§3.3 CROSS-SECTIONS

So far we have derived a procedure for calculating the transition probability am-
plitudes Sy; for any process in QED. Next we would like to relate Sy; to experimentally
observable quantities in particular cross-sections. We have calculated transition am-
plitudes for several processes involving definite spin and polarization of the initial and
final particles. In general this is not measured but rather the initial beams of particles
are spin-averaged while we sum over all final polarizations. We will have to see how to
do this also in our cross-section calculations.

To be definitive let’s first consider the scattering process between two initial par-
ticles, either et or 7, colliding, interacting and resulting in a final state with n final
particles. The initial particles’ energy-momentum is p; = (F1, p1),
p2 = (E2,p2) and is labelled p;, for ¢ = 1,2. Similarly, the final particles’ energy and
momentum are labelled p’ = (E%,pf) for f = 1,...,n. The initial and final parti-
cles are in definite spin and polarization states also. Recall that the S-matrix element
always has the form

Spi =05 + (2m)" 64 (P, — Py) My, (3.3.1)

where 0; represents the normalization of the free incoming and outgoing states. Since
we are interested in the transition probability we consider |S fi|2 for i # f. Notice
however that we will have [§4(P; — Py)]? = §*(0)§*(P; — Pf), a meaningless expression.
The reason is twofold; first, we should initially consider transition amplitudes occurring
for a finite time +7', square it for the probability, and then let T" — o0, as described
in the adiabatic hypothesis discussion. Hence
+oo ) ,
218(E; — Ey) = / e~ UE =B gy (3.3.2)

— 00

should be replaced by

lim Te—i(Ei—Ef)t’ dt’
T — o0 -T
lim ~f, sin [(E; — Ef)T)
= {
T — o0 i(E; — Ey)

2m8(E; — Ef) =
(3.3.3)

to give the transition amplitude for time 27
However, in any process, decay or scattering, we are not interested in the total
transition probability but in the transition probability per unit time, or transition rate.
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Since for finite T, |Sy;|% (i # f) gives the transition probability during time 2T we have
that the transition rate wy; is, for ¢ # f,
lim  [Sf;|?
P = —_ 3.3.4

Wi T —o00 2T ( )
Now in calculating |Sy;|° the expression |2786(E; — E;)|* is replaced, for finite time,
by
sin®[(E; — Ef)T)

I(E; — Ef)=4 3.3.5
( 2 (B: — Ey)? ( )
But recall that
lim I(E) lim 1 too
_ 1 1 3.
o [ SRimaE= 1" 50) /_oo I(B)dE+01)]  (336)
This last term, Tli_’floo %(’)(1), remains finite as T' — oo, since I(E) is sharply peaked
about E = 0. AI(E)
Figure 3.3.1
But
+oo
/ I(E)dE = 2r(2T), (3.3.7)
hence (B)
lim I(E
Thus ()
I(E
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in the limiting sense. This yields

_ lim |8y

T — o0 2T (3.3.10)
— — 2

— 276(E; — Ey)|(27)%6% (P, — By)|” | M|

W 4

That is, more directly,

1276(E; — Ef)|? = 276(0)(2n)8(E; — E) (3.3.11)
but _ _ T
oms(0) = / e—iE=Ep gy
T'—oo By—=Fi Jor (3.3.12)
lim
= 2T.
T — o0

Since 27T is the time during which the transition has taken place, |S fi|2 divided by 2T
is the transition rate.

In a similar manner we have the spatial momentum delta function squared, which
is also nonsense. We should be using momentum wave packet states rather than plane
wave states. Then at the end of the calculation, i.e. after squaring Sy; and calculating
a density, we may take the plane wave limit. More directly we could place our particles
in a finite volume or box (T << V3 to avoid reflections). Then

— - 2 — — hm —3 B._ P T
|2m)° 8 (P, = Py)|" = 2n)° (P, = Py) |, [ dPw(en" P T))
i v (3.3.13)
_ 33(p
= @n) (B = Fy) |, V.

We can then define the transition rate per unit volume or transition probability per

unit space-time

o lim W 4 .

;= = 2m)tér (P — P A2 3.14
U= Y (2m)" 0%( r) | Myl (3.3.14)

where wWy; is the transition rate density to one definite final state. To obtain the

transition rate to states with momenta differentially close to ﬁf’ for f =1,...n, we
must multiply wy; by the number of states in the volume d3p’f around p’ f’ ,f=1...,n.
Since we normalized our states to the continuum, we have that the density of

states is
(17) = (27m) 2w, (5 — 7 ) (3.3.15)
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and so

3
/ (d—p 7)) =1 (3:3.16)

27r)32wp

d3p}

Hence there are @20,
¥

states differeentially close to p’ f’ , and the transition rate per

unit volume into all states differentially close to p’ f’ is thus

Wy — (3.3.17)
o (2m) 2w,

Returning to our case of two incoming particles and n-outgoing particles, the
differential cross-section doy; is defined in the laboratory frame as the transition rate
density per target density per incident flux

don — Wi ﬁ dpf
Ofi = , (3.3.18)

where
ny = target density

= number of scattering centers per volume
and F7 = incident flux
= rate of incoming particles per area.

Now if we take particle 2 as the target particle we have that, due to the momentum
normalization,
— | = 3 — —
(Flq) = (27m)"2wp0°(F — 7 ), (3.3.19)

that the Z-space normalization is found from the Z-wavefunction

N|—=

(Z|P) = [2wp]? P2, (3.3.20)

So the probabiltiy of finding a particle per unit volume is [2w,], and the target density
is then
ne = (2wp, ). (3.3.21)

Similarly the incident particle flux is just the incident particle density, also 2w, , times
the relative velocity of the two particles in the lab frame v,e;. Thus the incident flux is

F] = 2wplvrel. (3.3.22)
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Putting this together we find

_ n 3./
(IR y
3
B 22 (2m) 2wy,
1 - d*p’ 4 2
= 5o L oo @) (P = Py) Myl
Wp, 4Wp, Urel F=1 (271') 2wp/f

dO'fi =
(3.3.23)

We can write the expression wp,wp,vrel in a more Lorentz invariant way. (No-
tice that all frames in which the particles are moving collinearly will yield the above
expression. )

7
Wp, WpyUrel = Wp Wpy | —— —
P1 Wpo
1
2.2 (P P2 200 p) (3.3.24)
- wmwpz w2 w2 W W
p1 P2 P1Wp2
1
. .13
= [wggﬁ? + wglﬁg - 2wp1p1 ' wp2p2:|
But recall
2 o o2
(pip2)” = (wmwpz — D1 - D2)
) L . . (3.3.25)
= (wmwpz) + (P11 - p2)” — 2wWp,P1 * Wpy P2
So we find
%
2 o N2
Wpy WpyUrel = [(plpz) - w§1w§2 — (p1-p2)” + %2;215? + wglﬁg}
2
kam)—m%é—ﬁﬁ—m%?ﬂﬁﬁ
1 (3.3.26)
- 3
— (1 - 72)” + P05 + mipS + m3pt + P

N|=

2 L L2
= [(plpz) —mims + pips — (1 - P2) }

Now if the frame is such that the colliding particles momenta is co-linear or one
particle is at rest we have

Pi X s =0 (3.3.27)

and thus either po = 0 or
ﬁg = Ofﬁl, (3328)
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then the last two terms cancel to yield

N|—=

WpyWpy Urel = [(p1p2)2 - m%mg} (3329)

in all colinear frames.

So the lab frame cross-section takes the form

2m)" 64 (p1 +p2 — X 7 T (P
(2m)" 6*(p1 + p2 Zflpf)‘Mﬁ 11 (%) (3.3.30)
9 9 92 o (271’) 2wp/
4 [(p1p2) — m1m2} f=1 !

dO’fi =

which is our final Lorentz invariant definition for the cross—section.

Two important colinear frames are:

1.) The laboratory frame; p> = 0 (massive particle)
Wpy WpaUrel = Wpy M2 — = ma|p1| (Lab) (3.3.31)
pP1
B - _ 1Pl 1P2| : _ |z | EitEy
2.) The center of mass frame; p1 = —pa , Vpel = + that is viel = |P1| B 52 =
Wpq Wpo 11402
|ﬁ1|%7 S0
o 7] |p
b1 2
Wp, Wp, Urel = wmwpz{w—pl + w—m}
L B+ Es (3.3.32)
= wm%z{@ﬂm}

= [P1l(wpy +wp,)  (COM).

The differential cross-section dos; given above is for transitions from initial states
with specified momenta and spins and polarizations to final states with specified spins
and polarizations and with momenta differentially close to a specified value. In an
experiment usually we will not polarize the spins of the incoming particles but just
average over them, and likewise we in general do not detect the spin states the final
particles are in but rather sum over all spin states. Of course some experiments do
study polarization effects but by and large they do not.

To make clear all of the above discussion let’s apply our definitions to calculate
the cross-sections in Compton scattering.
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(&)
o )

First for totally specified initial states, an initial photon of momentum E, polariza-
( -1 ) s+1
2

tion €,(k, A), and an electron with momentum g, spin

1y’ . .
electrons with spin G and photons with polarization €, (k’, \’) with momenta
2 7

differentially close to 7 for the e~ and &’ for the .

scatter to produce final

The differential cross-section for scattering is

_@en)'étpt+k—p —K)

3 : 2 d3p/ d3k/
do(e™y —e™y) = T

(27)°® 2w, (27)? 2wpr

fi (3.3.33)

where M y; was calculated previously in second order perturbation theory according to
our Feynman rules and is given by equation (3.2.50)

M(e™y —e77)

= (=ie)? [1) @) 4 X) gy £, )10 B)

k' N ul®) (ﬁ)] .

(3.3.34)

-
@-F)-m
Since we have overall energy-momentum conservation, all the final momenta are

not independent. (If we take k as our polar axis then (k', 86, p) are the spherical coor-
dinates of k / with k as the polar axis.)

+a) (@) ¢k, A)

Since there are four delta functions and six integrals, we can do all but two inte-
grals. We will choose these two integrals to be the (6, ¢) polar angles of the scattered
photon relative to the incident photon.
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R (1, 8,)

Figure 3.3.3

Thus we will find the cross-section for scattering into electron states of all momenta
and photon states of all magnitudes of momenta that are in the solid angle df2 centered
about (6, p).

That is,
a3k’ = k'* dk’ sin6 d6 de = k' dk’ ds?, (3.3.35)

so that the cross-section becomes

do(e”y—e7v)

dQ)
teo gy T gPdk @2m)tstpt+k—p — K 2
:/ 3p / . ( 7T) (p+ D ) let (3336)
—o  (2m)7 2wy Jo (27)" 2wy dp- k
The integral over p' can be done immediately by just setting
7 =k+p— k' everywhere.
So
_ _ 00 2
do(e”y — e 7) _ /+ k' 3dlc' 27) 6 (wp + wk — wpr — wir) ‘Mﬁ 2 (3.3.37)
dsd 0 (27)" 2wy 2wy 4dp - k
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where ' = k + 5 — k' is understood.
Now,

wiy = \J (k)2 +m2 =k (3.3.38)
since m~ = 0.

Unfortunately

(SIS

vy = V@) +m2 = (F+5—F) +m?) (3.3.39)

depends on k' so we cannot do the integral simply. Using

+oo !
g(k
/ Ak S(f(K)) g(k') = (a fO) , (3.3.40)
—oo oo | | (k'o)=0
we find
S 2 -
do(e”y —e”y) _ B Myl [8(wl” - wk')} (3.3.41)
dQ (27)% 2wps 2wy dp - kL BIR/]
where p’ = E-i—ﬁ— K and wy = wp + wi, — wy. That is, p,' =k, +p, — k,” and a|a,;/|

is taken with 6 and ¢ held fixed. More specifically, most experiments are performed
in a frame where the electrons are at rest. Thus the lab frame has p = (m,0,0,0) and
hence ' = k — k. So in this frame

N|—=

Wy = [m2+(E—E’)2}

. (3.3.42)
- [m2+ (B)2 + (k)2 —21‘5-1;"} .
But
k-k = |k||K'| cos® = wpwp cosb, (3.3.43)
S10)
Wy = [m? + wi? + wir? — 2wiwpr cos 0]% (3.3.44)
where we recall that wy, = |k| and wy = |k’|. So we find
/ / 11
M =1+= (2wgr — 2wy, cos )
Owpr 2 wy
(0:)
— 1+ (Wi — wi cos ) (3.3.45)

wp/

Wpr + Wy — wy; cos 6
Wy ’
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But wy + wir = wp + wi = m + wy, hence

/ / 1 —
wp +wir) _ mtwi(l — cosf) , (3.3.46)
Owyr Wy
(0,9)

Now we can further use energy-momentum conservation to find wys as a function of 6

and wy.
2

wp” = (wp + wi — wk’)Q
= (m + wp — wpr)? (3.3.47)
=m? + wi? + w2 + 2mwy, — 2mwi — 2WEWi -

From momentum conservation we had

wp? = m? 4+ wp? 4+ wi? — 2wgwy cos . (3.3.48)

Equating these last two expressions we arrive at the Compton condition:

mwi
;= . 3.3.49
ok [m 4+ wi (1 — cos 0)] ( )
So
5(“’%’ tww)) o s (3.3.50)
W' W' WLt
" (0,¢) Pk
Hence with these results we have that the differential cross-section in the laboratory
frame
do(e=y — e ) _ wr? |Mfi|2 [8(wp/ + wk/)} - (3.3.51)
ds2 Ly 16 (27)? Wi wyr Ty, O|k'|
becomes
do (e~ - 1 ’\ 2 2
< ole ’;;e 7)> - ( h ) ‘Mﬁ (3.3.52)
Ly (8m)T N
with wi = Mk

[m+4wk(1—cos@)]*
With the kinematics out of the way we must now face the evaluation of | M fi|2
We consider scattering with unpolarized photons and electrons. Thus we must average

over the initial spin and polarization states of the e~ and the ~, and then sum over the

345



final e~ spin and the final v polarization. Thus the spin and polarization averaged-

and-summed cross-section in the lab frame is

do"Pol (e=ny — e~ 1A 1 G- do(e vy — e~
< (dQ’y 7)) “Iyly ey < ( i ’”) . (3.3.53)
lab lab

This is called the unpolarized cross-section. In it,

% 2321 represents the average over the initial electron spin,
% Zizl represents the average over the initial photon polarization, and
23/21 Zi,zl is the sum over the final spin and polarization states.

First let’s consider the electron spin sums. Note that M; has the form

My; =7 () Tavuy” (7). (3.3.54)
Thus
My = @ (7)) T ™ (7)) (@) (7) Tears (7). (3.3.55)
Defining
[ =4°TT40 (3.3.56)
we have
IMif? = (@ () Taaul® (3)) (@ (7) Tl (7). (3.3.57)

Now, for the sum over s and s, recall that

Z ul (@) (5) = (B +m) oy (3.3.58)

SO
2

S Ml =3 S W)l @) w3 a (5) TaaTve

s,8'=1 s=1 s'=1

= (' +m) (P +m) L aal've (3.3.59)
= (p' +m) qLaa(p +m) 4, Lhe
= Te[(p' + m)D(p +m)T].

Hence we just have to evaluate the y-matrix traces when we spin-average.
Further consider the form of M ;’s polarization dependence.

Myi = e (k,A) e (K, N') My, (k, k') (3.3.60)
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So a polarization sum implies

2 2
ST IMpilP = > ek N) (kA € (K N) € (K N) My M, (3.3.61)
AN =1 AN\ =1

Recall the polarization vector completeness property

i B N) P (e, ) = —gio — —FCRP etk (e KRR 4 kP
A=1 (n-k)z—kQ (n.k)Q_kz (n-k)z—kQ
(3.3.62)

Now for photons k2 = 0 and n - k = wy, so

(k,A) e (k,A) = —g"* — .

2 BL.p 1 ,0p P 0n
Z Kk (BT kg (3.3.63)

Wi Wi

Now we can further simplify this by using the gauge invariance property of the theory.

Since the theory is gauge invariant we should obtain the same physical results
whether we use the fields A, (z) and ¥(x), or the fields A, + 9, A(z) and e =A@ W ().
In particular, all observables are gauge invariant if their operators commute with gauge
transformations U(A). So S-matrix elements are gauge invariant if

C fIUHA)SU(A)]i o=C f|S|i D . (3.3.64)
That is, if [/ D= U(A)|i D and |f' D= U(A)|f D then since US = SU we have

Sy’ =c f|S]i' >=c flUH(A) SU(A)]i D

(3.3.65)
=C f|Sli o= S
Now f
TU-L(A)e " d4$N[H§P](I)U A
U-1(A) SU(A) = L We — () (3.3.66)
<0|Te—zfd x N[H; ](1’)|0>
But
HIP = eALPT gl P, (3.3.67)
SO
U= (A HIP U(A) = e[(Au + auA)%u\p} (). (3.3.68)
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Thus B
_C f|Te_ifd4$N[H§P](r) e—ifd4x 8“AN[\117“\I/]|Z, 5

S’ 3.3.69
f <0|Te—ifd4x N[’H%P](x)|0> ( )

For infinitesimal A we find

TN[T~# T —i [d*y N[HI)() |
S =Sy —ie/ diz oA (z) SN ()] e 2 (3.3.70)
<0|Te—zfd4xN['H§P](x)|0>
Thus if

/d4x6uA(33) C FITN[BA»W (z)] e S 4y N0 | 5 (3.3.71)

the S-matrix is gauge invariant. Or, stated otherwise, since the S-matrix is gauge
invariant we have that the above expression is zero. Now since A(z) is arbitrary, this
implies that

0. C fITI"(x) e~ [aN[HT W] | 5 (3.3.72)

where

JH(z) = N[UyW] (). (3.3.73)

Now when we have a matrix element involving a photon in the state |7, (k,A\) D, for
scattering this photon always attaches to a vertex

C fIS)i, (k,A) D = (2m)* 04 (P, + k — Pr) Myishn

— ieet(k,\) C fITJ#(k) e S @y N IW) | (33.14)
Now gauge invariance implies that
ko C fITJ#(z) e~ ] TvNUETIW) | 5 o, (3.3.75)
Thus if we change the classical photon wave function
A*(x) = const. " (k, \)e * (3.3.76)

by a gauge transformation A* — A" 4+ A where A(x) = A(k) e~™** we have that
e (k,\) — e*(k, \) — ikMA (k). (3.3.77)
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The S-matrix is invariant since k,, C f|TJ#(z) e J # v NrI) | D= 0. This means

that for any process involving photons,
My = €' (k,\) M, (k),

we have by gauge invariance

kM, (k) = 0.

(3.3.78)

(3.3.79)

Now let’s check explicitly that the Compton amplitude is gauge invariant. Pulling

et (k,\) e’ (k', \') out of M(e”y — e~ 7y) we have

. —(s’ 7’ S) (=
M (b K = (=) [7) () 0 (gl 9)
e S R ¢
+u ()7, Y™ (P) |-
Yp-K)-m
So if Sy; is to be gauge invariant then
KMy = 0= K" M,,.
First ’
. —(s’ ? S
B Mo, = (=ie) |7 () 3 T L

but by energy-momentum conservation k = p’ + k' — p, so

Fu (@) = (F + K —pu D)
= (p+ k)u (@) — pu" (7).

Similarly
a (@) k=1 @) (F +F - p)
but, from the Dirac equation,
pu (@) =mu@E)  and @ @) P =ma ).
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(3.3.81)

(3.3.82)

(3.3.83)

(3.3.84)

(3.3.85)



Thus

(3.3.86)

Note that each graph separately is not gauge invariant, only the sum of all the graphs
in that order of perturbation theory is gauge invariant.
Likewise one shows that
K" M,, =0. (3.3.87)

The importance of this is that in our polarization sum we have

2 2

Do MplP = (kN (k) (7 (K N) e (K X)) My (k, k') M ™ (R, K.
AN =1 AN =1
(3.3.88)
Now if k*M,, = 0 = k’“ M, we have that the polarization vectors for A\, \' = 0,3
k“k; . ku90p+kp90u

cancel each other; i.e. the ( ) terms vanish. Thus

2
7 Mgl = (—g") (=" ) My (k. K') M ™ (I, k)
AN =1

— Muy(k,k/) M“V*(k,k/) (3389)

- T[M(k, Ky Mk, k)

where (Mf(k,k'))“" — (M*(k,k/))"“

So first calculating the spin average cross-section

doPiP (e~ y — e 7y) CR do(e” ’y — e )
< a2 lab Z Z lab

s'=1

(3.3.90)

(L )Qﬂ[uﬁ’ £ )L+ m)T]



= (—ie)” ¢(K', \) m ¢k, \) + (—ie)” ¢(k, \) m ¢k, \") (3.3.91)

[ = —ie? e (k,\) e’ (K',\) T (3.3.92)
with
Now

I = AOTTA0
;
= +iee’ (k,\) e {77(]!5-1-% )fyi
;
+’YV( k o ’Y v } (3.3.94)
p 1 1
-l—zee (k,\)e [’yu TEE %+%(75—}€/)—m7u

= +ie*e (k,\) e’ (K", Ny,

So the spin averaged cross-section becomes

<d05pin(6_’y — e ) )
dQ
lab

1 et Wgr \ 2
et (k,N) eV (B, N el (k,\) e (k' N
3 o ) €V € LX) 2) () -

o TT[(iﬁ’er)(%W’wﬂm @_kl, — )

< (b + >( L ety )
m) v ———— 7 *
PWB+E) —m }é “m
Now we can work out the trace! Notice that
1 Pt E+m p+E+m
_ - 2_ 2 2 _m24k2429-k
prk—m  (p+k)y>—m2 pP-m?+k*+2p (3.3.96)
_ptE+m
2k
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and similarly,

1 _ p—F +m _ p—F +m
PR mm (p K)ot e mt k2 (3.3.97)
:_15—}6/+m
2p- k'
So we have
/ ' 1 1 )
[ +m(¢ G ) )
1 / y 1
X¢@+m—m¢+¢@—w—m0} (3:3:95)
:1[ Xaa Xbb . Xab+Xba :|
Alp-k)? -k (k) (p-K)
where
7= e (k)
¢ = et (K. X)
Xaa = Tr[ (8 + m)f (B + 4+ m)f(p + m)fh + f + m)¢ |
Xu = Te[ (8 + m)d(p — K +m)f (b +m)f (p— ' +m)y] (3:3.99)
Xao = Te|(F +m)¢ (8 + f+m)d(p+m)f (6 — K +m)y|
Xoa = Te|(F +m)d(p — ¥ +m)d (b +m)d(p+  +m)f|.

Notice that if k¥ < —k’ and ¢ < € in X,4, then we get Xp,. So only X,, need be
calculated. Also, the interchange k < —k’ and € < € in X, yields Xp,. So only X,
need be found.

Still these are very messy expressions involving the trace of up to eight y-matrices.
We can simplify things by first making use of the lab frame and the fact that we can
always work in a gauge in this frame where e”(k, \) = (0, (k)) for A = 1,2.
Then

pue(k,\) = pue* (K, \) =0 (3.3.100)

and
ket (k,\) =k, e (K',\) = 0. (3.3.101)
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Now
(¥ +m)¢ = ¢(m — p)

SO

B +m)f(p+k+m)=—{(p—m)(p+m+F)
= —d(pp + mp + Pk — mp — m* — mf)

= —¢(p—m)f.
Then
B+HE+m)dp+m)¢p+f+m) =+ E+m)ddp —m)k
=+@+E+m)P—m)k
= k@ —m)k.
So

Xaa = Tr|(f +m)f F(p — m)ke |
= Te|p'¢ ke | — m2Tx ¢ ke |-
But ff = k2 = 0 and Jpf = 2p - kf, thus
Xaa = 20| |p - &
— OTy [15’}6 P2k - e’}p k
=8(p- )| ke 20k ) - ).

But p' —k=p—Fk,soe -p'=¢ -kandp -k=p-k"
So

Xaa = 8(p : k’) [2(6/ . ]{3)2 + (p . k/):|
and thus

Xpp = —8(p- k) [2(6 . k’)2 —(p- k)}

Now we have X,; to evaluate. Using

B+ F+m)f(p+m) = kf(p +m) + ¢(m = p)(p +m)

and

(B+m)f (b~ +m)=—~+m){¥ + (F+m)d (p+m)
=—(p+m)'k.
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(3.3.102)

(3.3.103)

(3.3.104)

(3.3.105)

(3.3.106)

(3.3.107)

(3.3.108)

(3.3.109)

(3.3.110)



So Xgp becomes
Xap = =Te[ (5 + m)y be(p + m)¢ K| -
= —Te[p R K'd] — e[ ke K] -
Using p/ =p +k — K’
Xav = —Tr | kef K| — T ke b K|
+ Tx K Kbl K'd| — m> T | ket ).

The evaluation of X, is messier than that of X,,. It leads to

(3.3.112)

Xap = =8(p - K)(p- k) [2(- ) = 1) = 8(k-¢)’ (0 K) +8(K - *(p- k) (3.3.113)

so that, in fact,

Xab - Xba- (33114)
Recall that
dgspin(6_7 - 6_7) - 64 ( Wi’ )2 [ Xaa + Xbb . Xab + Xba
* w867 me/ Lk k) k) (e K)
(3.3.115)
with the electromagnetic fine structure constant given by a = % = 1371.0 1

Finally putting all this together we obtain the initial and final electron spin aver-
aged and summed Compton scattering differential cross-section in the laboratory frame
for definite initial and final photon polarizations. This is known as the Klein-Nishina

formula
doRen NSRS (o= =)\ (do(emy s )
dQ B dQ
, lab lab (3.3.116)
(l/2 Wi Wi Wit 2
- DR g (et DU
(VS g 2]
Since e"(k, ) e, (K, N) = —&\(k) - & (K'), we can simply perform the average and

sum over photon polarization to find the unpolarized Compton scattering differential

cross-section, hence we must evaluate

i i (63(’_5) -5»(1_5’))2- (3.3.117)



-

Since (€1, €2, l—gl) forms an orthonormal basis we have

evik) = (k-ev &)k -+ (Ek) - ev(k))énk) (3.3.118)

and thus

3 (*A(z‘c’)-a/(zé”))2 —1- <§-€A,(E’)> . (3.3.119)

Similarly (&1 (k), &(k'), lg—jl) is an orthonormal basis so

2 E 2 E E/ 2
— . av(k)) =1- <T . T) (3.3.120)
2 <k| ) k| |K]

’))2 =2 — (1 —cos?0)

A=L =1 (3.3.121)
=2 —sin®6

= cos?f + 1.

(]
(]
/N
My
>
—~
a1
~
)
>:l
—
L

So the unpolarized cross-section becomes

d unpol. ( ,— — 2 / 2 ’
oMy —eTy)) ot [w Wk YK Gn20 (3.3.122)
RiY) . 2m?2 \ wg W’ Wk

where the Compton relation gives

mwi
m+ wg (1 —cosh)

In the low energy limit wir << m and wy ~ wg, the recoil electron’s kinetic energy
is negligible. Thus our expression reduces to the Thompson scattering cross-section

dUThom son a2 2
<——7KfL—>lb::§;§(1+wns9) (3.3.124)
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