

Physics 21900 General Physics II

Electricity, Magnetism and Optics
Lecture 28 – Chapter 28.4-7
Radioactive Decays and Nuclear Reactions

Fall 2015 Semester

Prof. Matthew Jones

Announcement

Final Exam

Friday, December 18th 3:30-5:30 pm Room PHYS 112 Covers material from lectures 16-28:

- Propagation of light, refraction and reflection
- Lenses and mirrors
- Diffraction and interference
- Electromagnetic waves, polarization
- Quantum optics, the Bohr model of hydrogen
- de Broglie waves
- Nuclear structure and decay

Nuclear Structure

- The chemical properties of the elements are mostly determined by the configuration of electrons in the outer orbits.
- A neutral atom contains equal numbers of electrons and protons.
- Protons are confined to the nucleus which is 10,000 times smaller than the atom and contains most of its mass.
- Neutrons counteract the electrostatic repulsion of the positive charge and stabilize the nucleus via the strong nuclear force.

Mass/Energy Relationship

- The kinetic energy formula $KE = \frac{1}{2}m \ v^2$ is only accurate when $v \ll c$.
- This is the case for classical mechanics
 - Balls rolling down incline planes
 - Planetary motion
- Generally not true for nuclear processes
- The special theory of relativity shows that energy and momentum are related by

$$E = \sqrt{m^2c^4 + p^2c^2}$$

• When $v \ll c$ this is approximately

$$E \approx mc^2 + \frac{p^2}{2m} = mc^2 + \frac{1}{2}mv^2$$

Mass/Energy Relationship

• For particles at rest, v=0 and

$$E = mc^2$$

- Since $m = E/c^2$, a convenient unit for mass is eV/c^2 or MeV/c^2 .
- Example: what is the mass of a hydrogen atom in its ground state?

$$m_H = m_p + m_e - \frac{13.6 \ eV}{c^2}$$

- The binding energy lowers the total mass compared to the masses of its constituents.
- This is a tiny effect for Hydrogen:

$$m_p = 938.28 \, MeV/c^2$$

 $m_e = 0.511 \, MeV/c^2$
 $\Delta E = 13.6 \, eV$

• Total mass is 0.000001% lower than the mass of the proton and electron...

The mass of the parts is more than the whole??

The "lost" mass (mass deficit) is converted to a "binding energy" given by $\Delta E = \Delta mc^2$

Nuclear Binding Energy

- The effect is much larger for nuclei.
- The strong nuclear force between an proton and a neutron is attractive.
 - a proton and neutron have a larger potential energy when separated by a large distance
 - just like two opposite point charges
- Deuterium (an isotope of hydrogen, 2H) is a bound state of a proton and a neutron.
- The binding energy of deuterium is $\Delta E = 2.22 \ MeV$.

$$m_d = m_p + m_n - \Delta E$$

 $m_p = 938.28 \, MeV/c^2$
 $m_n = 939.57 \, MeV/c^2$
 $\Delta E = 2.22 \, MeV$

• This is a 0.1% effect but it is very important.

Nuclear Binding Energy

An isotope X with atomic mass Z and atomic number A has binding energy

$$\Delta E = [Zm_p + Zm_e + (A - Z)m_n] - m_X$$

• Example: Binding energy of ^{26}Fe

$$26 m_p = 26 (1.007276 u) = 26.1892 u$$

 $26 m_e = 26 (5.50 \times 10^{-4} u) = 0.0143 u$
 $30 m_n = 30 (1.008665 u) = 30.2600 u$
TOTAL = $56.4635 u$

Measured mass of ${}^{36}Fe = 55.9349 u$

$$\Delta E = 0.5286 u = 492.3 MeV/c^2$$

$$\frac{\Delta E}{A} = \frac{492.3 \ MeV}{56} = 8.8 \ MeV/nucleon$$

How much energy is required to remove one nucleon from a nucleus?

Answer depends on mass number A=N+Z

Radioactive Alpha Decay

- Neutrons stabilize the repulsive nature of protons in the nucleus
- If there are not enough neutrons, the nucleus becomes unstable and can eject an α particle.
- An α particle is the same as a helium nucleus: two protons and two neutrons.
- Example:

- Mass of the isotope decreases by 4
- Charge decreases by 2

$$m_{U238} = 238.0508 u$$

$$m_{Th234} = 234.0436 u$$

$$m_{\alpha} = 4.0015 u$$

$$= 238.0451 u < 238.0508 u$$

The rest of the energy

Radioactive Beta Decay

 A free neutron is unstable because it can decay into a proton and an electron

$$m_n = 939.5654 \, MeV/c^2$$

 $m_p = 938.2720 \, MeV/c^2$
 $m_e = 0.5110 \, MeV/c^2$ $= 938.7830 \, MeV/c^2$

- The electron, when emitted in a nuclear decay, is called a β particle (but it is still just an electron)
- There is actually a third decay product called an electron anti-neutrino, which is almost (but not quite) massless

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Radioactive Beta Decay

- Isotopes with too many neutrons typically undergo beta decay.
- Example: Tritium is ${}^{3}_{1}H$ (1 proton + 2 neutrons)

$${}^{3}_{1}H \rightarrow {}^{3}_{2}He + e^{-} + \bar{\nu}_{e}$$

- One of the neutrons decayed into a proton
- The atomic mass doesn't change because the number of nucleons remains unchanged
- The atomic number increases by 1 to conserve charge

Radioactive Gamma Decay

- The protons and neutrons in a nucleus are arranged in orbits, just like electrons in an atom.
- Nucleons in an excited state decay to a less excited state by emitting a high energy photon
- Neither the atomic mass nor the atomic number change
- Isotopes usually end up in an excited state due to a previous radioactive decay
- Example:

$$^{60}_{27}Co \rightarrow ^{60}_{28}Ni^* + e^- + \bar{\nu}_e$$
 $^{60}_{28}Ni^* \rightarrow ^{60}_{28}Ni + \gamma$

Nuclear Fission

- Some heavy nuclei are so unstable that they just fall to pieces (spontaneous fission)
- Some heavy nuclei absorb a neutron and then fall apart (neutron induced fission)
- Example:

$$92 U + n \rightarrow 56 Ba + 36 Kr + 3n$$

- Because one neutron is absorbed and 3 neutrons are produced, it is possible to sustain a chain reaction.
- However, only 0.72% of natural uranium is $^{\,92}$ U
- The more abundant isotope $\frac{1}{92}U$ captures fast neutrons but does not undergo fission.
- To make a chain reaction, you need to slow down the neutrons before they can be absorbed.

First controlled nuclear chain reaction University of Chicago 3:30 PM, December 2, 1942

(dawn of nuclear power)

Graphite (carbon) was selected as a "moderator" to slow the neutrons emitted from the Uranium fuel.

Nuclear Fission

- How much energy is released?
- Consider the reaction:

$$g_{235} = 235.0439 u$$
 $m_{U235} = 235.0439 u$ $m_{n} = 1.0087 u$ $m_{Ba141} = 140.9144 u$ $m_{Kr92} = 91.9263 u$ $m_{n} = 3.0261 u$ $m_{n} = 3.0261 u$

- Mass difference: $0.1858 u = 173 MeV/c^2$
- Energy released: $173 \ MeV = 1.5 \times 10^{-10} \ J$
- But there are 2.5×10^{21} atoms in 1 gram of U-235.
- There are also other fission processes but they are similar.

Modern Nuclear Reactors

- Nuclear fusion generates heat, just like burning coal.
 - 1 kg of coal produces 8 kWh of energy
 - 1 kg of U-235 produces 24,000,000 kWh of energy
- There are some engineering, safety, and waste disposal challenges though...

Solar Energy

 The sun converts hydrogen to heavier elements through the process of nuclear fusion.

- The total energy released is 26.22 MeV.
- The first step is very slow which is why stars burn for billions of years
- Protons usually just bounce off each other and don't fuse to form deuterium.

Semester Summary

Six BIG ideas

- Electrostatic Force Coulomb's Law (1785)
- Induced emf Faraday's Law (1830)
- Electromagnetic Waves Maxwell (1865)
- Quantized Energy States Planck, Einstein, Bohr
 (1900-1910)
- Particles behave like Waves de Broglie (1923),
 Schrödinger (1926)
- Relativity Einstein (1905)

We have covered five of these six BIG ideas. You should now have a general appreciation for why they are important.

Final Exam

Friday, December 18th 3:30-5:30 pm Room PHYS 112 Covers material from lectures 16-28:

- Propagation of light, refraction and reflection
- Lenses and mirrors
- Diffraction and interference
- Electromagnetic waves, polarization
- Quantum optics, the Bohr model of hydrogen
- de Broglie waves
- Nuclear structure and decay