficient of friction

40) A force of 17 N is applied to the end of a 0.63-m long torque wrench at an angle 45° from a line joining the pivot point to the handle. What is the magnitude of the torque about the pivot point produced by this force?

A) 12.0 N·m

B) 10.7 N·m

C) 7.6 N·m D) 9.7 N·m

E) 9.7 N

QUESTION 41 IS WORTH 10 POINTS

41) The melting point of aluminum is 660°C, its latent heat of fusion is 4.00 × 10⁵ J/kg, its latent heat of vaporization is 10.9×10^6 J/kg and its specific heat is 900J/kg K. How much heat must be added to 500 g of aluminum originally at 27°C to completely melt it?

A) 395 kJ

B) 485 kJ

C) 273 kJ

D) 14 kJ

E) 147 kJ

$$\begin{split} &\pi = 3.14159 \quad G = 6.673 \times 10^{-11} \text{ m}^3 / \left(kg * s^2 \right) \qquad 1N = 1 kg \left(m / s^2 \right) \\ &g = 9.81 m / s^2 \qquad 11b = 4.448 \, N \quad N_A = 6.022 \times 10^{23} \, / \text{mole} \\ &k = 1.38 \times 10^{-23} \, J / K \quad ; \quad R = N_A k \qquad 1 \, J = 1 \, N \, m \\ &1Pa = 1 \, \frac{N}{m^2} \, ; \quad 1 atm = 1.013 \times 10^5 \, Pa = 14.7 \, \frac{1b}{in^2} \qquad F_{Grav} = G \, \frac{m_1 m_2}{r^2} \\ &F_{spring} = -k \, x \qquad F_{friction} = \mu N \qquad V_{sphere} = \frac{4}{3} \pi \, R^3 \, A_{circle} = \pi \, R^2 \\ &x = x_o + \frac{1}{2} (v_o + v_f) t \qquad v_f = v_o + at \qquad a_c = \frac{v^2}{r} = \omega^2 \, r \\ &x = x_o + v_o t + \frac{1}{2} a t^2 \qquad v_f^2 = v_o^2 + 2 a (x - x_o) \qquad T_{max} = \frac{v_o}{g} \sin \theta \\ &\vec{p} = m \vec{v} \qquad (PE)_{grav} = U_g = m \, gy = m \, gh \qquad (PE)_{elastic} = U_s = \frac{1}{2} k \, x^2 \\ &KE = \frac{1}{2} m v^2 = \frac{1}{2} I \omega^2 \qquad W = F d \cos \theta \qquad \alpha = \frac{\Delta \, \omega}{\Delta \, t} \quad \tau = F L \sin \theta \\ &KE_{ave} = \frac{3}{2} \, kT = \frac{1}{2} m \overline{v^2} \qquad P = \rho \, gy_{depth} \qquad F_B = V \, \rho_{fluid} \, g \\ &\omega = \omega_o + \alpha t \qquad \theta = \theta_o + \omega_o t + \frac{1}{2} \alpha \, t^2 \qquad \omega_f^2 = \omega_o^2 + 2 \alpha \left(\theta - \theta_o \right) \\ &T_F = \frac{9}{5} T_C + 32^o \quad ; T_C = T_K - 273^o \qquad PV = N \, kT = n N_A k \, T = n R \, T \\ &Q_f = m L_f \, , \quad Q_v = m \, L_v \, , \quad Q = m \, c \, \Delta T , \quad P = F/A \\ &t = \sqrt{\frac{2h}{g}} \qquad v_f = \sqrt{2gh} \quad \theta = \frac{s}{r} \, , \quad \omega = \frac{\theta}{t} = \frac{v}{r} \qquad \theta = \omega_0 \, t + \frac{1}{2} \alpha \, t^2 \, , \\ &\theta = \left(\frac{\omega_0 + \omega_f}{2}\right) t \, , \quad \omega_f^2 = \omega_0^2 + 2 \alpha \, \theta \, , \quad \theta = \frac{s}{r} = \frac{vt}{r} \quad \omega = \frac{\theta}{t} \\ &W = F \, s = \tau \, \theta \, , \quad P = \frac{W}{t} = F \, v = \tau \, \omega \, , \quad I = F \Delta t = \Delta (m \, v) \quad L = I \omega = m \, v \, r \, , \\ &\lambda_n = \frac{2L}{n} \, ; \quad f_n = \frac{v}{\lambda_n} = n \, f_1 \, ; \quad k = \frac{\omega}{v} = \frac{2\pi \, f}{v} = \frac{2\pi}{\lambda} \, ; \quad \mu = \frac{m}{L} \, ; \quad v = \sqrt{\frac{T}{\mu}} \, \\ &T(period) = 2 \pi \sqrt{\frac{m}{k}} = 2 \pi \sqrt{\frac{L}{g}} = \frac{1}{f} , \quad v_{max} = \sqrt{\frac{k}{m}} \, A \\ &P + \rho \, g \, h + \frac{1}{2} \rho \, v^2 = constant, \qquad v_1 A_1 = v_2 A_2 \quad Q = \frac{Vol}{\Delta \, t} = v \, A \, \end{cases}$$

3.