

Physics 21900 General Physics II

Electricity, Magnetism and Optics Lecture 21 – Chapter 23.3-4 Thin Films and Diffraction Gratings

Fall 2015 Semester

Prof. Matthew Jones

Wave Optics

- Light has wave-like properties that are more easily observed in certain situations than in others
- Waves from two sources arriving at a common point will interfere constructively or destructively
- This depends on the phase difference of the waves when they arrive at that point

Interference

- Coherent light:
 - The phase is correlated over time and space
 - The phase is not random
- Two sources of waves:

$$f_1(t) = A\cos(\omega t + \theta_1)$$

$$f_2(t) = A\cos(\omega t + \theta_2)$$

$$f_1(t) + f_2(t) = 2A\cos(\omega t)\cos(\delta)$$

$$\delta = \frac{\theta_1 + \theta_2}{2}$$

- Constructive interference: $\delta = 0$
- Destructive interference: $\delta = \pi$

Interference

- What contributes to the phase difference?
 - Different initial phase
 - Different propagation distances

$$\theta_1 = \frac{2\pi x_1}{\lambda} \qquad \theta_2 = \frac{2\pi x_2}{\lambda}$$

– Propagation in different media ($\lambda' = \lambda/n$)

$$\theta_1 = 2\pi x \frac{n_1}{\lambda} \qquad \qquad \theta_2 = 2\pi x \frac{n_2}{\lambda}$$

Reflections (sometimes)

$$\Delta\theta = \pi$$

Double Slit Experiment

When the initial phase is the same, the path length difference is:

$$\Delta = d \sin \theta$$

$$\approx \frac{d y}{L}$$

Constructive interference when

$$\Delta = m \lambda$$

Destructive interference when

$$\Delta = \left(m + \frac{1}{2}\right)\lambda$$

© 2014 Pearson Education, Inc.

Thin Film Interference

These are examples of interference from thin films:

Iridescence, structural coloration

White light vs red light

Interference effects in thin films incident light (assume near normal incidence) λ_{air} air thin film substrate

Observations:

- · Ray 2 travels through a longer path than ray 1
- · If path difference is integer number of wavelengths, then constructive interference results

Tracking the Phase Upon Reflection

Must Include Phase Change upon Reflection

KEY IDEA

Learn to keep track of the phase!!

Reflection off interface from <u>low</u> n <u>to</u> <u>high</u> n: 180° (π) phase change

Reflection off interface from <u>high</u> n <u>to low</u> n: no phase change

Phase change upon reflection? Simple Analogy

Take home lesson: phase change upon reflection depends on boundary conditions

Summary so far...

TWO KEY IDEAS

Two ways to produce a phase difference between two waves:

- 1. One wave travels an extra distance
- 2. A reflection from an optically dense material produces a phase change of π upon reflection.

(A phase change of π is the same as a path length difference of $\lambda/2$)

Analyzing the situation (qualitative)

You must keep track of λ which is different depending on the medium through which the light travels.

Two contributions to **phase difference** between Ray 1 and Ray 2:

- i) Difference in path length between $\mathbf{1}$ and $\mathbf{2}$: $\Delta x = 21$
- ii) Any phase shifts due to reflection: Yes

Analyzing constructive interference (quantitative)

See Appendix from Lecture 18:

$$\Lambda_{\text{film}} = \frac{\Lambda_{\text{air}}}{n_{\text{film}}}$$

KEY IDEA

A net 360° (or 2π) phase change between two waves produces an **in phase** condition.

Condition on thickness t for <u>complete constructive</u> interference (maximum light reflected):

recall
$$\Delta \varphi = 2\pi \frac{\Delta x}{\Lambda_{film}}$$

here,
$$\Delta x = 2t$$

Phase change between

ray 2 and ray 1

constructive if
$$\left(2\pi \frac{2t}{\Lambda_{film}} - \pi\right) = 0, 2\pi, 4\pi, 6\pi$$
....

 $2\pi \frac{2t}{\Lambda_{film}} = 1\pi, 3\pi, 5\pi, 7\pi$

 $\frac{2t}{\Lambda_{film}} = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots, \frac{m}{2}$ where $m = \text{odd integer}$
 $t = \frac{m}{4} \Lambda_{film} = \frac{m}{4} \left(\frac{\Lambda_{air}}{n_{film}}\right)$; where $m = 1, 3, 5$...

Note: Valid for air on both sides of thin film.

Analyzing destructive interference (quantitative)

See Appendix from Lecture 18:

$$\Lambda_{\text{film}} = \frac{\Lambda_{\text{air}}}{n_{\text{film}}}$$

KEY IDEA

A net 180° (or π) phase change between two waves produces an **out of phase** condition.

Condition on t for <u>complete</u> <u>destructive</u> interference (no light reflected):

Phase <u>change</u> between <u>ray</u>

2 and <u>ray</u> 1

destructive if
$$\left(2\pi \frac{2t}{\Lambda_{film}} - \pi\right) = \pi, 3\pi, 5\pi, ...$$

$$2\pi \frac{2\dagger}{\Lambda_{\text{film}}} = 2\pi, 4\pi, 6\pi, ...$$

 $\frac{2t}{\Lambda_{\text{film}}}$ = 1,2,3....m where m is positive integer

$$t = \frac{m}{2} \Lambda_{film} = \frac{m}{2} \left(\frac{\Lambda_{air}}{n_{film}} \right); m = 1, 2, 3, ...$$

Note: Valid for air on both sides of thin film.

Example I: Thin Film Interference is in Soap Films

The color indicates where the wavelength and <u>local</u> film thickness satisfy constructive interference criteria.

Note: First four illustrations involve thin film of soapy water with air on both sides

Caution: Understanding What Is Observed in Thin Film Interference

- □ The human brain tends to reject what it cannot organize.
- □ How to organize colors so they are "pleasing" to the eye? - Color Theory
- □ Due to different wavelengths, different thicknesses, and different angles, light of only a small wavelength range is destructively reduced in intensity at a particular location on a soap bubble.
- □ In thin film interference you often see complementary colors which are the white light colors left after light from a small wavelength range is subtracted.
- □ A black region on a soap bubble usually indicates a region where the soap bubble is very thin.

Complementary
Colors: when
combined, they
tend to cancel
each other out

White light contains all the colors above

Example I: A region of a soap bubble looks red. What must be its thickness?

Implication: thickness of film must produce constructive interference for red light ($\lambda_{air} \approx 650 \text{ nm}$).

Physical model:

constructive **if** phase change between ray 1 and ray 2 is 0, 2π , 4π

$$\left(2\pi \frac{2t}{\Lambda_{film}} - \pi\right) = 0, 2\pi, 4\pi, 6\pi...$$

Calculation:

$$2\pi \frac{2\dagger}{\Lambda_{film}} = 1\pi, 3\pi, 5\pi, 7\pi....$$

$$\frac{2t}{\Lambda_{film}} = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots \frac{m}{2} \quad m = odd integer$$

$$t = \frac{m}{4} \Lambda_{film} = \frac{m}{4} \left(\frac{\Lambda_{air}}{n_{film}} \right); m = 1,3,5...$$

Note: air on both sides of thin film.

$$t = \frac{m}{4} \lambda_{film} = \frac{m}{4} \left(\frac{\lambda_{air}}{n_{film}} \right); m = 1, 3, 5...$$

$$= \frac{1}{4}, \frac{3}{4}, \frac{5}{4}, ... \times \left(\frac{650 \text{ nm}}{1.33} \right)$$

$$= 122 \text{ nm}, 366 \text{ nm}, 611 \text{ nm}, ...$$

Example II: Antireflective Coatings

What are possible values for t to minimize reflected light?

Working it out

Phase change between ray 2 and ray 1

Destructive Condition

$$2\pi \left(\frac{2\dagger}{\Lambda_{\text{coating}}}\right) = (1,3,5....)\pi$$

$$2\pi \left(\frac{2\dagger}{\Lambda_{\text{coating}}}\right) = (1,3,5....)\pi$$

$$\left(\frac{2\dagger}{\Lambda_{\text{coating}}}\right) = \left(\frac{1}{2},\frac{3}{2},\frac{5}{2}....\right) = \left(m + \frac{1}{2}\right); m = 0,1,2,...$$

$$2 t = \left(m + \frac{1}{2}\right)\Lambda_{\text{coating}} = \left(m + \frac{1}{2}\right)\frac{\Lambda_{\text{air}}}{n_{\text{coating}}}; m = 0,1,2,...$$

$$t = \frac{1}{2}\left(m + \frac{1}{2}\right)\frac{565 \text{ nm}}{1.40} = \frac{1}{2}\left(m + \frac{1}{2}\right)403.6 \text{ nm} = \left(m + \frac{1}{2}\right)201.8 \text{ nm}; m = 0,1,2,...$$

$$t = 100.9 \text{ nm}, 302.7 \text{ nm}, 504.5 \text{ nm},$$

Diffraction Gratings: More than Two Slits

Intensity pattern observed on the screen:

Accurately Measuring the Wavelength of Light - Diffraction Gratings bright fringes ("spots") separation between slits = d incident order light diffraction grating screen (multiple slits) grating to screen

distance is W

The underlying physics of the problem is the same as before

Bright spots on a viewing screen are produced by the constructive interference of light from many, many slits.

Where are the bright spots located?

Spacing between slits is d.

Bright spots when

$$\sin\theta = \frac{m\lambda}{d}$$

Example

Light of unknown wavelength is directed onto a diffraction grating, forming a third order bright fringe which is located on a screen 18.7 mm from the center bright line. If the distance between the screen and the diffraction grating is 1 m, what is the wavelength of the light?

The diffraction grating has 10 slits/mm.

1. What is d?

10 slits/mm = 0.1 mm/slit
$$d = 0.1 mm$$

Example

2. What is λ ?

$$\frac{y}{w} \approx \sin \theta$$

$$= \frac{m\lambda}{d}$$

$$\lambda = \frac{yd}{mM}$$

$$= \frac{(18.7 \ mm)(0.1 \ mm)}{3 \ (1000 \ mm)} = 623 \times 10^{-6} \ mm$$

= 623 nm

CDs and DVDs: Reflection gratings

The grooves in a CD disc are "effective" slits: the reflected white light forms interference maxima for different colors at different angles.

White light incident on grating

A spectrum produced by a grating is a result of the light of different wavelengths interfering constructively at different locations.

APPENDIX: Flow Chart for Thin Films

