§3.2 THE S-MATRIX FEYNMAN RULES

Of course we cannot evaluate (f|S]¢) in closed form, so we will perturb in the
interaction. To be specific let’s evaluate the S-matrix for the process e™y — e 1.
This is called Compton scattering. The initial state is an electron of momentum p,
(—_%i and a photon of momentum E, helicity A. The final state consists of the

same particles with momenta and spins that are changed due to the scattering. So the
(-
2

spin

final state is an electron of momentum p'’, spin
k', helicity . So

and a photon of momentum

N (_1)s+1 3 o
) =1, ——,-), (k, A)) (3.2.1)

= 51(5) of, () 0),

and

=16 @)

= bL,(5") al (k') |0),

(3.2.2)

which becomes the bra-vector
(f] = Olagx (&) ber (5 ") (3.2.3)

The transition probability amplitude to go from the initial state (at ¢t — —o0) to
the final state (at ¢ — +o00) is given by

Sri = (fIS7)
_1)s'+1 o _1)s+1 .
= <(ﬁ’,%,—),(k',k’)|51 1%,—),(/&/\)) (3.2.4)

— _ie 4_ 4IP -IPm pglP(y -
= (Olag) (') by (7 ") Te [ d*z ALP ()T (z) 1w P )bl(ﬁ)azr,\)(k) 0y,

where we recall the beauty of the IP is that ALP, ¥/, and T'" are all free fields
Fourier expanded with coefficients a, af, b, b', d, and d'. Hence we only need to apply
Wick’s Theorem to evaluate this product of free fields. Since we cannot evaluate this
exactly we expand and view this as a perturbative series.

289



So let’s work through second order in e, ignoring O(e?) terms. Hence

- -, _ —IP
Syt = (Olaguy () b (5|1 e / 2 TAP ()T @)y 017 (z)
(cic)?
o1
ALP (@3)T" " (z)y2 P (z2)

+ 0(e%)|81(8) af (R) 0).

—IP
+ / d*zq d*zo TAfo(:cl)\I/ (xl)fy“l\I!IP(a:l)

(3.2.5)

Thus
Sti = (Olagny (K) by (5 )05 (B) aly (%) [0)
—ie / a2 (0lagyy (B) be (5 ) (TALP ()T ()78 (2) )bl (7) af (F) [0)
+# / dz: d*z (Olagn) () be (5 ) (TALF (218" (21)
Xy I (20) ALD (23)T " (w2)7%2 W17 (22) ) L (5) af () [0).
+ O(€3). (3.2.6)

Let’s analyze this term by term. Starting with the first; since all fields here are
free we can evaluate this by using the CAR and CCR

(Olagx (R bo (5 ")51(2) al (F) 10).
= (0l [agu) (B, b (5 ) L (3) afy (B)] [0)- (3.27)
= (0]bu (") BL(B) [ay (R'), alyy (B)] [0),

where the first step is allowed since a(/ (k) |0) = 0 and since photon operators commute
with € operators. Using the CCR and CAR we find that our expression becomes

= S (2m) 2w 83 (k — E')(0|bs (B ) b] (7)0). (3.2.8)

(Recall that A\, )\’ = 1,2 only for transverse photons so —gxx» = +dxx’.) Proceeding
similarly for the e~ using the CAR, we find

(Ol (R') by (781 (5) af, (B) 0)

s L s (3.2.9)
= 5)\)\/ (211‘) 2wk53(k — k/)(sss/ (27‘(‘) 2wp53(f)'— ﬁl)
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The 1 in the S operator just yields the result that the initial state evolves freely
without scattering and hence must be in a final state which is the same as the initial
state. There has been no scattering. This is always the case in general, any set of
particles can go through without scattering. We are not interested in such terms since
there is no “physics” in it; it does not probe the interaction. Hence in what will follow
let’s consider the case where k # k' and P # P’ so that both particles must scatter.

Proceeding to the second term in (3.2.6), here we must evaluate

Olagy(F) by (7") (TALP (@) T @)y 2’7 (a))
x B1(5) afyy (k) 10) (8.2.10)
=0.

Again, by the utility of the IP, all the fields are free fields and we can evaluate this
vacuum matrix element. Since there are an odd number of photon fields present we see
that we will always be left over with one a,) or aI py- Since a()|0) = 0and < Olaz n=0
this second term vanishes, as indicated.

So we have our final term in (3.2.6) to evaluate. As we have seen in the first
term, it is easiest to evaluate when we have the vacuum expectation value of a string
of creation and annihilation operators. To re-write the T-product as such a string, we
turn to the general form of Wick’s Theorem for operators which relates time-ordered
operators to normal- ordered operators. Let’s state the result first:
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Wick’s Theorem
To(w:)--6(an) = N[6(@1) -+ 9(zn)]
Y )P omeeete o | HL g

P, . (@
(1-om) T, (1131)(i—ljlﬁ)

11 <J1
2
+ > (-1)"P 10| T (1, ) p(5, )10)
@em) P G110 G232) S5ty

i1 <41
12 <j2
11 <ig

x (0| T (zi,)$(z5,)|0) N [¢(xi1§s<§53(3;:22.).¢;é(jf;;(mjz )]

4

+ -1 lP%lOT T; z:0)---
Sy ety sgy (1 OO )0

X(OlT(b(xi%)gﬁ(xj%)IO) , 1 = even

< 25t
+ 3 (1) T 0| Tg(@i, ) p(=5,)10) - -

X <OIT¢(wln—1 )¢(x.7n—1 )|0>
N[®(z; _2;] n ;rodd

\ X ing1 , .

. (3.2.11)
where (—1)I'! is the parity of the permutation that takes the order of the Fermi fields
on the RHS and permutes to the original order on the LHS.

More simply written Wick’s Theorem states

Th(z1) - -¢(zn) = N[¢(z1) -+~ §(zn)]
£ X OTole)ote)io) N[ Sl Em]

single
contractions

+ > (0IT¢(zi)(x;,)|0) (01T (ziz )$(2ss)I0) (3.2.12)

double
contractions

o N[ ¢(x1) -+ (@n) ]

é(zi, )(b(zjl )o(zi, )¢(x12 )

4o,
This is proven by induction. First note that
T¢(z) = N[¢(z)] = ¢(z)
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To(c)¢ (y)—f)(w 1)9(@)6(y) £ 04 — 2*)p(w) ()
SV 49 @8 W)+ 40+ 9 (@90 W)
- 20)(¢*(@)6" (1) + 6~ (@)™ (W) + 6" ()6~ (1) + 9~ (@)9* (v)
—e<w —y°>(N[¢ D)) + [6* (). ¢ W), )
+0(° - 2°) (N[pw)o@)] + [¢* @), ¢~ (@)] ) (3.2.13)

But N[¢(z)¢(y)] = N[#(y)¢(z)] by definition. So with + for Fermi fields and
— for Bose fields we get

To(z)d(y)

= N[¢(2)8(y)] + 0(z° — 4°)(0|¢(2)$(y)I0) £ 6(y° — 2z°)(0lp(y)$(z)[0).  (3.2.14)
Thus we secure

Té(z)¢(y) = N[¢(2)¢(v)] + (0/Te(z)$(y)|0). (3.2.15)

Now suppose we use this result for the next step multiply (3.2.15) by ¢(z) on the
right where z°,9° > 2°. Then

(Te@)6®)4(2) = To@)pw)p(z)  fora®y® >0 (3:216)
On the other hand

(N[6@)6@)] ) 6(2) = N[p()6(0)] " (2) + N[9(x)$(w)] 6 (2)

(3.2.17)
= N[¢(z)¢(y)¢™ (2)] + N[o(x)p(y)] 6~ (2)-
Now we must bring the creation operator into the normal product,
N[#(=)e)] 6 (z) = 6" (@)6* 9™ (2) + 6~ (@)™ ()¢~ (2) 52.18)

+ ¢~ (y)¢" (2)¢™ (2) + 67 (2)6™ ()9~ (2)

as we see the only difficulty is bringing ¢~ (z) through the annihilator operators since
the ¢, ¢~ do not commute. Thus we must just successively commute ¢~ (z) through,
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picking up the commutators,

N[(2)o()] 9™ (2) = F6~($* (@)¢" 1) + [¢7 (@)% W), 67 ()],
T4~ (@67 (2)8" W) + 67 (@) 67 (1), 67 ()],
4~ W)o” (et (@) + 6~ (W) [¢7@).67 ()]

+67 (@) (W)o™(2)
(3.2.19)
= N[p@)sw)e™(2)] + [67 @6 ), 67 ()],

+6"@[6* W0 (2)], F67W)[¢7@),67 ()],
= N[6(@)6)s (2)] + 6(@)[6* (), 6™ (2)] ,
F6() [¢07(@), 0" ()] .

Combining the expressions we find that, for z9,9° > 2°,

T(z)p(y)$(2) = N[d(z)¢(y)¢(2)] + (0|T¢(2)9(y)|0)$(2)

(3.2.20)
+ (0|T¢(y)¢(2)0) () £ (0|TH(z)¢(2)0)¢(y)

where we used (0|T¢(z)¢(2)|0) = (0|¢(z)d(2)|0) = [¢+(m),¢‘ (y)] s for z0 > 20. Also,

in the last term the “+” is for bosons and the “—” is for fermions.

Now the above expression was derived for °,7° > 20 but the expressions on the
LHS and N[¢(z)¢(y)¢(2)] on the RHS and the sum of the last three terms on the RHS
are invariant under permutation of z, y, and z. That is, we could have started with
(To(y)d(z)) p(z) for y°,2° > z° and gone through the same steps and arrived at the
same expression for the RHS. Hence the above formula is valid for all times (z°, 3°,
20).

The general form of Wick’s Theorem is proved similarly. By starting with the

expression for n-fields we derive it for (n + 1), recall the derivations in chapters 2.2,
2.3, 24.
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So let’s return to the S-matrix evaluation. We have

TANl (561 )Wal (.’131 )\Ilbl ('Tl )Auz (.’1,‘2 )Waz (IQ)\IJbz ($2)
= N[ Ay, (00T, (£2) W5, (21) Ay (22) Ty (22) U (22)|

+ (0 Ta, (21) W, (20) N [ Ay (21) Ay (22) Ty (@2) W1, (22)]
(0T s (22) Wt @2) )N Ay (1) Ay (22) T (02) W3, (1)
+ (0T, (@1)¥s, (@2) 0N | Ay (21) Ay (22) W, (22) Ty (22)|

(01T T, (21) W (22) [O)N Ay (21) Ay (22) Ty (1) U (2)]

+ (O[T Ay (1) Ay (22) N [Ty (21) W, (21) T (2) U (02)]
+ (0T Ay, (1) Ay, (22)|0)0| T, (1) T, (21)]0)
X N[ Tas (22) Wt (22)]
+ (0| T Ay, (21) Ay, (22)[0){0| T, (22) T, (2)|0)
N[Ta (@)%, (21)] (3:2.21)
+ (0| T Ay, (21) Ay, (22)|0){0| T4, (21) T, (2)]0)
X N[ Ws, (1)Tay (22)]
+ (0T Ay, (1) Ay (22)[0) (0| T, (1) Way (22)0)
X N|Ta, (21) s, (22)]
+ (0| TWa, (1) Wb, (21)[0)(0| TW o, (z2) Lo, (22)|0)
X N[ Ay (@1) Apa (@2)]
+ (0| TWa, (21) s, (2)[0){0| T s, (1) Wa, (22)|0)
x N :Am (1) Ap, (:vg)]

+ (0| Ty, (21) s, (21)[0) (0| Ty, (z2) ¥s, (x2)|0)
X (0T Ay, (z1) Ay, (z2)[0)

+ (0| T Wy, (1) P, (22)|0) (0] TP, (1) Pa, (22)0)
X (0|T A, (z1) Ay, (z2)]0)
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Now we can apply this to the process at hand, the scattering of e~ 7. Recall we
must sandwich these terms between creation and annihilation operators

(Olaqxy (K') by (57) (T - )b (5) al,, (k)|0) (3.2.22)

If a A:)(E’ ) contracts with aJ(r A)(E) in our evaluation we get a factor of
§3(k — k). Since we desire k # k' scattering, these terms will be zero. Hence we first
consider only that normal product in the sum which has two photon operators since
they will eventually commute with the initial and final state operators yielding k # K.
Similarly we must have 5 # p’’ so that term of interest in (T- . ) must have in the
normal product another b’ for by (5 /) to anti-commute with and another b for bi () to
anti-commute with — that is, we need a UV in the normal product. Altogether then we
must have at least two A’s and ¥, ¥ in the (N---) terms of interest. This restricts the
number of terms considerably to just the first five listed on the previous page. However
we are not finished. The first term does not contribute since we will always be left over
with two operators after the initial and final states’ operators are commuted through.
But these leftover operators are normal-ordered; hence their vacuum expectation value
(VEV) is zero. Cryptically,

(0la(E") b(7 ")N[AATTTE]b! (5) o (K)|0)
~ (0b(p )N [T TTT]b! (5)|0) (3.2.23)
~ (O|N[¥¥]|0) = 0.

Further the second and third terms are non-sensical for two reasons. First, phys-
ically, when we, for instance, contract a )\)(E) with [ d*z A, (z) we see that we get a
83(k), the incoming photon (or, in the other case, the out-going photon) must have
zero momentum. Such photons we don’t have as initial or final states so these terms

do not contribute. Secondly, for consistency of the theory we eliminate these terms by
renormalization. That is, note that they involve the propagator

. 4 .
OTYE T = 7 [ et T
r—y/) (2n) 12 —m?2 +ie (3.2.24)
B d*l  i(J+m) -
) @n)tP-m2tie
which for large integration variable values diverges

A gt

~/ l—2~A3—>oo as A — oo, (3.2.25)
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and hence leads to a meaningless infinite expression for Sy;. The source of the diffi-
culty again is that we must be careful how we define the Hamiltonian. Since we want
H'P|0),p = 0 for our system at all times we must normal order the free IP fields in
HIP as well as HIP!

Thus we really have P
HIP = eN[ALPT " 4+ O] (3.2.26)

and —p
§ = Teie deN[AT@T @y @], (3.2.27)

Note S is not normal ordered; that is
T(ef d““”N[O]) + N(Tef #a0). (3.2.28)

Now, Wick’s Theorem becomes slightly modified when we have the time-ordered
product of normal-ordered products of fields. The form of the modification can be
found by approaching the desired result as a limit of point-split products. That is, we
are now interested in

T[N[¢11(931) -+ 1, (1) N[g21(22) - - P20, (22)] - - N1 (@n) - -- ¢nan($n)]]-
(3.2.29)
In each case the normal products can be written as a limit with the substitution of
2% + € in the argument of the creation operators and of z° — ¢ in the argument of the
annihilation operators. So we define ¢(z) = ¢+ (2 — ¢, F) + ¢~ (z° + ¢, Z). Then

T[N[$11(21) G102 (21)] - N[Bn1 () Snan ()]
lim

) ) ) ) (3.2.30)
= 0 T[n(@) bray (@) (22) - bna, (@)

So the normal ordering of the operators within each equal time group is the same as the
time ordering before the ¢ — 07 limit, and hence results in the time-ordered product
of normal products.

We may now use Wick’s Theorem to expand the time-split time-ordered product.
Whenever there is a contraction between fields split about the same time we find zero
since they are normal-ordered by the splitting, i.e.

(0IT¢™(z — €) ¢~ (z + €)|0) = (0l¢™ (z + €) ¢™ (z — €)|0)

. (3.2.31)
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Hence the time-ordered product of normal products is just the same as the time-ordered
product of all the fields with the contractions of the equal-time fields omitted, i.e.

T[N[g11(@1) - da, (o1)] -+ N[B1 (@n) - Snan (@n)]]

=T[$11(21) * $nan(@n)] (3.2.32)

no equal—time
contractions

(Equal-time contractions are often called self-contractions.)

Thus we define the S-matrix to be the time-ordered product of the exponentiated
normal-ordered interaction Hamiltonian. This renormalization eliminates the infinities
arising from the self-contractions. Thus we find only the two terms left contributing
in second order to the Compton amplitude. So we find, gathering all terms so far, for

E'#Eandﬁ’#ﬁ,
S = (— /d4x dzs {(OlT\Pal(ml)‘I’bz (z2)[0)

X (Ola(x')(k')bs'(ﬁ’)N[ w1 (T1) A, (22)

X \Ilbl (1131) az (1'2)] ’Yalblﬁyagbgbt (ﬁ) a’()\) (k)l())
(3.2.33)

+ (0| Ty, (z1) ¥ay (22)|0)
x {Olacay (k') bs (7 ") N[ Ay, (z1) Ay, (z2)

x g, (21) Un, (22)] 7%, 722,01 (F) azx)(fc’>|0>}.

The first thing we note is that the second term is the same as the first. To see this
just re-label the dummy indices z; « 2, a1 < a2, by < b2, pu1 < p2 and recall that

(0] Ty, (22) Wa, (21)|0) = — (0| TWa, (1) Yo, (22)[0) (3.2.34)

while

N[Au, (21) Ap, (72) ay (22) U, (1)) = —N[Ap, (1) Ay, (22) Up, (71) Vo, (22)]-
(3.2.35)
So we finally find (since 2 x 4 = 1) that for K #kand ' # B,
S = (—ie) / d*z; d*zo (0| Ty, (21) U, (2)|0)7e 5, Ve,

298



x(Olaqxy (k') be (5 ) N[ Ay (1) Apz (22) Ty (1) Ty (22)] 6 () 0l (K)10).  (3.2:36)

Now the annihilation operators from the normal product commute with the b' and

a' of the initial state, and the creation operators commute with the a and b of the final
state so that we are left with just

(Olaqxy (k) be (5 ') N[Apy (1) Apa (22) Ty (1) U, (22)] 5(5) af ()10)

= (Olax) (B") [A, (1) AL, (22) + Ay, (22) Af (21)]aly, (R)[0)
(0lbs (7 ") [T, (21) W, (22)]0} (5) 0)

(3.2.37)
= {<0la<x>(75’)A;1 (21)[0) (014, (2) af,, (k)|0)

(Ol (F') Ay, (22)10) (0145, (wl)azx)(ﬁw}
x (Olbsr (5) T, (21)[0) 013, (22) B! (7)]0).

Now we can evaluate these vacuum expectation values (VEV) simply using

d31 3 L
At (z) = / l [ e-ile
ME) @) 2 p§=0: eull, p)agp(l)e
d®l - t (R il
- — s ilz
Au (x) —/ (271')32601 p§=0: eu(l, p) a(p)(l)e
ddl

- 22 (r)
+(z) = ul™ n e—ilz
\Ila( ) / (27‘(’)32&1[ — bT‘(l_B a (l)

2
vie)= [ (d—” 3 dt (v (et

2m)> 2w,

(3.2.38)

@‘*(w) = / d*l i d ([3 ) (l_i e iz
¢ (27‘(’)32(.01 —1 " ¢

_ Bl o
7 a:=/ » bl ad (@) et
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Thus

Olacy B) 45010 = [ =S5 eu(l,m &1 0lagoy (F) af (510

—o

/ W Z en(l, p) €72 (—gn,) (2m) 2wy 83 (k — 1)

p=0
— Cﬂ(k,/\) +ikz

(3.2.39)
Similarly,
(0]A% () a'{A)(k)|0> = e, (k,\) e~ke, (3.2.40)
And likewise for the fermions
O T, (@)]0) = T ) ¢+ 241
(017 (@) b ()[0) = w” (B e
Also, for the anti-particles
0lds () U5 (2)]0) = v () e*P=
(O1ds(7) ¥y (@)[0) = o () e 5242)

(O[T, () d}(7)|0) = 7 () e~

So we have then
Spi = (—ie)’ / d*z1 dizs (0T, (21) Vg, (z2)]0)
X {Eﬂl(k/ /\I)e-l-zk: :c1€ (k’ )\)e—zkzz +6 (k/ )\/)e+1,k £2€ (k )\) —zk::cl}

(s +ip'zy ,,(8) —ipTo . M1 H2
X 'U/ ( )e ubg (m € 7a1b17a2b2

= (—i€)2 / d4561 d4.’L‘2 [eul (k’, )\’) e+ik':c1:| [ﬂ(s’) (ﬁ /) e+ip'a:1j|
X »YP'I SF(-’L'I — :1:2)7ﬂ2 [u(s) ﬁ) e zpzz] [6”2 k )\) e—zkzz]
+ (—ze / d4x1 d* T2 {5“2 ].;;’ etik zz] I: (s’ )(ﬁ’) etip :rle

X 9 Sp(z1 — 22) 7 [u@@e ,,] e (k) N) e—zkm]
(3.2.43)
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In order to visualize what is happening in this scattering process we can pictorially
represent this mathematical expression by diagrams called Feynman graphs or diagrams
in coordinate space. We see that our incoming particles are represented by their plane
wave wavefunctions, and similarly for outgoing particles. So we represent

Incoming particles :

photon & \,(

wh Ve — N\ N\

electron (X/ }'\) é/‘ (\2./ X>

(arrow follows charge of particle)
<%
P
~

< (?,S\

ul(B) e~ " — —
[, a)

Outgoing particles :

Photon Gfl/ X)
A VAV

en(k, N etthe

Electron (')( rA\ \Z—““>
k<)

ﬂ(ai) (@) et?*

(va) \\—>

The electrons and photons interact at a space-time point z with strength —iey*,
and we sum over all interaction points [ d*z. The electron then can propagate through
space-time to the next interaction point via the propagator factor Sg(z; — x2) which
we represent pictorially by a line joining the two vertices at z; and zs.

Propagator

b ac

—_—
Ka Ky

Vertices are where photons and particles meet. They are represented by

Srap(T1 — T2)
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()

e

(prs) p s ‘ (P// /)

Figure 3.2.1

—ie [ d'zof, >\/\/\

Thus we can represent the first term in Compton Scattering pictorially as
and the second term as given in Figure 3.2.2.

N
(¢/,¢)
W 1\% ’
(%)

Figure 3.2.2

So to calculate Sy; we follow these rules. In coordinate space write down all
distinct graphs made with i incoming and outgoing lines for the initial and final states
desired. Then join them by internal lines at vertices. The mathematical expression for
Sti is obtained by writing the associated factors and integrals. For example, the graph
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below contributes to Sy; the term S)(,P:

S = (i) [ dlor dtana(F") e, X) e

X Sp(z1 — z2) ¢(k, \) e~ the2 u(s)(ﬁ) e~ P2

(3.2.44)

(3 (V5

% ) N\ N\ N
/)
7 7 X 7 (?//Q
K (
as we found initially.
As we see it is more convenient to work in momentum space since we are starting

and ending with momentum eigenstates. Thus we perform the z; and z2 integrals in
. _ d4 ) _ i
Sti, using Sp(z —y) = [ ahe iq(z y)z_

—m

Sti= (—ie)2 / d*zq d*zso iK' +p")z1 —i(k+p)z2

1

4
y / d*q e—1a(m1—x2) 7;(s )(ﬁ /) ¢(k', /\') ¢k, ) u(® (P)

om)? —m
(2m) g (3.2.45)
+ (—ie)2 / diz, d*zoy ik =p)z2 Gi(p' k)21
d4q —ig(z1—x2) —(s") (= 1oy (8)
< | G B ) 4k, N) = A V) ).
The z; and x5 integrals in the first term yield
@2m)* 64 (g — K —p') (2m)* 6*(k +p - q) (3.2.46)

which equals

@m)tét(k+p—K —p')2n)* 6%k +p —q). (3.2.47)

303



The z; and z2 integrals in the second term yield

(2m)* 6% (p' — k- q) (2m)" 8*(K' —p+q) (3.2.48)
which equals
@em)étp+k-p —K)@2n)* st -k —q). (3.2.49)
Hence we can perform the g-integration to obtain
Spi = (—ie)? @m)* 64 (p+ k - p' — k)
x [FOEE N k) — ¢k, 3) u () (3.2.50)

+ T ) ¢k, A )WW )u ().

Again we can represent this mathematical expression graphically by Feynmann
diagrams in momentum space.

Each incoming or outgoing particle is represented by

Incoming particles :

photon (\?__/ >\\ }4’
ealk,N)  — N N\ >
electron ?
W@ — (P;S) N &
Outgoing particles : 'P
Photon [\)\
eu(k,N) ./\/\/>\/~ (\‘lx >~)
Electron \K'
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We > (pre)

These interact at a vertex where the electron absorbs the photon and propagates
as a virtual (its momentum q? # m?) particle with the momentum p+ k of the e™ + 4.
The interaction is represented by a vertex

LY

o~

—ievh,

and the propagating electron by a line joining the first vertex with the second
where the virtual e~ emits the final state photon and becomes a real particle again
( 2= m?), the final e~. This is called an internal line — it joins two vertices,

<]$_im)ba <_) ‘OTL > r
7

The final vertex is exactly as the first.

Finally we always leave a (21)* 64(P; — Py) where P; is the sum of the graph’s initial
energy-momenta and P is the sum of the graph’s final particles’ energy-momenta.
Hence we graphically represent Sy; as

Sfi= [:\‘.1 ,))'23

where we always label the momentum flow through the graph.

Using our graphical rules we can write down the mathematical expression for Sy;
quickly to obtain the above momentum space result.

Suppose instead of initial and final state electrons we had positrons. The positron
Compton scattering amplitude is found the same way. We have that for different initial
and final momenta

S(ety—e*) = (@), S ), @116, S 4, )
= Olag(®) de(5") (Te- =N 4F91@Y 41 ) a5 () ).

(3.2.51)
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Figure 3.2.3

Using Wick’s Theorem again we find the only terms contributing to scattering are the
fourth and fifth terms in equation (3.2.21) which are equal and give a factor of 2 to
cancel the . Thus

S(eTy —ety) = (—ie)? / d*zy dizy (0|TUy, (1) Vg, (z2)]0)

x (0lagay (K') do (B ) N[Ap, (1) Ap, (22) Ta, (1) Up, (22)] (3.2.52)
x df (7) alyy (R0, Ve,
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The VEV of the creation and annihilation operators yields two terms again

(Olayy (k") do (7 ) N[ Apy (£1) Ay (22) Ty (1) T, (22)] (D) af (k) [0)
= { (e B X)) (e (F, ) e52)
s N . . (3.2.53)
+ (6#2 (k)l, X) etik 12) (6#1 (k, )\) e—’tkI1)}
x (=1) (Olds (5) U5, (22)|0) (0T, (z1) d}(£)]0).

(Note the factor of (—1) in the last line arises since we had to interchange ¥,, and
\I’bz.) Thus

(Olag) () dor (5) N[ Ay, (21) Ay (22) Ty (21) U, (22)] df () aay (k) 0)
- { (€ (El, ) e+iklwl) (€uz (E, A) e_ikm)
+ (fuz (Elv ) er/wz) (€ (E’ ) e tm )}

x (=1 (5") e+ m) (B e P,

(3.2.54)

And thus
S(ety —ety)
= (—ie)? / d*z) dizy (—1) {(5(3)(5) e~ P) (¢(l_c", X) e+ik:'a:1)
x Sp(z1 — z2) (¢(F, A) e~*22) (v() (5 ) et P'2) (3.2.55)
+ (g(s)(ﬁ) e—ipzl) (¢(E’ A) e—ikzz) Sp(z1 — 2)
x (¢(k', N) etk o) () (5 ) etip'a2) }

performing the Fourier transform as before we find

S(ety — ety) = (—ie)” 2m)* *(p+ k —p/ — k')
X [5(3)(17) ¢(k,X) m ¢k, X)) () (3.2.56)
(—p+§)-m

Thus we see that the Feynman rules for external positron lines are

+ ) (@) (k' X) 1) (v 5.

Incoming positron
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(s e
v(&)(ﬁ) — —< —o
—

Outgoing positron ?
vIE)  — 'gj""é———“ ( P 3)

The extra overall (—1) results from the interchange of fermion operators in the

normal ordering operator. That is, 7(*)(§)v(®)(§’) is in the order opposite to the
original state creation operators d( ') d'(p); thus a (—1) interchange factor is obtained.

The corresponding Feynman graphs for positron Compton scattering are shown in
Figure 3.2.4.

Note if (p+ k) flows opposite the direction of the arrow on the propagator —(p+k)
flows in the direction of the arrow. Hence the propagator factor is W in the
—p—k)—-m

1

first graph and i in the second graph.

In order to complete the discussion on Feynman rules for QED let’s consider the
second-order contribution to the vacuum-to-vacuum transition amplitude. That is let’s
evaluate the phase difference between initial and final vacuum states as discussed in
the previous section

<0|S|0> — <0|Te—‘ie f d4:l>N[A“§’y”’\IJ] (:L‘)|0>

-1+ (_%e) / d*z, d‘*:va[N[Am(wl)@(wl)v“‘ U(z1)]

(3.2.57)
X N[y (02) Flo) 7 W(a)] 0
+ O(e3).
According to Wick’s theorem this is just given by
. \2
01810 = 1+ 557 [ dtar dtan 0T Ay (00) Aus @O, 550

x (0| TWq, (1) Wp, (22)|0)(0| T s, (21) Vo, (22)]0).
Notice that we will have a (—1) factor due to the interchange of ¥,, and ¥,, so

(0[510)

—1+(_—ie)i/d4x d* A —H 3.2.59
= ol 1d°z2 (0T Ay, (z1) Aps (22)10)(=7403,) (3.2.59)

a1b;

X (0T, (z1) Ua, (€2)|0)755, (01 T, (z2) Ta, (21)]0).
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Now let’s recall that the IP fields are free fields with the Feynman propagators given
by

Ar (T —y) = (0|TAL(z) Ay ()|0)
'k —ik(z—y) A
— KT A
/ 2t Fu () (3.2.60)
:/ d4k e—ik(z—y)[ —i g (e —=1) kuky ]
(2m)* k2 +ie”™ k2 +ide (k2 + ide)

in arbitrary Stueckelberg gauge (since S is gauge invariant we could calculate in any
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gauge and still obtain the same answer). Of course we will work with o = 1, the
Feynman gauge.
And as we have seen

Sr(z —y) = (0|T¥(z) T (y)[0)

_ / d4k4 e—ik(m—y) i . (3.2.61)
(27) k—m

Substituting in the above we find

.= ze) ty o d*k dq
01510y =1 / o d 2/ (2m)? / ent ) (@en?

% e—zk(zl—mg) e—zp(zl—zg) e—zq(zg—zl)

< jfiegwgsbl o), )
L ze) d“k d4p d4 )4 54 _
x (2r)* 54(k+p—Q)k2 [ 3 me(“k) ]
L (=ie)? o de dko —i
=l- e (O)/ @m)* (2m)* (k1 — ka2)? + e
T&‘[’y#}élz—m’yﬂkzz—m]'

where, in the last step, we have changed integration variables k = k; — k2, p = k2, and
thus p+ k = k;.

Thus we obtain four new rules from this calculation.

1). The e~ and e™ meet at a vertex and annihilate giving rise to a photon which
propagates from this point to the next where it pair produces the e~ — et. Hence

where we have internal photon lines connecting two vertices, we represent this with a
line

P Y

with momentum p flowing through it and it corresponds to the momentum-space
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propagator )
A Fu (D) = Iﬁlieg‘w (in Feynman gauge).

2). For each line we had a Fourier transform momentum integral to perform;
at each vertex a space-time integral to perform. They result in momentum-conserving
delta functions at every vertex — that is, they result in overall conservation and conserv-
ing delta functions at every vertex minus one (V' — 1). The energy-momentum flowing
into a vertex equals the energy-momentum flowing out of a vertex. Since there are V —1
delta functions of energy-momentum variables
(V' = the number of vertices in the diagram) and L energy-momentum integrals (L =
the number of internal lines), there are left 4m energy-momentum integrations to do
where

m=L-V+1, the number of loops in a graph.

(This is a topological relation that for any diagram with L internal lines and V' vertices
there are m =L —V +1 loops.)

In the case above we have three internal lines and two vertices, som = 3—2+1 = 2.
As we found there are 4m = 8 integrations left — called loop integrals or internal inte-
grations. Hence, associated with each loop of the diagram is an independent momentum
flow through the lines of the loop which obeys energy-momentum conservation at the

. . . 4
vertices and which we integrate over [ (‘é—ﬂ’;;.

3). For each fermion loop we have a trace over the Dirac indices of the fermion
propagators and Dirac gamma matrices of the vertices in the closed loop. Further the
trace will always involve an odd number of Fermi field interchanges among the normal
products of the interaction Hamiltonian involved in the trace, i.e.

<0|T[N[W(1>m<1>] L N[T(m) ()] |[0)
= 3 (-1)P (O[TT() ¥ (n) [0} (0] TE(1) T(2))0)

P
(3.2.63)

(0|T¥(2) ¥(3)[0) --- (O] T¥(n — 1) ¥(n)|0)
==Y (-1)" (0]T¥(n) T(1)|0)(0| T¥(1) T (2)|0)
P
x (0T (2) T(3)]0) - - - (0|T (rn — 1) T(n)|0).

Thus for each closed fermion loop there is an extra factor of (—1).
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4). Notice that {(0|S|0) # 0. Further it equals infinity due not only to the §*(0)
for energy- momentum conservation but also to the fact that the loop integrals are
divergent for large integration momenta. Hence, for consistency, we would like to see
that this infinity is renormalized away also. Physically we are calculating the stability

of the vacuum state; i.e. the transition probability amplitude for the vacuum to stay
the vacuum is (0|S|0).

Note that due to energy-momentum conservation S|0) must be proportioned to
|0) again,
PH(S|0)) = [P+, S]|0) = 0. (3.2.64)

Thus S10) is the zero eigenstate of H also, implying

S|0) = w|0) (3.2.65)
The norm of this state is
(0]87510) = |w|*(0|0). (3.2.66)
But since S is unitary
S§tS=1 = (0]0) = [w|*(0|0) (3.2.67)
= |w’=1 (3.2.68)
So w is a phase only
w = € = (0[5]0). (3.2.69)

Now, since the final states can differ from the initial states by this phase, when
we calculate we should normalize by this transition amplitude. Hence we may define
the S operator to leave the vacuum invariant : S|0) = |[0). Thus we divide our old
definition by w as discussed in section 3.1,

Te-i [ d*zN[HIP(2)]
S = . (3.2.70)
oTet J @=N[7@)] g

So §]0) = |0) and the S matrix elements are

i [ d'zN[HIP(@)]|;
Sy = SIITe _ = (3.2.71)
<O|Te—z fd‘la:N[’HI (:c)]|0>
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We can show that this phase factors out of the numerator also so that it will cancel the
denominator. Graphically this is easy to see since the Feynman graphs contributing to

(OIT —lfd4IN HIP(:E) |0

have no external lines on them, that is, no incoming or outgoing particles. These

are called vacuum fluctuations or vacuum bubbles. The graphs that contribute to
any C f|T exp(---)|i D matrix element have the structure of being written as disjoint
subgraphs of two types. One type will have at least one external line on it while the
other type will be a vacuum bubble, having no external lines. We have already seen
such possibilities in studying Compton scattering. In the cases we ignored due to
energy-momentum conservation were graphs like

Figure 3.2.5

If we went on to higher order we would find an expansion like that seen in Figure
3.2.6.

We see that the vacuum bubbles always factor out of the diagrammatic sum and
cancel the denominator as shown in Figure 3.2.7. Thus

c flTe—i f d41:N[H§P(Z)] |2 D= F C%' % R 2 ,7.
for every fixed set of subgraphs witli external lines we can sum over all possible
(including 1) vacuum bubbles. Hence the sum over all i — f Feynman graphs Iy; is a
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QP&Q\/ V\a,& QL wes

sum over all vacuum bubbles (including 1) times a sum over ¢ — f Feynman diagrams
with external lines on each subdiagram. Thus we have the structure shown in Figure
3.2.8.

Cf|T6—Z fd wN['H,P(:c) |Z 5=

2 @]

Buvble)

Figure 3.2.7

Figure 3.2.8

where Zryys is the sum over all Feynman diagrams with i-incoming and f-
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outgoing lines and no vacuum bubbles (NVB).

Hence
2, L] Z
Nocuuw M\)B
Sri= Bubbles

RUE @*wj

Vacunwm

Bubhes

Figure 3.2.9

The vacuum bubble contribution cancels so that

oS
RVB
r(

=C fITNVBe_i fd‘l:cN[H;P(a:)]'i S

(3.2.72)

where “NVB” indicates that no vacuum bubble graphs contribute.

Analytically we can arrive at the same result by introducing time-ordered functions
and operators that have the vacuum bubbles subtracted out of themselves. Hence,
separating out the vacuum bubble contributions to

TO1(z1) - - - On(xn), we define the no-vacuum-bubble time-ordered product of operators
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TnveO1(z1) - - - On(zn) recursively

TO] ($1) e On('r'n)
= TnveO1(z1) - - - On(zn)

+> (=1D)F(0ITO;(2:)|0) Txve O1(21) - - X(2:) -+ On(2n)

+ Z (=1)P (0|TOs(z:) O;(=;)[0)
x TnveOi(z1) - x (x;) - )é(wj) On(zn) (3.2.73)

+ - <0|T01(5L‘1) n(xn)‘o

_ v | (-1)Z (0|TOs, (zs,) - - - O, (w,)|0)

i1 <ig---<iy
i 41<ij42--<in

X TNvB Oy, (Tiryy) -+ - Oin (T4,)-

Note that (0| TnveO1(z1) - -+ O1(2:)|0) = 0; Tnve(- - -) has no vacuum bubbles left
in it!

Now for identical operators that are integrated over, this sum becomes (in the
bose case)

/ d4.’171 . -d4IL‘n TOl(.’L‘l) LR On(xn)

_ 4 4 e nn-1)---(n—101+1)
_/dwl...dwnz T

=0
X (0|TO(JI1) v O(xl)|0>TNVBO(1’l+1) v O(:L‘n) (3.2.74)
_ ; Wn'—l? / dizy - iz (OTO(z1) - - O(2)[0)

X / d4.’1:l+1 R d4l‘n TNVBO(I1+1) s O(.’Itn)

The factor "(n_l)"l'!("_l“) =g (:'_ 71 is exactly the number of ways to pick I things out
of n when the things are indistinguishable.
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So applying this result we find

Te— | d*z N[HIP ()

|
>y e

'/d%ln 2y (O TN[HLP (1)) - - N[HIP (22)] [0)

n=0 =0
((n z il / d*y - d*yn—1 Tnvs [TN[HfP(yl)] '--N[pr(yn_l)]].
(3.2.75)
Now cryptically calling the first terms
Vi= 1 - d*z (O TN[HIF (z1)] - - N[HIF ()] |0) (3.2.76)

and the second set of terms

An—lI
Tpo = ((:1 il / d*y1 -+ d*yn_i Tnve [TN[HfP(yl)] "‘N[pr(yn_l)]]y (3.2.77)

we see that our sum becomes
o0 n
Te-i [ dioN[HIP(2)] _ Z Z VT,

+ W1 + V1To

Vol + iTy + VaTo (3.2.78)
NI

+ VoIl 1 +ViTh o+ VoI35 + Vi1 Tp

+ W + ViTh 1 + VoI 2+ Vo1 T + Vi T

+...
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So instead of summing in rows as we have let’s re-sum in columns. Then we have

Te—i f d4:cN[H§P(a:)]

o] Y
= [Z _l,’) / d*zy - d'z (O|TN[H§P(x1)]-.-N[pr(xl)]m)]

x [i (=9)" /d4y1 T [TN[HfP(yl)] '“N[pr(ym)]]

(3.2.79)
and we find the desired result

Te-i [ *=N[HP@)] _ (0[Te™" fd4mN[H§P(x)]|0> Tavee ™t J d*aN[HIP(2)] (3.2.80)
The phase w factors out, hence
S = Tyyge™ | #=N[H7 @], (3.2.81)

And we find
. 4 1P
Sfi =C f|TN\/B€_z f d mN[H, (m)] |Z D (3.2.82)

has no vacuum bubbles contributing.

Thus we are finally in a position to summarize the rules for calculating
S-matrix elements as sums over Feynman graphs. Even though we have gleaned our
rules from studying a few examples, the same procedure goes through in different
processes with the same correspondence between mathematical expressions and the
components of the Feynman graphs. Hence we can list the rules for calculating any
C fIS]i D for QED. The transition amplitude for |[¢ D— |f D will be written as a sum
of Feynman diagrams

Sfi = C f|Tnvee™ J #aN[H]" @) li D

<0|TNVB6_1: fd“:z:N[H;P(x)]lO) (32.83)
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where the sum is over all Feynman diagrams I" which are elements of the set of all
topologically distinct Feynman diagrams (with no self-contractions) Gy; made from
the lines and vertices listed below which have the incoming lines pertaining to the
initial state |¢ D and the external lines pertaining to the final state |f O. These states
are specified by the type of particle, its momentum, its spin or helicity (polarization),
mass and charge. Further there are no vacuum bubbles in I'; that is, every largest
subgraph of I" has external lines (initial or final lines) attached to it. The contribution
to Sy; from diagram T, S};, is made from the Feynman rules.

The Feynman diagrams are made from the following graphical elements:

I.) External Lines

1.) Incoming and outgoing lines that do not interact but go straight through;
they are not attached to any vertex.

a.) Initial electron to final electron

- \/ .
4
(psy =S (s
b.) Initial positron to final positron ?
. Z
—— 7 N
c.) Initial photon to final photon ( / S) "_'F" 'Y, S )

2.) Initial and final lines that terminate (enter) or begin (leave) on a vertex
of the diagram ( a\

a.) Initial (incoming) electron (Q{SS —_—

el

&,3) < @
—
P

—®

N

7
__._§
b.) Final (outgoing) electron

c.) Initial (incoming) positron
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(a) o
d.) Final (outgoin sitron </ (
) al (outgoing) positro -— y << — (? S )

e.) Initial (incoming) photon ()U\\

EJQ\/K\/\(V/ \/)

I1.) Internal lines or propagators connecting vertices

f.) Final (outgoing) photon

1.) Fermion line

2.) Photon line

I11.) Vertices where lines meet (and particles interact) (\P) (

()

IV.) Once the Feynman diagram is drawn the 4-momentum is routed through the
lines of the graph with energy-momentum conservation at each vertex. Each incoming
line brings its own momentum into the graph at its vertex, and each outgoing line
takes its momentum out of the graph at its vertex. The external momenta are thus
independently routed through the graph with conservation at each vertex being the only
constraint. For each independent closed loop of internal lines in the graph there is an
interval momentum circulating around the loop. The internal momenta are also routed
so that energy-momentum conservation occurs independently for the loop momenta at
each vertex. The sum of incoming, outgoing and internal loop momenta at each vertex
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is conserved since they are separately. Note that internal lines carry external as well
as internal momentum.

For each Feynman diagram, I', there is a corresponding contribution to Sf¢;, S}:i,
made according to the Feynman rules:

I.) For each largest connected subgraph of I" there is a factor of
@) et (X - pf), an energy-momentum conserving delta function of the sum of
the initial energy-momentum minus the sum of the final energy-momentum flowing
into and out of that subgraph.
(Note: there is always a (27) 64(P; — P;) where P; is the sum of all the incoming
momenta of ¢ D and Py is the sum of all the outgoing momenta of |f D.)

II.) For each non-internal line a mathematical factor is present

1.) For each non-interacting line there is a factor

a.) (2m)% 2wy 8,5:03(F — §') for electron lines

(?, S\ -—-—-g?_—;""—_ (Q//g\

b.) (27)° 2w 85503 (P — ;7_)"/) for positron lines

(()-,g\ < LP /\

P>

c.) (2m)% 2wy, an83(k — k') for photon lines

(e, ) r‘\ﬁ/‘ (e, &)

2.) For each external line write the factor

a.) ul® (p) for incoming electrons

o @\
7

(?/S\ - - —

b.) E((lsl)(ﬁ ) for outgoing electrons (

¢.) B (P) for incoming positrons - (a)
(P/$\ ——< ’
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d.) v‘(f')(ﬁ' ) for outgoing positrons ,_____,_,é—-__—\ (§/{ g( \

e.) €,(k, ) for incoming photons N\ ()!'\
KON

.) €*(k', \) for outgoing photons (
£ ek X) tgoing phot ,/\/l/\/‘\/ (\L,x’)
()Y —>

(Note that for linearly polarized photons, €, = ¢, is real.)

II1.) For each internal line write a propagator factor

1.) S 7, (q) = [m]b for fermion internal line(s \ (b>
) &——————}——-—“—‘

‘k——b
2.) D¥(q) = [q2_+ii6] g* for photon internal lines
NN\
(1) 4= (v)

IV.) Write a factor —ie~}, for each vertex

(by ¢ \
(&)

V.) In writing the factors for lines and vertices (y#, S, ¢, etc.), they are ordered
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so that as you follow the fermion lines in the opposite direction to their arrow you write
the factors from left to right on your page. For example, see Figure 3.3.10.

Figure 3.2.10

Start at the right of the diagram and write from the left of the page
—(8") /=1 P i ) (s)
uy *(P) ( Ze'ch) ((15 +5) - m)cb ( Ze7ba) ug " (P)

all times ¢, (&', \') . (K, ).

So following this rule it is unnecessary to always specify the (a), (1) dummy indices;

ie.
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(E@‘> N Y,
Vs 7 ( S )
! ¥
T\‘ |k P
(e, ) (&, %)
=) (F7) (—ied(F', \)) ( ) (—ied(k, N)) u)(p)

(\7 5) PL7

@B+ k) —m

a spinor and matrix product.

VI.) For each independent closed loop, integrate over its internal loop momentum

/ s Lhmr
(2m)* (2m)*

if I' has m(T") loops. (This is an integration over each momentum not fixed by conser-
vation from each original vertex space-time integral.)

V.) For each closed fermion loop, multiply by (—1) and take the trace over its
spinor product indices.

VI.) For open fermion lines, multiply by a factor (—l)P where P = 0 if the
permutation of the external lines is even in order to bring them into the same order as
given in the initial and final states and where P = 1 if the permutation is odd. More
specifically, each initial and final line will be connected to each other line singly; directly
or via internal fermion lines. This association of lines in pairs defines a permutation of
the pairing of initial and final lines relative to a standard pairing order. For the purposes
of permutation counting, label the initial state electrons by 1,...,m and the initial
positrons by 1,...m so |i D= |1,...,m,1,...,m); and label the final state electrons
by 1’,...,n’ and the final state positrons by T,....,7 so |f o= ll',...,n',T’,...,ﬁ’)
or C f|= (ﬁ’,...,T/,n’,...,1’|

Since |¢ D is formed by creation operators we have (suppressing the superscripts
and all other labels)

i >=b]---bl,dL-..dL|0) (3.2.84)

and

C fl = <0|dﬁ/ .. d—I/bn/ .o bll, (3285)

Recall that the number of (b +d)’s must equal the number of (df +b)’s ; that is, the
charge of the final state must equal the charge of the initial state. Som —m =71 —n’
orm+m =m+n'.
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Now each graph will determine a permutation of the external lines and vertex
operators. From the S-matrix formula we have a standard ordering,

n
C £1S)i >~ (Olds - - dybur -+ b1 (N [0]) "8} -+ bl aLilo) (3.2.86)

where the interaction Hamiltonian operators are normal ordered:

N[TU] = —N[UT] =T ¥+ +T ¢~ + T ¢F - v T

(3.2.87)
~ (btb + bfd +db—d'd).

The graph will associate the operators in a string so that each external line can be
followed through the graph in the direction of the arrows on the line. This will order
the operators so that we go from bl’s or d’s through interaction vertices to b’s or di’s.
If the number of permutations to return the operators to the above normal order is
even, the overall sign on the term is +1 (P = 0); if odd, then the sign is —1 (P=1).

For an example, only showing the initial and final fermions, we have
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The S-matrix standard ordering is

9
dpby (N[@]) bipldld. (3.2.88)
The graph has permuted the order to read

|z (V) (2T) (W) dl] [by, (T0) (T) (T0)5] | o} (9T) (T) (¥T)df].  (3.2.89)

To get back to standard order requires six ¥ < U interchanges, a by’ < d% interchange,

and d% interchanges with both bJ{ and bg. Thus there are a total of nine interchanges;
the permutation is odd; and we multiply this graph’s contribution to Sy; by (—1).
Consider another example,

) \>+ b/ \£)

—

€./

Figure 3.2.11

The standard order is

dy/by TTTUH] AL, (3.2.90)
The graph’s order is
(b} (¥ )at] [br (T2)dy . (3.2.91)
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Figure 3.2.12

To return to standard order requires two permutations. Therefore the graph has an
overall sign of +1.

Similarly, for the same process, we have Figure 3.2.12.

The graph’s order is
(b (T3] [z (vT) dt]. (3.2.92)

An odd number of interchanges returns us to standard order. Hence this contribution
receives a sign of (—1).

Following these rules the S-matrix for any process can be swiftly written down.

Before working out a few examples, let’s just summarize the results of our long
analysis.
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Given a Lagrangian for QED in the Feynman-Steuckelberg gauge o = 1,
1 " 1 VAL == —
L=—gFu k™ - 5(6AA )+ 5V7*Du¥ — 5D UMY — mUY
1 — .= —
= +§A#82A“ + U (i — m)¥ — eUy*TA, (3.2.93)
1

- 50u[4,0" A" + 440, 4 + Ty 0],

Since total divergences do not matter we can ignore the last term. The Lagrangian is
then written as £ = Lo + L; where

Lo = +%A,182A“ + T (i — m) ¥

(3.2.94)
L;=—-eUy"TA,.
We then transform to the interaction picture to calculate
T +i [[d*zN[LiP@)]
s = SI1Te =) (3.2.95)

<0|Te+ifd4zN[£;P(a:)] 10)
The initial and final states are made from the fields in Ly, i.e. from the free fields.
Thus

3

A = / (27r) ka AZ (k) [acn (F) e + afy (B e+
0

/ (27;-) 2 Z [b ) u®) (@) e~P= + di (5) v’ (7) e+lpm] (3.2.96)

Psl

\I! ( )_/ @2 ) 2 Z[d mv(s)(ﬁ')e m"'bT(I_")U(S)(ﬁ)e“WJ

Wp =1

So we have the following mathematical and graphical representations for the par-

ticles:
(-Vlg\
Incoming electrons with factor u(*)(5) corresponding to __..__%-———d
T —
?LQ%_———-O
T—

Incoming positrons with factor T(*)(p) corresponding to
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Incoming photons with factor €,(k, ) corresponding to \2\7

Outgoing electrons with factor @(*) (5 /) corresponding to ‘-P/ > ( \S)/ ¢ /)
’%—%‘—"—-— {
Outgoing positrons with factor v(gl)(;__)") corresponding to 5/ ) ~> (—/

U ‘f/

J X/
WOM )

Outgoing photons with factor €,(k’, ") corresponding to

just the plane wave expansion momentum space wavefunctions.

These interact at vertices via the interaction Lagrangian —e¥+*¥ A, in the expo-
nent of S. Each vertex corresponds to a factor —iey* arising from the expansion of
that exponential, represented graphically as

Vertices are joined by propagating fermions and photons. These are just (+1)
times the inverse of the free Euler-Lagrange differential operators of the field equations

in momentum space. So, referring to Lo we see that for photons (44) times the inverse
of 8% is .
—1

q? + i€

g

for fermions (+i) times the inverse of (i —m) is
i
d—m+ie
Hence we have the corresponding internal line factors and their graphical elements

' N
d—n27,+ie = — V4 9

—
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q %%

Each internal line has its own momentum integral, but at each vertex there is an
energy-momentum conserving delta function. Since there are I, lines, and V vertices
we have m = L — V +1 ( +1 for the one overall energy-momentum delta function that
factors out) internal momentum integrals left — this is just the number of loops in the
diagram.

Hence we have written S fi s a sum over Feynman diagrams with the above rules
that, with a little experience, can be rapidly obtained just by looking at the Lagrangian.

Finally let’s apply these QED rules to calculate the S-matrix for some other pro-
cess.

1.) First recall the transition amplitude for Compton scattering. Let’s re-derive it
using our rules.
We have the process

e (p,s) +v(k,A) — e~ (0, 8) + v (K, N). (3.2.97)

Next we write out the possible graphs with their momentum’ routing in Figure 3.2.13.
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The Sy; can be written down immediately from our rules:

S(ey— e v)
= (271')32(,0165,\)\/53(12 )(271'} 2wy 35'53( _0/)
+ (2m)32widan 6(k — E')(2m)*3(p — p')(—ie)? (:;4
ey g ) ~'Guv
x[ ()" p+7- (ﬁ)]( )
4
— (2m)%2uwpbser8° (5 — 7') (2m)6(k — K')(—ie)? (5734 (3.2.98)

T 4K X gl N
+(2m)'8t (p+ k—p' — k') (~ie)’
x 35 ") (K, )

+a)(5) ¢(k, )

¢k, 3) ul(7)
— 4K, X)ul (@)

¢+lém
16}6

Since we are interested in scattering with (k,\) # (k’,\) and (p,s) # (@, s)

only the last two terms are non-zero. This, of course agrees with our previous result,

equation (3.2.50), which we derived from first principles.

2.) Secondly, let’s consider the elastic scattering of electrons and positrons

et (@,35)+e (p,s) — e (@,5) +e (¥, 5). (3.2.99)

This is called Bhabha scattering. The Feynman diagrams contributing to the process

are shown in Figure 3.2.14.
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Using the Feynman rules we find the S-matrix element for this process again taking
(p,s) # (¥',s') and (p,5) # (9',5') so that only the last two graphs yield a non-zero
contribution to the S-matrix element,

S(ete” —ete)

= @M (p+7 - @ +7) (—ie)*[-2) (7 ) v )

—igl“/ ) _(5) =, v (E') —
X\ ———5—— 0¥ [®@)y" v ()
((p —p)? +ie

+5)750F) (%) 506y u )| (8.2.100)
(P+D7)" +ic
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