FORM A

PRINT NAME:	
PID:	
SIGNATURE:	

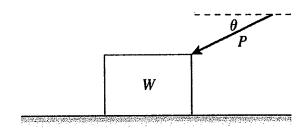
PHYSICS 220

$$\pi = 3.14159 \quad G = 6.673 \times 10^{-11} \text{ m}^3 / (\text{kg} \cdot \text{s}^2) \qquad 1 \text{N} = 1 \text{kg} (\text{m/s}^2)$$

$$g = 9.81 \text{m/s}^2 = 32 \text{ ft/s}^2 \qquad 1 \text{lb} = 4.448 \text{ N} \qquad 1 \text{ mile} = 1.609 \text{ km}$$

$$F_{Grav} = G \frac{\text{m}_1 \text{m}_2}{\text{r}^2} \qquad F_{friction} = \mu \text{N} \qquad \vec{p} = \text{m} \vec{v} \qquad \vec{J} = \vec{I} = \vec{F} \Delta t = \Delta \vec{p}$$

$$x = x_0 + \frac{1}{2} (v_0 + v_f) t \qquad v_f = v_0 + at \qquad a_c = \frac{v^2}{r} \qquad P^2 \propto a^3$$


$$x = x_0 + v_0 t + \frac{1}{2} a t^2 \qquad v_f^2 = v_0^2 + 2 a (x - x_0)$$

PHYSICS 220 TEST I FORM A PICK THE BEST ANSWER. QUESTIONS 1 - 25 EACH WORTH 4 POINTS

1) You drive will be	6.0 km at 50 km	h and then and	other 6.0 l	km at 90 kn	n/h. You	r average sp	peed ove	er the 12 km drive
A) exactly 3	8 km/h B)	greater than 70	km/h	C) equa	1 to 70 kg	m/h Γ)) less ti	han 70 km/h
,	be determined from							
•			J					
2) Which of	the following is	NOT a vector of	quantity?					
A) speed	B) velocity	C) accelerat	ion	D) force	E) 1	inear mome	entum	
	nanufacturer adv			go "from ze	ero to six	ty in eight s	seconds.	" This is a
description of what characteristic of the car's motion?								
	A) average acceleration B) instantaneous speed C) displacement							
D) average s	peed E	instantaneous	s accelerat	ion				
1) A hallia 4	h		f -i 1	A is hear le		and which	atatama	ont concomina ita
		i in the absence	e of air. A	ner ii nas o	been reie	asea, willch	stateme	ent concerning its
	acceleration is correct? A) Its acceleration is constantly decreasing. B) Its acceleration is constant.							
•	ration is greater		,	acceleration				
•	ration is greater	_	D) Its	acceleration	11 13 2010	•		
13) 113 400010	iution is constant	ary moroasing.						
5) A 10-kg r	ock and a 20-kg	rock are throw	n upward	with the sai	me initia	l speed v _o a	nd there	e is no air
	the 10-kg rock							
A) 2h	B) h/2	C) h	_	D) 4h		E) h/4		
,	,	, ,		,		,		
6) You are in	n a train traveling	g on a horizonta	al track an	d notice tha	at a piece	of luggage	e starts t	o slide directly
toward the fi	ront of the train.	From this obse	rvation, y	ou can conc	clude tha	t this train i	s	•
A) slowing o		owing down and				C) speeding		
D) changing	direction.	E) speeding u	ip and cha	inging direc	ction.			
	is moving with	constant non-ze	ero veloci	ty. Which o	of the foll	lowing state	ements a	about it <i>must</i> be
true?						•		
A) A constant force is being exerted on it in the direction opposite of motion.								
B) A constant force is being exerted on it in the direction of motion.								
C) The sum of the forces exerted on the object is zero.								
-	eration is in the s			-	,•	c		
E) A constar	nt force is being	exerted on it pe	erpendicul	ar to the di	rection o	i motion.		
O) A amata ia	alidina darrm am	inalinad ramp	at a const	ant angod a	£0.55 m	/s The west	or oum	of ALL the forces
•	his crate must po		at a const	ani specu o	n 0.55 m	/s. The vect	or sum	of ALL the forces
	•) down th	a romn		C) vertical	ly down	word
	cular to the ramp	ne of the above	•	-		C) vertican	iy down	waru.
D) up the ra	шр. <i>Е)</i> Мог	ie of the above	CHOICES IS	S COITECL.				
9) A 75-N b	ov rests on a ner	fectly smooth (no friction	a) horizonta	al surface	e. The mini	mum for	rce needed to start
the box mov		icolly sincolli (ilo iliotio	1) 110112.0114	ar barrae.	o. The min	1114111 101	ree needed to start
A) 750 N.	B) 75 N	C) 7.5 N	D) anv	horizontal f	force gre	ater than ze	ro.	E) 0.75 N
11) /0011.	D) 15 10	0) 7.5 11	D) willy		20200 820			2) 01.01.
10) An obie	ct of weight Wis	s in free fall clo	se to the	surface of the	he Earth	. The magni	itude of	the force that the
	s on the Earth is							
A) greater th		equal to W.	C) less than	W.	D) zero.		
	e determined wit	-		•		,	- Farth	

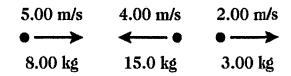
11) For general projectile motion if we neglect air resistance, the horizon acceleration	•
A) continuously increases.B) first decreases and then increases.D) is always zero.E) remains a non-zero constant.	C) continuously decreases.
12) James and John dive from an overhang into the lake below. James si edge. John takes a running start and jumps with an initial horizontal velo	

- air resistance, when they reach the lake below A) the splashdown speed of John is larger than that of James.
- B) the splashdown speed of James is larger than that of John.
- C) the splashdown speed of John must be 25 m/s larger than that of James.
- D) the splashdown speed of James must be 9.8 m/s larger than that of John.
- E) they will both have the same splashdown speed.
- 13) A block of mass m sits at rest on a rough inclined ramp that makes an angle θ with the horizontal. What must be true about the normal force F on the block due to the ramp?
- A) $F = mg \sin \theta$
- B) F > mg
- C) $F = mg \cos \theta$
- D) $F > mg \sin \theta$
- E) $F > mg \cos \theta$
- 14) A person is pushing on a box exerting a force of magnitude P, as shown in the figure. The Earth exerts a force W on the box. The push is directed at an angle θ below the horizontal, and the box remains a rest. The box rests on a horizontal surface that has some friction with the box. The normal force on the box due to the floor is equal to

- A) $W P \sin \theta$.
- B) W + P
- C) $W + P\cos\theta$.
- D) W.
- E) W + P $\sin\theta$.
- 15) A 200-N sled slides down a frictionless hillside that rises at 37° above the horizontal. What is the magnitude of the force that the hill exerts on the sled parallel to the surface of the hill?
- A) 200 N
- B) 0 N
- C) 120 N
- D) 150 N
- E) 160 N
- 16) An object moves in a circular path at a constant speed. Compare the direction of the object's velocity and acceleration vectors.
- A) The vectors are perpendicular to each other. B) The acceleration is zero but the velocity is constant.
- C) Both vectors point in the same direction.
- D) The vectors point in opposite directions.

- E) Depends on the radius
- 17) You are making a circular turn in your car on a horizontal road when you hit a big patch of ice, causing the force of friction between the tires and the road to become zero. While the car is on the ice, it
- A) continues to follow a circular path, but with a radius larger than the original radius.
- B) moves along a straight-line path away from the center of the circle.
 C) moves along a straight-line path in its original direction.
- D) moves along a path that is neither straight nor circular.
- E) moves along a straight-line path toward the center of the circle.

D) the astronaut is at a point in space where the effects of the Moon's gravity and the Earth's gravity cancel. E) this is a psychological effect associated with rapid motion.
19) Two cars go around a banked curve at the proper speed for the banking angle. One car has tires with excellent traction, while the other car has bald slippery tires. Which of these cars is more likely to slide on the pavement as it goes around the curve? A) the car with the new tires B) the car with the bald tires C) Neither car will slide.
D) It depends on their masses E) Need the coefficient of friction
20) Satellite A has twice the mass of satellite B, and moves at the same orbital distance from the Earth as satellite B. Compare the speeds of the two satellites.
A) The speed of B is one-half the speed of A. C) The speed of B is twice the speed of A. E) The speed of B is four times the speed of A. D) The speed of B is one-fourth the speed of A. E) The speed of B is four times the speed of A.
21) A tiger is running in a straight line. If we double both the mass and speed of the tiger, the magnitude of its momentum will increase by what factor? A) 8 B) 4 C) 16 D) 12 E) 2
 22) A rocket explodes into two fragments, one 25 times heavier than the other. The magnitude of the momentum change of the lighter fragment is A) 1/25 as great as the momentum change of the heavier fragment. B) the same as the momentum change of the heavier fragment. C) 1/4 as great as the momentum change of the heavier fragment. D) 25 times as great as the momentum change of the heavier fragment. E) 5 times as great as the momentum change of the heavier fragment.
23) A very light Ping-Pong ball moving east at a speed of 4 m/s collides with a very heavy stationary bowling ball. The Ping-Pong ball bounces back to the west, and the bowling ball moves very slowly to the east. On which object is the greater magnitude impulse exerted during the collision? A) On the bowling ball B) On the Ping-Pong ball C) Neither; the same magnitude impulse was exerted on both. D) It is impossible to tell since the actual mass values are not given.
E) It is impossible to tell since the velocities after the collision are unknown. 24) Identical forces are exerted for the same length of time on two different objects. The magnitude of the
change in momentum of the lighter object is
A) exactly equal to the magnitude of the change in momentum of the larger mass object. B) zero.
C) smaller than the magnitude of the change in momentum of the larger mass object, but not zero. D) larger than the magnitude of the change in momentum of the larger mass object. E) There is not enough information to answer the question.


18) The reason an astronaut in an Earth satellite feels weightless is that

B) the astronaut is beyond the range of the Earth's gravitational pull.

A) the astronaut is in the state of free fall.

C) the astronaut's acceleration is zero.

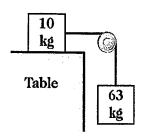
25) Three objects are moving along a straight line as shown in the figure. Taking the positive direction to be to the right, what is the total momentum of this system?

- A) $-106 \text{ kg} \cdot \text{m/s}$
- B) $0.00 \text{ kg} \cdot \text{m/s}$
- C) $+14.0 \text{ kg} \cdot \text{m/s}$
- D) $-14.0 \text{ kg} \cdot \text{m/s}$
- E) $+106 \text{ kg} \cdot \text{m/s}$

QUESTIONS 26 - 31 EACH WORTH 7 POINTS

- 26) A car accelerates from 5.0 m/s to 21 m/s at a constant rate of 3.0 m/s². How far does it travel while accelerating?
- A) 69 m
- B) 117 m
- C) 41 m
- D) 207 m
- E) 78 m

- 27) A cat leaps to try to catch a bird. If the cat's jump was at 60° off the ground and its initial velocity was 2.74 m/s, what is the highest point of its trajectory, neglecting effects of air resistance?
- A) $0.19 \, \text{m}$
- B) 0.29 m
- C) 10.96 m
- D) 0.58 m
- E) 0.1 m


- 28) A 1000-kg car is slowly picking up speed as it goes around a horizontal unbanked curve whose radius is 100 m. The coefficient of static friction between the tires and the road is 0.35. At what speed will the car begin to skid sideways?
- A) 30 m/s
- B) 34 m/s
- C) 24 m/s
- D) 19 m/s
- E) 9.3 m/s

29) A 0.140-kg baseball is thrown with a velocity of 27.1 m/s. It is struck by the bat exerting an average force of 5000 N, which results in a velocity of 37.0 m/s in the opposite direction from the original velocity. How long were the bat and ball in contact?

A) 3.07×10^{-2} s

B) 1.79×10^{-3} s C) 1.28×10^{-2} s D) 4.30×10^{-3} s E) 2.80×10^{-4} s

30) As shown in the figure, a 10-kg block on a perfectly smooth horizontal table is connected by a horizontal string to a 63-kg block that is hanging over the edge of the table. What is the magnitude of the acceleration of the 10-kg block when the other block is gently released?

A) 9.0 m/s^2

B) 8.5 m/s^2

C) 7.5 m/s^2

D) 8.1 m/s^2

E) 9.81 m/s^2

31) A block is on a frictionless table, on the Earth. The block accelerates at $3.0 \ \text{m/s}^2$ when a $20 \ \text{N}$ horizontal force is exerted on it. The block and table are set up on the Moon, where the acceleration of objects due to the gravitational attraction is 1.62 m/s². The weight of the block on the Moon is closest to

A) 6.8 N.

B) 9.5 N.

C) 8.1 N.

D) 11 N.

E) 5.5 N.

QUESTION 32 WORTH 8 POINTS

32) The captain of a space ship orbiting planet X discovers that to remain in orbit at 410 km from the planet's center, she needs to maintain a speed of 68 m/s. What is the mass of planet X?

A) $2.8 \times 10^{19} \text{ kg}$

B) 4.2×10^{17} kg C) 4.2×10^{14} kg D) 2.8×10^{16} kg

E) $1.9 \times 108 \text{ kg}$