

Physics 21900 General Physics II

Electricity, Magnetism and Optics Lecture 9 – Chapter 16.7-10 **Kirchhoff's Laws**

Fall 2015 Semester

Prof. Matthew Jones

Reminder

- The first mid-term exam will be tomorrow,
 Thursday, September 24th at 8:00 pm.
- Material to be covered is chapters 14 and 15
 - Coulomb's law
 - Electric potential energy
 - Electric field
 - Electric potential
 - Capacitors

- An electric circuit is a combination of elements connected together in such a way that there are continuous paths through which charge is able to move.
- Calculating the current in a circuit is called circuit analysis.
- DC stands for direct current the current is constant.
- The current is viewed as the motion of positive charges moving through the circuit.
- Exact values of current and voltage depend on where in the circuit you are measuring.

- So far we just used Ohm's law to analyze simple circuits.
- This can get complicated and confusing without a systematic method for analyzing circuits.
- Kirchhoff's rules for circuit analysis just make use of two fundamental concepts:
 - Energy conservation (charges can't gain more and more energy each time they go around a loop)
 - Charge conservation (charges can't be created or destroyed)

Kirchhoff's Rules

Kirchhoff's loop rule The sum of the electric potential differences ΔV across the circuit elements that make up a closed path (called a loop) in a circuit is zero.

$$\sum_{\text{Loop}} \Delta V = 0 \tag{16.6}$$

Kirchhoff's junction rule The total rate at which electric charge enters a junction equals the total rate at which electric charge leaves the junction:

Sum of currents into junction = Sum of currents out

In symbols:

$$\sum_{ln} I = \sum_{Out} I \tag{16.7}$$

Kirchhoff's Rules

- General problem:
 - Calculate the currents that flow in an electric circuit composed of voltage sources and resistors connected by wires.
 - Recall that work done to move a charge q from point a to point b is W=-q ΔV_{ab}
 - If a and b are the same point then W=0

$$\Delta V_{ac} + \Delta V_{cd} + \dots + \Delta V_{xb} = 0$$

$$\Delta V_{ab}$$

Kirchhoff's Loop Rule

$$\sum \Delta V = 0$$

"The sum of the potential differences around a closed loop is zero."

Circuit Elements

Voltage sources (like batteries):

Make sure you get the sign right!

$$\begin{array}{c|c} & + & - & \\ \hline & V & \end{array}$$

Circuit Elements

Resistors:

The charges lose energy as they are pushed through the resistor.

$$V_b = V_a - IR$$

Make sure you get the sign right!

Example

Kirchhoff's Node Rule

 The sum of the currents entering a node must equal the sum of the currents leaving.

$$I_1 + I_2 = I_3$$

$$I_1 + I_2 + I_3 + I_4 = 0$$

(at least one of these must be negative)

Find the current in the following circuit:

• Step 1: Draw a loop to represent the current.

Which direction? It doesn't matter, but let's ALWAYS pick clockwise to avoid confusion.

• Step 2: Apply Kirchhoff's Loop Rule...

 V_1

• Step 3: Solve for *I*...

$$I = \frac{V_1 + V_2}{R_1 + R_2}$$

What if I is negative? Then it means the current flows in the opposite direction.

More Complex Circuits

- Sometimes it is easier to first replace combinations of resistors with their series or parallel equivalent.
- Example:

• Step 1: Assign currents to each loop

Step 2: Apply Kirchhoff's Loop rule

$$V_1 - I_1 R_1 - (I_1 - I_2) R_2 = 0$$

$$V_2 - I_2 R_3 - (I_2 - I_1) R_2 = 0$$

$$V_1 - I_1 R_1 - (I_1 - I_2) R_2 = 0$$

$$V_2 - I_2 R_3 - (I_2 - I_1) R_2 = 0$$

- This is a system of two equations in two unknowns.
- Use whatever techniques you can think of to solve them.
- There are some general strategies, but these make use of Linear Algebra (matrices and stuff like that) which we won't discuss.

$$V_1 - I_1 R_1 - (I_1 - I_2) R_2 = 0$$

$$V_2 - I_2 R_3 - (I_2 - I_1) R_2 = 0$$

• Collect the I_1 and I_2 terms together:

$$V_1 - I_1(R_1 + R_2) + I_2R_2 = 0$$

$$V_2 + I_1R_2 - I_2(R_2 + R_3) = 0$$

• Solve for I_1 :

$$I_1 = \frac{V_1 - I_2 R_2}{R_1 + R_2} \quad (*)$$

Substitute it into the second equation:

$$V_2 + \frac{V_1 R_2}{R_1 + R_2} - I_2 \left(\frac{R_2^2}{R_1 + R_2} + R_2 + R_3 \right) = 0$$

• Solove for I_2 ... then substitute back into (*).

Lots of Loops

- In general, the analysis of complex circuits is done numerically using computers.
- Programs like SPICE were developed to analyze circuits that were to be implemented on silicon chips in the 1970's.
- General idea:
 - Describe the circuit in a form that a computer can interpret (generally not a circuit diagram!)
 - Identify all relevant loops in the circuit
 - Generate the system of equations
 - Solve the system of equations numerically to get all the currents
 - Print out the results
- For an example, look at

http://www.physics.purdue.edu/~mjones/phys536 Spring2008/spice.html