62.3 THE SPIN % FERMION FIELD

We next desire to describe non-interacting (free) particles with spin % As we
know these particles will obey Fermi- Dirac statistics due to the Pauli exclusion
principle. Hence, we can expect the commutation rules to be changed for spin
% fields since the canonical commutation rules implied symmetric wave functions
under the interchange of the particles. For antisymmetric wave functions we will
need anti-commutation relations for the fermion creation and annihilation operators.

First, let’s introduce the field that will be used to describe the spin % particles;
the four component Dirac (bi-)spinor field, denoted by ¥,(z), where a = 1,2, 3, 4.
Recall that we can obtain the left-handed and right-handed components of ¥ by
multiplying with respect to the 75 matrix

vy,

N | —

(1 —75)¥

YR

N —

(L4 5)V (2.3.1)

12,3

where 75 = +iy%y1y243 with 4#, u = 0,1,2,3 are the four Dirac v matrices. The

Dirac matrices are four-by-four matrices that obey their defining Clifford algebra
YA 4+ = 2¢"1 (2.3.2)

and have the conjugation properties

.
7 =40
if i
v =y (2.3.3)
that is
= A0yttny0 (2.3.4)

(see section 1.2 for a review of the vy-matrices).

The Dirac spinor field ¥, (x) has the next simplest non-trivial transformation
properties under the restricted Poincare’ group (recall that spin zero or scalar fields
were invariant under LL i.e. they transformed according to the identity

U ' (a,\)®(Az + a)U(a,A) = 1®(z)) .
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The transformation law is given by the quantum mechanical operator transforma-
tion law analogous to equation (1.2.128) and (1.3.28), that is, for 2’ = Az + a,

(o (2') =< A'|Wq(2")|B" >
= Lap(A) < A[Wy(2)|B > (2.3.5)
(= Lappp(z))

where () =< A|¥y(x)|B > and we denote Dgp(S) = Lgp. Since the transforma-
tion is implemented by unitary operators U(a, A) we have

U Ha, )Wy (2)U(a,A) = Lap(A)¥y(x) (2.3.6)
or multiplying on the left by U and on the right by U~!, we obtain
Ua, M)W, (2)U 1 (a,A) = L;bl(A)\I/b(Ax + a) (2.3.7)

where recall equation (1.2.131)

A#y, = Ly L1 (2.3.8)
that is .
AP = T [Y* Ly L. (2.3.9)

Since any finite PJTF transformation can be built up from the infintesimal, consider
those

't =gt + Wz, + a” (2.3.10)
B (2.3.11)

hence ‘ ,
U(a,A) = eiaP” =59 M 1 4 i, PH — %w“”/\/l“” (2.3.12)

while by equations (1.2.129), (1.2.98), (1.2.107) and (1.2.123)

Lap = dap — %wwagb” (2.3.13)

where now
ol el (2.3.14)



is the 4 x 4 spin matrix. Note that

L1 = <1 + %wwa‘“’)

hence _ ]
Ly L™ = (1 - iwugao"g) ol (1 + iwp,\a‘»)
1

=Y - Rl [oraﬁ,’y”] + O(w?).

We can evaluate the commutator
(0% 4] = 5 [[v*27] 7]

=5 ("7 4"] = [P ])

=N | .

[\

by using the identity [AB, C| = A[B,C]+ — [A, C]4+B, we have

(0°%,4"] = 5 (v* {277 = (v 1P = Py + 484 1)

(2) (677% — 9*7® = g*“1 + g7*7*)

Br, o av

i (g7 — g*yP).

DN = DN .

[\™)

So indeed we explicitly check equation (2.3.8)

Ly"L™l =4¥ - é(Qi)waﬁ (979" = g%+7)
=~ + % (wa'v* — w¥g7")
=" — Wy,
but A=IWH = gvh — Y = APV 50
LyL™ ! = A“l’%;u

= A",.
Thus, we find for infinitesimal ”Pl transformations from equation (2.3.7)
[PH, Wo(z)] = —i0" W,(x)
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(2.3.15)

(2.3.16)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)



IMP Ty (2)] = —i | (210" — 27 0M) Ty(z) — %UZLZ\III,( z) (2.3.21)

where D!} = Lo} according to the notation of equations (1.2.115) and (1.2.116)

and obeys the Lorentz algebra, equation (1.2.113). We can contract spinor fields
and Dirac matrices in order to make scalars, vectors and tensors. Hence it can be

shown that under Lorentz transformations
WV is a Lorentz scalar,

W5 W is a Lorentz pseudoscalar,
W~HT is a Lorentz vector,
Wy5y" W is a Lorentz pseudovector or axial vector,
Woh¥ ¥ is a Lorentz tensor, (2.3.22)

where U = W40,

For non-interacting spin 3 L particles of mass m, Dirac discovered that the field
equation is given by a first order partial differential equation known as the Dirac
equation

(i —m)¥(x) =0 (2.3.23)

where § = y#0,,. Writing out the indices we have
10, Yo, Vo (x) — mVu(x) =0, (2.3.24)

so we see that the Dirac equation is a matrix differential equation. Since the particles
have mass m the relativistic relation p?> = m? should be valid, that is, ¥(z) should
also obey the Klein-Gordon equation. To see this consider

(i@ + m) (i) — m) ¥ = (—PP — m?) ¥

2.3.25
o ( )
However,
1
=~v"4"0,0, = = (V"4 + ") 0,0,
PP =~"v"0y 5 (V" +979") O, (2.3.26)
= ¢""10,0, = 0?
and thus,

— (8% + m?) U,u(z) =0, (2.3.27)
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each component of ¥(x) obeys the Klein-Gordon equation. Furthermore, if
(i@ — m) ¥ = 0 then taking the hermitian conjugate we obtain

i (—z’ 5* —m) =0 (2.3.28)

that is,
leftarrow "
i (—i T —m) =0. (2.3.29)

Multiplying by 7° and using the relation v#T4% = ~94# yields

a0 (—z’ Oy YH — m) =0. (2.3.30)
Now we define the adjoint Dirac spinor as
U =Uly0 (2.3.31)

so that the preceding equation takes the form

W(z) (z }5 +m) =0 (2.3.32)

which is called the adjoint Dirac equation.
Dirac showed that these field equations can be obtained as Euler-Lagrange
equations from the Lorentz invariant Dirac Lagrangian

L=V (% 5 —m) v, (2.3.33)

Notice that £ = LT, but often we write £ = W (i@ — m) ¥ which is not hermitian
but differs from the hermitian Lagrangian by a total divergence —%@L (ﬁ’y“lll), SO
the action is the same. Thus, either Lagrangian leads to the same Euler-Lagrange
equations of motion,

oL oL

— —0 = =0= (0 —m)¥ 2.3.34
ot e g =0=@-m, (23.34)

that is the Dirac equation.
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According to our canonical quantization procedure we define the momentum
conjugate to ¥ by %. However, typical of Lagrangians first order in %, the
canonically conjugate momenta Il and II are proportional to the field variables
¥ and V¥, and hence, the fields and momenta are not independent quantities, i.e.
the fields are conjugate to each other. We cannot naively apply our canonical
quantization procedure. Dirac found that we must throw all the derivatives to one
field when finding its conjugate momenta, choose it as the independent coordinate
and then the other field will be the momentum. Either way we throw the derivative,
the result is the same momentum-field relation. Thus, throwing the derivatives to
U by parts, £ = —id, ¥y*¥ — mP¥ and ignoring the total divergence we define

_ e

M, (z) = 0T, (z) = —ir"W(x). (2.3.35)

As we will see and as Jordan and Wigner discovered, we must further change the
canonical commutation relations used for bosons to anticommutation relations for

fermions. The quantization rules become
3(2° =y ) Mo (), Uy (y)} = —idapd™ (x — y) (2.3.36)
where {A, B} = [A,B]1 = AB + BA, and
3(a" — ") {¥(2), ¥(y)} =0, (2.3.37)

and
(x° — y"){T(2), I(y)} = 0 = 6(2° — y"){¥(x), T(y)}. (2.3.38)

Now the equal time anti-commutation relations (ETAR), (2.3.36), are
0" = y") {70 e(®), W (y)1d} = —idad™ (@ — v), (2.3.39)
multiplying by 7,7y, We obtain
5(a® = yO){We(x), Uh(y)} = besd*(z — y) (2.3.40)
that is, in summary,

5(z° = ") {Wa(@), ¥i(y)} = durd* (x — )
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§(z =y { W, (), Ty(y)} = 0. (2.3.41)

A few words are in order. The fact that these operators anticommute means that

they are not like ordinary “functions” of z, rather they are elements of an infinite

dimensional Grassmann algebra (they are anti-commuting numbers). Furthermore,

we will see that these are the correct quantization rules for the Dirac fields to obey.

They are correct in that they lead to a consistent definition of energy, momentum,

and spin of Fermi-Dirac particles. This will become clearer as we proceed.
Naturally we can find the Hamiltonian density given the momenta

H =0VIl— L

= —i0g Uy + U (z ] +m> ]

=V | iy == 0. 2.3.42
vy opi +m ( )

Thus, the Hamiltonian is
H= / 42T (—% v +m) v (2.3.43)

where we have again made H hermitian by adding total three-divergences. The
Heisenberg equations are as before [H, ¥(z)] = —i¥(z).
More generally we can apply Noether’s Theorem to construct the energy-

momentum tensor and angular momentum tensor

oL — 0L
T = 9" W +OVV—— — gL 2.3.44
00,0 00, 7 (2.3.44)
where now we must be careful taking derivatives with respect to anticommuting
iabl
variables 5 o
8\:[/@ b — Oab
o _
U, =0
v, "
o0 —
— W}, = d,
0. b b



9
9 9,=0 2.3.45
o, © ( )

and for W, either ¥, or ¥, and A an arbitrary operator

0 - o0, , - 0A
UyA = A—-" . 2.3.46
v, ' av, ov, (2:3.46)
Similarly for a% . Thus we have the general chain rule for derivatives with respect
to anti-commuting quantities
0 0A 0B
= —NAlA— 2.3.4
a%AB a%BJF( ) 0. (2.3.47)
where |A] = 1 if A is an odd element of the Grassmann algebra i.e. if A is an

anticommuting number or |A| = 0 if A is an even element of the Grassmann algebra
i.e. if A is a commuting number. Thus the reason for the factors appearing to the
left in the expression for T*” above. We shall also use the hermitian Lagrangian so
that TH" is hermitian

L= %ﬁ DU — mTT. (2.3.48)
So
85_ _ —Efy“\ﬁ[l
00, ¥ 2
oL 1 —
= ——WnH 2.3.49
90,0 2 ! (2.3.49)
where the minus sign appears in the second term since
0 — — 0
U=V . 2.3.50
00,V 00, ¥ ( )
Hence, ’ ’
TH — _%a@y“\p + %%“a"\p — gL, (2.3.51)
the plus sign comes from the relation 0¥ ¥W¥ = —W3”¥. Thus we secure
T = = (U — 9"y ] — gL
(2.3.53)

- %%“ W — gL
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Now we check directly that this is conserved

0, T = %ﬁ@a"\p + %ﬁ POV — %a"ﬁ P

; (2.3.53)
— 56”@@\11 —0"L.
Using the field equations (i@ —m) ¥ = 0 and ¥ (z j +m) = 0, we obtain
9, T" = " (%\If ? \11) YT P T — %a" (\p ) \11)
+iW P 0"V — 9L
P ) ) (2.3.54)
=0" (5111 j \Il) —mo"VV —mPo"Vv — 0" L
Py (%\p ? \Il—m\Il\Il) — 9L =0.
Hence, the energy momentum tensor is conserved
0,T"" = 0. (2.3.55)
Notice however that
i _ _ _
THY —TVH = — [ UKV T — UV OHT — 9V IR + OF Iy B
5 [ 7 Y+ 0y (2.3.56)

£0.

We can put this difference into a more useful form by using the field equations
i@V = m¥ and i¥ P= —mV¥. By multiplying the Dirac equation by ¥y*~y" and
the adjoint equation by v#v¥ ¥ we obtain

iU AP0, U = mUyHyl U
10, Uy Y YU = —mUyHy D, (2.3.57)
Hence, adding we find
Uy P9, W + 8Pyl O = 0. (2.3.58)
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This can be further simplified by exploiting the y-matrix identities. Recall

Yy = g" —io"

Ao = %6‘“’”0,,0
{y*, 0"} = 2P 2 y575 (2.3.59)
and the identity we need
1%
YRy = gr P — gt g Py — e P sy (2.3.60)

Substituting this into the Dirac equation (2.3.58) it becomes
Tk 37 U = Ty” 0% U = i0, e Tspa U — g4 8, (T7PT) . (2.3.61)
Now then equation (2.3.56) yields
T+ — TV = —%apepf‘”@,sml - % 9" 9, (T7*7) (2.3.62)
but again adding the Dirac and adjoint Dirac equations we have
0 (Ty°¥) = mIT — mTT = 0. (2.3.63)

So
1 -
T — T = —58;,60#”*\11757»1/. (2.3.64)

According to Belinfante’s improvement procedure
T —T"F = 0,HPH (2.3.65)

and we identify
1 _
HPH’V — _EGPIJ‘VA\IJA/S'\/AW. (2.3.66)

The symmetric Belinfante energy momentum tensor is
e =T — 9,GPH (2.3.67)
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where
Gy — 1 [HPH 4 HFP 4 HYHP)
2

1, 1 _
— 5(—5) [ep“’»‘ + etveA 4 GVHPA} Uysya ¥ (2.3.68)

— EHPHV
2

and .
8,GPH = 53pHpuV

1 —
= =0 My

0,GPH = — [ UM 9V U — Uy OH T | . (2.3.69)

@) A~ | =

Thus, according to (2.3.52), (2.3.

momentum tensor becomes

7) and (2.3.69), the symmetric Belinfante energy

oM — %mu O — gL — %%“ WU+ %%" oM W

on — %ﬁ {’y“ 0" 4 5“] U gL, (2.3.70)

It is conserved
0,0" =9,T" =0 (2.3.71)

and symmetric
O = QVH, (2.3.72)

Note all this follows from Belinfante’s general prescription, equations (2.1.157),
(2.1.158) and (2.1.159)

HPW = TIP DM &, (2.3.73)
which in our case yields
oL ——w OL
HPHY — D“”\Ilaaqu +vD" .
Z, Z, 000 (2.3.74)
— impm"\p — 5@“”7%.
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However, DH" = %a“” and D" = 70D 140 = —%O’“V, so that

1—
HOW = — TP, o |

b (2.3.75)
= —iep“”Aﬁfyg,’y)\\I/.
The generator of translations is given by
PH = / d’zO = / 4’z T
(2.3.76)

= /d3a: (%@70 5‘)‘ v — go“ﬁ) .

Consequently, the Hamiltonian is as given by the Legendre transform of £, equation
(2.3.43)

H=pP"= /d3az (%ﬁ’yolﬁ'[l — %60570\11

LT+ Lagyow - Ly b mw)

, (2.3.77)
— /dz)’xﬁ (—%’yi 0; +m) N4
— Bt (vt —
/ a3 (\1/ ¥ ¥ \Il)
since £ = 0 upon use of the Dirac equations, and
[P°, 0 (z)] = —iT(x). (2.3.78)
In addition, we have ’
P = /d%%ﬁ’yo YA
- / &z (ﬁyoﬁ\p) (2.3.79)
= / dz (iw'V )
so that, since P is time independent,
o] =i [ @y [v)¥,u0) v
e (2.3.80)
—i [ y(w(), 929, 0)
Y=z



Using the ETAR equation (2.3.41) this yields

[73,\11(33)} — iVU(2). (2.3.81)
Thus, we have as we should for space-time translations

[PH, W (x)] = —i0"¥(x). (2.3.82)
According to Belinfante’s procedure the angular momentum tensor is given by

MM = g @ — PO

8, MMP =0 (2.3.83)
and
MM = / d®x MO (2.3.84)
which yields
IM* T (2)] = —i {(x“a" — 2O W (z) — %U“”\I/(x) . (2.3.85)

Finally, since ¥ is a complex field we also have a phase invariance because £
is made from WTW. As in the complex scalar case we introduce unitary operators
U(a) = €@ transforming the phase of ¥ and ¥

Ul ()W (2)U(a) = e T(2)
Ul(@)¥(2)U(a) = e 0 (z). (2.3.86)
Since U(a) = €%, (2.3.86) implies
Q¥ (x)] = —¥(z)
(Q, ¥ (z)] = +¥(x). (2.3.87)
Since L is invariant under this transformation
SL=6L=U"(a)LU(a)—L=0 (2.3.88)
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we have by Noether’s Theorem a conserved current in terms of the dynamical vari-
ables ¥ and ¥ whose zero component gives the charge Q

— oL oL
Jr =9 (T — N\
Z( 00,7 | 90,9 )

JHh = (—3%“\11 - %@y“\p)

2
JH = UyH0, (2.3.89)
Checking explicitly the conservation of this current we have using the Dirac equa-
tions _
OpJ" = —iWidV — iWi @ U+ imPV — imP W
_ - _ — (2390)
:—i\I/(i@ —m)\Il—i\I/(i @-l—m)\I/:O.
Hence the U(1) phase symmetry current is conserved
B J" = 0. (2.3.91)
By Noether’s theorem the U(1) charge is
Q= | d2J%4x) = /d%ﬁ’yolﬂ
Q= / By, (2.3.92)

Further Q = 0 since 6£ = 0, or more generally, the internal and space-time symme-

try generators commute

[Q,P"]=0
[Q, M"] = 0. (2.3.93)

Finally we check explicitly that @ given by equation (2.3.92) indeed induces phase
transformations on the Dirac fields

QU@ = [y ). vw)]
ol R ORI A
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Q, ¥(z)] = —¥(x) (2.3.93)

and similarly
Q. ¥(2)] = +T(x) (2.3.94)

as required.

Thus we have obtained the space-time properties of the Dirac field theory
according to the canonical quantization procedure. To interpret this quantum field
theory in terms of particle states and associated creation and annihilation operators,
we Fourier transform ¥ (z) to momentum space, that is, expand it in terms of plane
wave solutions of the Dirac equation

U(z) = / d'k e~k (k) (2.3.95)
= | @y . .3.
As we have seen V¥ is a solution to the Klein-Gordon equation,
(87 +m?) ¥ =0, (2.3.96)

implying that
U, (k) = (2m)3 (k2 — m?) wa (k, k°). (2.3.97)
Using 6(k* — m?) = 1 [6(k® — wy) + 0(k® 4+ wy)], this yields

d’k —ikz, (T 1 1.0 +ik I 1.0
1RT tRET 2- .
U(x) = /(2 a0, [e w(k, +k°) + e w(—k,—k")|, (2.3.98)

where k0 = wy, = Vk2 + m?2, as usual, is understood. In addition to the Klein-
Gordon equation, ¥ also obeys the Dirac equation, (i@ — m)V¥(z) = 0,

3 -
(9= m) (@) = [ g [ = myu(F, k)

—e PR (4 m)w(—F, —ko)} —0. (2.3.99)

Hence w, obeys the 4 x 4 matrix equation

=)

( = myw(k, +£°) = (2.3.100)
(k +m)w(—k, —k°) = 0. o
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It is convenient to separate the c-number spinor solutions to the Dirac equation
from the g-number operator coefficients. We define

wa(k, +k°) = b(k)uq (k)

wa(—k, —k%) = dt (k)va (k) (2.3.101)

where b and d' are q-number operators, i.e. creation and annihilation operators,

while u4(k) and v, (k) are c-number spinor solutions to the momentum space Dirac
equations

—

(k —m)u(k) =0

(F + m)v(k) = 0. (2.3.102)
Since V¥ is complex, wi(lg, +k9%) and wa(—E, —k%) are independent, thus the coeffi-
cients b and d and the column vectors u and v are independent also.

In order to solve (2.3.102) for u and v we go to the rest frame of the particle,
that is consider these equations at k = 0 and k° = m. So equations (2.3.102)
become

m (”yo —1)u(0)=0

m (7% 4 1) v(0) = 0. (2.3.103)

That is we obtain the v° Dirac matrix eigenvalue equations
7Pu(0) = +u(0)

720(0) = —v(0). (2.3.104)

Hence, u and v are the +1 and —1 eigenvectors of 7 respectively. Recall that 702 =
1, so 4Y has two pairs of eigenvalues £1 as seen directly in the Dirac representation
where 4 is diagonal. u(0) denotes the pair of +1 eigenvalue eigenvectors and v(0)
the —1 pair. Since the 7¥ eigenvalues are degenerate we need another label for u(E)
and U(E) to denote the independent eigenvectors. It is conventional as to how to
choose the orthogonal pair of degenerate v° eigenvectors. We choose them to be
eigenvectors of o'? also, these are simultaneously diagonalizable since [”yo, ot } = 0.
As we will see 0% will give the three components of the spin of the particle at rest,
012 being the projection of the spin onto the z3 axis. So the four independent

vectors in the k-frame are denoted by u(*)(k) and v(¥) (k) where s = 1,2 labels the
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two v and the two v vectors. We take the rest frame vectors to obey the eigenvalue
equations (2.3.104) as stated

70u®(0) = +ul(0)
700()(0) = —v)(0) (2.3.105)
as well as the 012 eigenvalue equations, note 012 has eigenvalues +1 also,
012u(5)(0) =(3- QS)U(S)(O) — (_1)5+1u(5)(0)

o120 (0) = (3 — 25)v®(0) = (—=1)* 1) (0), (2.3.106)

that is for instance
o2uM(0) = +uM(0)

o 2u2(0) = —u?(0). (2.3.107)

Furthermore, we have that «(")(0) and v(")(0) are orthogonal and we normalize

them, by convention, to 2m. So we take
" (0) u)(0) = 2mé,.
v (0) o) (0) = 2mé,.

w7 (0)10) (0) = v (0)Tu(*)(0) = 0. (2.3.108)

Recall that in the Dirac representation

+1 0 0 0
o [0 +1 0 o0
TT1o o -1 o0
0 0 0o -1
i 0 o
i = (—ai j ) (2.3.109)
while for ¢ # j
o' = in'y’
(o0 (a0 (2.3.110)
=—1 C ) =€V .
( 0 0103) ( 0 O’k)
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Hence,

+1 0 0 O
o'? = (003 003) = 8 _01 fl 8 . (2.3.111)
0o 0 0 -1
Thus the simultaneous (7, 012) eigenvectors are
1
uD(0) = Vam | |
0
0
u®(0) = vam | |
0
0
) = vam |
0
0
v 2 (0) = V2m 8 (2.3.112)
1

We also have creation and annihilation operators for each of these eigenmodes.
Hence, the expressions (2.3.101) for w,(k, +k°) and wq(—k, —k°) become a sum

over the k-frame eigenvector basis u(®)(k), v(*) (k)

2

wa (k, +£°) =3 by (K)ul® (k)

wa(—k, —k) =Y dl(k)ol (k). (2.3.113)

The Dirac field Fourier transform, equation (2.3.98), becomes

2

3 - - . o o .
U, (r) = / (2:)73];%2[bs(k)ugf)(k)e_lkx+di(k)vg5)(k)e+lkx . (23.114)

sS=
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(Compare this with the complex scalar field expansion, equation (2.2.266)

3 L .
() :/(2:)73];% [a(k)e_”” bt (R)ethe] ) (2.3.115)

Now u(®)(k) and v®)(k) still must be solutions of the Dirac equation

(f — m)u) (k) =
( +m)p™ (k) = 0. (2.3.116)

Since (f +m)(F —m) = (F — m)(f +m) = k* —m? = 0 we can solve the above
equations (alternatively we could just boost from the rest frame u(*)(0) and v(*)(0)
to momentum k by means of (SL(2,C)) Lorentz transformation S(k) to obtain the

same answer)

ul®) (k) = A(E)(¥ + m)u'*)(0)

v (k) = B(E)(k — m)v® (0) (2.3.117)
with A and B arbitrary normalization constants chosen by convention. We choose

u and v just to be the (SL(2,C)) Lorentz transformation matrices to the moving
frame k since the u(0) and v(0) are already normalized at rest as we desire. Hence,

1

Ak) = o ) = —B(k). (2.3.118)
Consequently,
\/2m(wk + m)
) (k) = (=f+m) v (0) (2.3.119)

2m(wg +m)

where u(*)(0) and v(¥)(0) are given above in the Dirac representation. To see this
consider the Lorentz boost to go from the rest frame of the particle to the frame in
which the particle has momentum k. That is

k= AP (R)kTest, (2.3.120)

with k. _, = (m,0,0,0). Hence A" (k) is given by

rest —

A%, (k) = cosh 8

172



7

Ay (k) = A% (k) = ¥ ginh 8

||
- oKk
A (k) =05 + | AT —-[cosh 8 — 1], (2.3.121)
where tanh § = . Correspondingly the SL(2,C) transformation, denoted S (E)
W (k), that takes the spinor u(*)(0) from the rest frame to the k-frame, u(®)(k), i
W) = —kEm (2.3.122)
2m(wg +m)
such that
u®) (k) = W(k)u'(0). (2.3.123)
Likewise, we have
v (k) = W (k)v®)(0), (2.3.124)
with (¥ )
_ S —k+m -
W(k) = = ’)’5W(l€)’)’5. (2.3.125)

2m(wg +m)

Recalling the relation between SL(2,C) transformations and Lorentz transformation
matrices, equation (1.2.131), A“”(E)’yu = W (k)y*W~1(k), or in a more direct form

A (k) = %Tr[’y“W’y”W_l]. (2.3.126)

Using equation (2.3.125) we see that W(E) yields the same Lorentz transformation
matrix. Thus using the explicit form for W(E), equation (2.3.122), we verify that
the Lorentz transformation obtained in equation (2.3.126) is indeed the same as
in equation (2.3.120) and (2.3.121). Thus, the Fourier transform breaks up into
positve and negative frequency components

U(z) =¥t (z) + ¥ ()

U (z) = / ﬂZdi(E)vgs)(E)e““ (2.3.127)



where the positive frequency plane wave solutions to the Dirac equation are

Ulgs)(a:) = u(s)(E)e_ikI
and the negative frequency solutions are
VE(S)(.Q:) = v(s)(E)e+ikx

with
(i) = m)US () = 0 = (i — m)V: (x).

(2.3.128)

(2.3.129)

(2.3.130)

Now we desire to invert these Fourier transforms and to do so we need the

orthogonality properties of the plane wave solutions u and v. First consider the

hermitian conjugate (in Dirac matrix space)
1

2m(wg +m)

u'(F) = u™' (0) (KT +m),

but ’y“T = 79v#~Y 50 that

M (7 = 1 () (0)(20 gy
U = U +m).
(k) ol ) 0)(v vy )
However,

7*u(0) = u"(0),
hence

u™' (07 = u('(0)
and so

Thus, the orthogonality properties are given by

u' By (F) = u' ) ;mzoik%m) u(®)(0)

(f+m 2R +m)
2m(wg +m)

2 0
_ u(r)f(o wiy” (F + m)u(s)(O)
2m(wg +m)

= u'(0) (0)

wi (wk + m)u(s)

W'
m(wg +m) (0) + (0)

—u"(0)
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m(wg +m)

(2.3.131)

(2.3.132)

(2.3.133)

(2.3.134)

(2.3.135)

u(*)(0).

(2.3.136)



But 7%9%% = —+%, so that
r)f 7 s r)f i,.(s
u™(0)709" 7 ul*)(0) = u" (0)7'u(*) (0)
r)f i (s
=~ (0)y"u)0),
hence,
u™(0)yiu)(0) = 0.

Since we normalized at rest to 2m,

u ™' (0)u) (0) = 2mé,.,

we find
() (F) = 2widys.
Similarly for the negative energy spinors v(s)(E) and
oMT(k) = —v™1(0 (—fk+m) 0
2m(wg +m)

which leads to

Furthermore, we have

(F +m)N°(=1"F1° +m) o)

O Ty () (7Y — 4 (M)
" Ry () =l ) F

= u'(0) : 2m(wy + m)

Thus we secure

Equivalently we could introduce adjoint spinors
7" (F) = u (R)°

o) (k) = o™’ (k)+°.

Then, as usual, if
(k —m)u (k) =0

175

F+m)(—F+ m)’YOU(s)(O) _

W™ ()0 (k) = 0= o™ (F)u®) (—k).

(2.3.137)

(2.3.138)

(2.3.139)

(2.3.140)

(2.3.141)

(2.3.142)

(2.3.143)

(2.3.144)

(2.3.145)

(2.3.146)



taking the hermitian conjugate yields

uM' E) R —m) =0

. . (2.3.147)
= u (k) (1" — m)
Multiplying by 7° implies
7 (k) (f —m) =0, (2.3.148)
and similarly (f +m)v(™ (k) = 0 leads to
7 (E)(F +m) = 0. (2.3.149)

Hence, we can proceed as before, so just summarizing the results here for the spinor
and adjoint spinor orthogonality relations in the k- frame

7" (k)u'® (k) = 6,.52m

o (B (k) = —6,.52m

7" (B (k) = 0 = 30 (k)ul® (k). (2.3.150)

Besides orthogonality the spinors are complete; that is we have for positive energy

spinors

Z u) (B (k) = (k4 m) (2.3.151)

where we used the fact that u(*)(0) are the +1 eigenvectors of 7 (see (2.3.112))
and thus

S u@(0)u®' (0) = %(1 +4%)2m. (2.3.152)
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It then follows that
2

) () 2m (1+7°)
;u( J(k)ya') (k) = ) (wn ) (F +m)=— (kT +m)y°

__ 2m 1+

= ) (wn 1) (k+m)——(F+m)

- (2m) m m 0

= @) 1) [( +m)(§ +m) + 2kk

—k*7° + m*y° + m{k,~°}] (2.3.153)
2m

= T g (- m) (e +m) = 20 +m)]
2m 2 2

= @) (on ) [k +m* + 2mk + 2wik + 2wim)|
2m

= ol Ty 2mm o+ )+ 20 (f =+ m)]

=f+ m.

Similarly the negative energy spinors obey
2
> v (k) (k) = (k —m) (2.3.154)
s=1

since v(®)(0) are the —1 eigenvalue eigenvectors of 7° (see equation (2.3.112)) and
thus

1
§ MO ONG) = 5(1=1")2m. (2.3.155)
Thus, we have completeness of the spinors

> 5 WO EEOF) — o Fp) ()] =1, (23.156)

where 1 is the 4 x 4 identity matrix. (Note that we have chosen our spinors to
be eigenstates of 70 and o!? at rest. Alternatively, we could have chosen another
combination of 4 x 4 v matrices at rest or in another frame. Mandl and Shaw have
chosen u and v to be eigenvectors of the helicity operator

ot
Qu

h= " (2.3.157)

ES
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where & = (623,031, 0'2) and of course the Dirac equation fu = mu and fv = —mv
in the k-frame, not at rest as we have chosen. Also note that [£, h] = 0. Each choice
are linear combinations, boosts, and rotations of the other.)

We can now invert the Fourier transforms of the Dirac field

2

U(z) = / Ak > [bS(E)u<S>(E)e—i’“ +d§(1‘é)v<5>(/§)e+ikﬂ (2.3.158)

(27r)32wk 1
and the adjoint Dirac field

3 2 = = . = = .
T(x) = / (2:)73’;%; [d ()5 (F)e~ ke 4 bt (F)ya(® (k)eﬂ’ﬂ (2.3.159)

to obtain

dy(F) = / 2T ()70 (B)et b (2.3.160)

The canonical anti-commutation relations (CAR) can now be obtained for b and d
and their hermitian conjugates by using the ETAR and the fact that they are time
independent, b = 0 = d, for example

B @) = [ dadtyerre s (@ @ne) (00F), {Talo), w0}

20=y0

— 3.3, ipx —iky (—(r) /=0 ) 3(2 =

/xo_yo d’zd’ye™ e (u (P)y )a (u (k))bdabé (& — )
d3xez(p k)x— (T)(m70 (s) (k)

= (2m)°6% (5 — K)o u ()l (7)
(2.3.161)

but §3(p — E)ei(wp_‘”’“)xo = 5%(p— k) and u™’ (P)u'®) (P) = 2w,6,s, so that

-

{b, (), b1 ()} = (27)% (2w )6,6% (5 — k). (2.3.162)
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Similarly we find

{d, (p), di(k)} = (2m)? (2wr),50° (5 — k).

Since ¥ and ¥ anticommute as do ¥ and ¥ we have

{b(P), bs(k)} = 0 = {d.(P), ds(k)}

and

and since u and v are orthogonal we also find

the adjoints of the above expressions vanish as well.

(2.3.163)

(2.3.164)

(2.3.165)

(2.3.166)

The expressions for the Hamiltonian, momentum, and charge operators can

now be Fourier transformed. As usual we obtain these quantities by starting with

PH = /d%%ﬁ’yo 5;‘ v
Q= /d3x§70\11

MY = /d3az [93“@0” — x”@o“}
_ / 3

d x%ﬁ {’yoaz“ 0" =%z O* + (xPy” — z¥ ") AP

+ (gou,yl/ _ QOH,YV)} 0.
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First we analyze the energy momentum operator

L0 [ PR & 22 22 e
- v —(r —ikx
/d 9 / (2m)32wy (2m)32uw; £ < [dT(k)v (k)e

+bT (E) (T)(E)e—l-ikx} 70 é_gé [bs(l_ju(s)(l) —ilx -i-dT(l) (s) (l)6+ilx:|

2

d3k d3l oY P ik
/d3x/ @n)3%n, @r )50 Z [dr(k)v( ) (k)™

r,s=1

N | .

+bl (R)a™ (k)e +ik1} [ i1by (Hul® (Tt + itrd! (Do) (l)eﬂ.lm} (2.3.168)

ik d (B (B)e ™™ — ikl (R)a (et ]

X [bs @ut) @ + di (1) (Tje+ 1]

2

S G — ke ) 2

2 27r)32wk —

So we find for the energy-momentum operator

P — / (ﬂ S ko[B8 (s () — s (Rl ()] (2.3.169)

27r)32wk —1

The charge operator is found similarly to be

2

3 — — — —
Q= / (2%% S [BER)ba(F) + da (R ()] (2.3.170)

With an analogous expression for M#*” which we will not bother to calculate here.
We see that the Hamiltonian is given by

H=7"= / = 32wk Zwk [bT ds(l‘é)d;(l‘c’)} . (2.3.171)

First suppose that d and d' obeyed the CCR rather than the CAR, then we can
write H as

= / 21 32wk Zwk [bT dT(E)dS(E)}
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- / (d?’ﬂZ[ds(E),d;(E)] (2.3.172)

27r)32wk 1

where now we have that [d,(k), d}] = (27)32wi6,6(k — k), the CCR. Thus H would
be given by

3 2 . . . .
H= / (2%% ;wk [bl(k)bs(k) —dt(®)d,(B)] - Eo (2.3.173)
with o ) o
Fo = / G ;wk[(27r)32wk5555(k — R, (2.3.174)

the infinite constant harmonic oscillator zero point energy for the four oscillators
corresponding to the b (k) and d(*)(k) degrees of freedom. The point is that if b
and d obey CCR the Hamiltonian is unbounded below; it can become as negative
as you like by adding more and more “d” particles to a state. Hence, there is no
state with lowest energy, if |E > is the lowest energy state di.(k)|E > is wy lower in
energy! Hence, we have no stable ground state. The only consistent interpretation
of the field theory is to demand that b and d obey the CAR. Thus,

H= / (25’#’;% ;wk [bi(l_é)bs(l_é) + df(k)ds (k)| — E,. (2.3.175)

As in the scalar case the infinite constant Ej is eliminated by a more careful defi-
nition of the Lagrangian and the energy-momentum tensor by means of the Wick
normal product. As before, the Wick product of Fermi fields is defined so that the
annihilation operators b and d are to the right of the creation operators b" and d.
Since these are Grassmann algebra valued we include a (41) if the fields are ordered
in an even permutation of the original field order and (—1) if the fields are ordered
in an odd permutation of the original field order. Thus, denoting the Wick product
as N| |or: : we have for instance

N[ (2)T(y)] = TH(@)T (y) + T ()T (y) + T ()T (y) — T (y)T(x).
(2.3.176)
Recall the ordinary product is simply

U)W (y) = U (@) T (y) + 0 ()T (y) + ¥ (2)T (

= N[¥(@)T (@) + {0 @), T ()}

y)+ (2T (y)

(2.3.177)
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In general the Wick product of Fermi fields is defined by its interchange property
N[@(z1) - U(z,)] = (~1)TN[T(2,) - U(z,)] (2.3.178a)
where ¥ is U or ¥ and P is the parity of the permutation of (1,2,---,n) into
(i1, ,in), its linearity
N[(U(z) + a¥' ()T (1) U(wn)] = N[U(2)¥(x1) - U(an)]

+a N[V (2)U(z1) - U(zy,)], (2.3.178b)

and its definition in the standard order

N[O (1) U (@)U (1) -+ U ()]

=40 (z1) - U (@)U (1) - - U (). (2.3.179)

Thus, the correctly defined coincident point composite operators are just de-
fined by normal ordering the ordinary products of fields, for example

L= N[L]
T = N[T"
JH = N[JH
MMP = N[MHP], (2.3.180)

Since these differ from the naive expressions by infinite constants, none of our field
equations, CAR, CCR of charges, and conservation equations change. So now

PH = /d393N[®0“]
. , o o (2.3.181)
_ / (27%% 1k“ [BLR)bs () + dL(R)d, (F)]

sS=

Since b and d obey CAR, Q can become negative instead of being positive definite,
as is reasonable for a charge

Q= / >z N[JO]

3 2 . ., o o
_ / (27373’;%2 [B1(Rhs (R — d} (R ()

sS=

(2.3.182)
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The operators bl(lg) create particles with energy-momentum k* and charge +1,
while the d(k) create particles with energy-momentum k* and charge —1. The

- -

operators bs(k) and ds(k) annihilate these respective particles. But for a further
clarification of the properties of the particles that bi(k) and di(k) create let’s con-
sider the action of our charges, P*, M"” and @Q on b, b', d, and d' by Fourier
transforming ¥ and W. Since

[PH, W (z)] = 0¥ ()
[PH, ()] = —id" ¥ ()
@ ¥ (2)] = —¥(x)
(@ ¥(2)] = +(x)

MM U (2)] = —i[(z" 0" — x¥O*) W (x) — 50“”\1/(33)]

M T(2)] = —i[(a"D” — 20T (x) + %ﬁ(x)auq, (2.3.183)

having used
’yoa“”T’yO = oM, (2.3.184)

we find

[P, b ()] = —k*b, (k)
[P, 0] (k)] = +k"b] ()
[P*,dy ()] = —k"d, (k)
[PH, di(F)) = +k+d] (k)
(@, br ()] = =y (k)
Q. bl (k)] = +b] (k)
(Q, dv(F)] = +d, (k)
Q. di.(k)] = —d} (k)

oy

!
!

—

[M* b, (k)] = / e ul) (k)~° {—i(az“ 9" —z¥ O") — %aw U (z)
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—

[IM* bl (E)] = / P {—i(w“ 9" —z¥ 9T + ﬁ%au"} A0y () (e~ ik

— —

M d, (k)] = / P {—i(w“ o —z¥ U+ T UW] 7008 (k) etk

MPY, d (F)] = / dBze ) (B)° {—i(w“ O —a” ") — %UW} U(z). (2:3.185)
The angular momentum terms require further analysis. Rather than determining
the above in complete generality let’s discuss what operators we desire in order
to label the states. As usual the states of the field theory will be labeled by the
eigenvalues of a complete set of commuting observables. In general there are many
choices for this complete set and we must choose one. We would like our states to
be translationally invariant hence, the operators should commute with P*. Fur-
thermore, the states should have definite mass. Thus, P? and P* are two of the
commuting observables. Actually only P is needed since once P2 and P are given,
PO is determined due to the constraint that P° > 0 and P? > 0. In fact since P?
commutes with P¥*, M*” and @ it will label the irreducible representations of the
algebra. Besides P? there is one other invariant that one can make out of P* and
MM by using the Pauli-Lubanski vector

1
W, = ieuypaM”PP“. (2.3.186)
Note that W, has the properties
PEW, =0
[PH,WY] =0
[MH WA = i[gMIWH — gV, (2.3.187)

Hence W2 = W,W* is a scalar and totally invariant i.e. commutes with P*, M*",
and ). Writing it out we have

1 v v
W2 = M M, P? — My MYPPHEP,. (2.3.188)

Recalling that J; = Gijk;Mj kand K; = MY we can write the Pauli-Lubanski vector
as

—

Wo=-J P
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W=KxP+JIP°. (2.3.189)

Since [W2,PH] = 0 = [W2, M*] = [W2,Q], P? and W?, when acting on each
irreducible representation of the P*, M*” and @ algebra will be proportional to
the identity (Schur’s lemma: P2 and W2 commute with all operators P#, MH",
and @Q and are therefore proportional to the identity). Thus, the eigenvalues of P?
and W?2 will label the different irreducible representation states. Since we desire
translational invariance, P* that is, 73, will label the states within each irreducible
representation. Also @, since it commutes with 73, will be needed to uniquely label
the states. P and Q for each P? and W? eigenvalue will not be a complete set
of commuting observables, there will still be spin up and down degeneracy of the
states. Hence, we need an operator that commutes with (73, Q) that specifies the
spin. Now, [M!2 P! = iP? is directly not an acceptible choice and consequently,
the MH*"operators are out since they are not translationally invariant. But recall
the Pauli-Lubanski vector

[WH,PY] =0 = [W" Q). (2.3.190)
So WH# commutes with P* and @) but
[WH W] = —ie" P W, P,. (2.3.191)

Thus, only one component of W# can be chosen since the different components
do not commute amongst themselves. Let’s choose W3. Our complete set of com-
muting observables will be (P?, W?2, 73, W3, Q) and their eigenvalues will label the
states. (Actually we should include @ with P2 and W?2 as labeling the irreducible
representation since () commutes with all the other operators.) The way we have ex-
panded the fields, in fact, has been in terms of the eigenfunctions of these operators
so that the creation and annihilation operators will commute with these operators
to give eigenvalues. More specifically, we have seen this for all the operators so far,

for instance,

[P, bl (k)] = k“bL(F), (2.3.192)

except W3 and W2. Since W3 is a vector operator and W? is a scalar operator we

can always transform them to the rest frame. Since [P*, bl (k)] = k" ,,bl(k) with

k" ., = (m,0,0,0) in the rest frame we find W* = (0, mJ) in the rest frame. Thus,
J = % is just the spin operator for the particle at rest. While _W2 =7 -Jin

m2
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the rest frame. As we can check explicitly the eigenvalue of J - J = s(14 3) for

spin % single particle states. Since W? is a Lorentz invariant so are its eigenvalues

and _WmZQ = s(s + 1) in all frames. In the rest frame the eigenvalue of % = T3

are just the spin projections on the z axis, that is, i% as we will see for a spin %
particle. In general, for a spin s particle the projection of the spin on the z axis
may take on the values s,s —1,---,—s+ 1, —s. So we see that we need to consider
the commutator of J with the operators b, d, b', and d' at rest in order to find
what states are created and annihilated. Hence, we desire

1 .
Ji= §€ijk/\/ljk. (2.3.193)

Integrating by parts we find

[MIE b, (k)] = —i(k7OF — k*00)b, (k) — % / Pre™u) (k) o7 ()
[MIE B (R)] = —i(k78F — KFaD )bl (k) + % / Pz (z) o7y u) (ke

[MIE (k)] = —i(K0F — K*0l)d, (k) + % / B (z)o7F 400" (ke

) . ) : -1 . . )
[(MIF Al (k)] = —i(k70F — K*a])dl (k) — 5 / Bre T (k)7 ol * (). (2.3.194)
Defining the 4 x 4 spin matrix

. 1 1 .
N = ieijkiaﬂ’f (2.3.195)

we have, at zero momentum where the angular momentum terms
1 .
Li = iéiij(kjallz - k’“@i)

vanish since & = 0 and recalling 7°u("(0) = +u(™(0) and v (0) = —v((0),
that

—

7 5(0)] = — / Bru™' (0)50 (2)
[7,b1(0)] = / Pr¥(z)Su™(0)
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—

[7,d(0)] = — / Pz (z) %0 (0)

o) = — / P (0)50 (2).

We see that due to our choice of spinors u and v we have

1
Y3ul™(0) = (=1) Y 24 (M(0)

2
£50(0) = (-1 2o(0)
and using
S %
we find 1
[T3,br(0)] = =5 (=1) " Vb, (0)
5,61 (0)] = +5(~1)"* V5 (0)
(s, o (0)] = +%(—1)<T+1>dT(0)
5,4} 0)) = 5 (=1 a} 0).

(2.3.196)

(2.3.197)

(2.3.198)

(2.3.199)

We are now in a position to interpret the state content of our spin % field theory.
Summarizing the commutators of the creation and annihilation operators with the

CSCO we have

- -

[P, b ()] = — kb, (k)
[PH, b} (k)] = +k"b] (k)
[P, dy (k)] = —k"d, (k)
[PE, di(K)] = +kd](F)

(k) (
Q. bl (k)] = +b].(k
Q,d,(K)] = +d (k)
Q. dl(k)] = —di(k)



5.5 (0)] = — 5 (- 1) *V5,(0)

s, bH(0)] = +5 (-1 *V5(0)
(T3, d-(0)] = +%(—1)<T+1)d7~(0)
(s, (0)] = — 5 (~1)" Vi (0). (2.3.200)

As in the scalar case, we assume that we are given an eigenstate of PH, |p >,
where PH|p >= pH|p >. We see that

PHIE(E)|p >] = (0" + k) [bE(F)|p >)

PHAL (k) p >] = (0 + k*)[dL (k) |p >] (2.3.201)

while
PIbe(R)p >] = (0" — k") [br () |p >]

PHld, (F)lp >] = (0 = k*)[d, (k) |p >]- (2.3.202)

Repeating the application of annihilation operators on the state leads eventually to
a state for which

— —

Hlby, (k1) dy (kn)|p >] = (0° —wi, — - - - —wi, )[bp, (k1) - - - dov, (kn)|p >] (2.3.203)

goes negative. But H is a non-negative operator, thus, there must be a lowest energy
state, |0 >, such that
b-(k)|0 >=0

d,(F)|0 >=0 (2.3.204)

for all k and r = 1,2. This state is called the ground state, vacuum state or no
particle state and we choose its normalization such that < 0|0 >= 1. Since P* is
defined to be normal ordered we have that the vacuum is the zero energy-momentum
state, P#|0 >= 0. The vacuum state has zero charge, |0 >= 0, and no intrinsic
spin, M*¥|0 >= 0, as well. The single particle states are given by the momentum
value E, the spin i—%, and the charge +1 eigenvalues. Consequently, there are four
states for each value of k. We have

1 .
S (- >= B0 >
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Ik, = (—1)", — >=dl (k)0 > . (2.3.205)

Using the commutators in equation (2.3.200), we have

L L
P|kv 5(_1)T+17 + >= k|kv 5(_1)T+17 + >
1
Hlk, 5 (=1 & >= wilk, 5 (=1)"", & >
1
QIR (1) 5= fE, L (1) £ >
= 1 r+1 1 r+1 1 r+1
j3|07_( 1) ,+>= _( 1) |07_( 1) , + >
2 2 2
=1 r 1 r 1 r
j3|07 5(_1) y T o= 5(_1) |07 5(_1) y T > (23206)

Thus, there are four states with momentum E, two having charge +1 which are
conventionally called the particle state, and two having charge —1 which are con-
ventionally refered to as the antiparticle state. The particle has two spin states, at
rest the spin being i% when projected on the z axis

Correspondingly, the antiparticle has at rest two spin states i% when projected on
the z axis

= >—4_—1|6 PN (2.3.208)
27 T Tl Ty ' e

For every particle state there is a corresponding oppositely charged antiparticle

Js|0, +

state. We see that bI(E) and bl(E) create and annihilate, respectively, particles
with momentum E, energy wyg, charge +1, and in the rest frame spin projected
on the z axis of +%. Similarly, b;(E) creates a particle with momentum E, energy
wk, charge +1, and in the rest frame spin projected on the z axis of —% while
by (k) annihilates such a particle. jFrom above we also see that db(k) creates an
antiparticle with momentum E, energy wg, charge —1, and in the rest frame spin
projected on the z axis of +3 while dy (k) annihilates such an antiparticle. di(lg)

creates an antiparticle with momentum k, energy wg, charge —1, and in the rest
frame spin projected on the z axis of —%, and dl(E) annihilates such an antiparticle.
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The inner products of the one particle states are found by using the anticom-
mutators of the creation and annihilation operators and < 0|0 >=1

LD () ;
<R AR — 4 > <0|{ (k). bl ( )}|o> 2.3.209)
= (2m)% (2w )0, 83 (K — k')
and
- (=) o (D) i
N <O|{ (), dy, (F )}|O> (2.3.210)
= (27)° (2w )6y 0% (k — K)
while - /
<k, %,HE’, (_;) ,— >=0. (2.3.211)
Hence, the resolution of the identity in the one particle subspace is
dSk, 2 . (_1)7"—1—1 . (_1)7"—1—1
1= [ —F— k,—— k, ———
/<2w>3zwk;{" y sk
S (=1)"
+|k, ( ) —><k, = ) - (2.3.212)

2

The multi-particle and multi-antiparticle states are made from multiple application
of the creation operators

= ]. ]_ - -
By 45,4, (ks 5 =) >= b (k1) - db ()0 > (2.3.213)
Recall that since bl and d| anticommute the fermion particle states are antisym-
metric under the interchange of particles. The operators P*, ), and J3 acting on
the states give the sum of the individual particle eigenvalues

.1 1 .1
H|(k17+§7+)7 (kn:+_ - <Zwk ) k17+ +) (kn,+§,_) >
Lo ;o
P|(k17+§7+)7 (knv+_ - Zk k17+ +) ( n:+§,_) >
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—

- 1 - 1 - 1 1
Q|(k17+_7+)7 ) (knv+_v _) >= (N+ - N—)|(k17+_7+)7 ) (knv+_v _) >

2 2 2 2
| -1
j3|(k17+§7+)7"'7(knv+§7_)>
Lo ! 1 NV -1
= §(N+ — Ny +N.L - N_)|(k1,+§,+),---,(kn,+§,—) > (2.3.214)

where Ny = Nl + Ni with Nl and Ni the number of particles with charge +1
and spin -l—% (T) or —% (1), respectively. The number operator for the number of
particles with charge +1 and spin +% is

3 — —
NI :/@gig)zwbi(k)bl(k) (2.3.215)

while for particles with charge +1 and spin —% the number operator is

3 — —
N :/(2:)732%@(@172(1@). (2.3.216)

The number operator for the number of antiparticles with charge —1 and spin +%
is

3 — —
N' :/@gigéwdg(k)dg(k) (2.3.217)

and for antiparticles with charge —1 and spin —% the number operator is

3 - -
Nt :/@gigéwdi(k)dl(k). (2.3.218)

The total number operator being
N =N] + Nt +N 4N (2.3.219)
Finally, we can calculate the covariant anticommutator of the fields

(0@, 9)} = {v @), 7 @} +{v @7 @} (2.3.220)
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Now as usual we Fourier transform the field operators and use the CAR

2

{w(x)j‘(y)} = / (2;?;% (273?2% > {br(l‘é),bl(f)}

s=1

> U(T)(E) —zkmu(s)(l) +ily

/ - 32wkzu<r> a(") (ke *(@—y) (2.3.221)
A3k ik
Y —ik(z—y)
/ @ )P 2wy kT
A3k "
_ _ A —ik(z—y)
(i +m)/ (27r)32wke '
But recall
" _ Ek_ikey) 2.3.229
SO
Fp— L At (o
{\IJ (z), ¥ (y)} = (1fe + m)iA™(z —y) (2.3.223)
EiS+($—y)-
Similarly
N 2
B _ (7 (r) +z‘k(r—y)
{107 W} - [ G5 >
:/ d3k (k ) +ik(z—y) (2'3'224)
(27r)32wk
etik(z—y)
—(ifa +m) / 27 32wk ’
but
iA _ / . 32wk eTik@=y) (2.3.225)
SO
N : A~
{\If (), ¥ (y)}—(ﬁﬁﬁm)ZA (=) (2.3.226)
=iS" (z —y).
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The covariant commutator becomes
{9(2),¥(y)} = i@ + M)(AT (2 — y) + A7 (z — y))
=1(ify + m)A(z — y) (2.3.227)
=1iS(z —y).
The Lorentz covariance of S(z—y) can be checked directly since A(z—y) is invariant.
Also since A(z —y) = 0 for (z — y)? < 0, we find

{¥(z),T(y)} =0 (2.3.228)

for (x —y)? < 0. This is the statement of the microcausality principle for fermions.
Since the observables are bilinear in ¥ and V¥, it guarantees that the observables
commute at space-like separations.

In addition, we see that S(z) obeys the Dirac equation

(i —m)S(z) = — (0% + m?)A(zx) =0 (2.3.229)

with S(Z,0) = i7°6%(Z) as the initial condition. Since we can represent A as a
contour integral

iA(z) = / d'k gike__" (2.3.230)
c (2m)4 k2 — m?2

where the contour in the complex k%-plane is C = Cy + C_ and is given in Figure

2.3.1, o .
C }E\M\L \_\&_

\z
A

Figure 2.3.1
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we find the contour integral for S

4 ) m
iS(z) = /C %e—“‘”‘ % (2.3.231)

Since k2 — m? = (F + m)(} — m) we often symbolically write

1 (F+m)
= (2.3.232)

so that

4 i
iS(z) = /C (;17?1; etk ra— (2.3.233)

Similarly

d*k i
- o+ _ —ikx
1S (x)—/c+ (27r)4e F—m

4 i
iS™(z) = /C_ (;17?1; e_“”k — (2.3.234)

Also we have the trivial covariant anticommutators

{W(z), (y)} =0

{¥(2),¥(y)} =0. (2.3.235)
Besides the covariant anti-commutators, we can evaluate the vacuum expecta-
tion values of fermion fields and the vacuum expectation values of the time ordered
products of the fermion fields. The vacuum expectation value of ¥(x) and W¥(y),
< 0]¥(z)¥(y)|0 >, is simply iSt(z — y)
< 0¥ (z)¥(y)|0 > =< O[T (2)¥ (y)|0 >

—< 0| {\Iﬁ(x),@‘(y)} 0> (2.3.236)

=iST(x —y).
The general field product vacuum expectation value, the Wightman function, is

defined as
W(n’n)(xlv oy Ty Y1, 7yﬁ)

=< 0¥ (z1) - U(zn)V(y1) - ¥(ym)|0 >
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=<0 [T (1), U(z2) - U(zn)¥(y1) -~ U(ym)] . [0 > (2.3.237)

where we use an anticommutator if n +7 — 1 is odd and a commutatorif n+n —1
is even. Using [A, BC| = {A,B}C — B{A,C} and {A,BC} = {A, B}C — B[A,C]
we have

W("’ﬁ)(xl,--- Ty YL, Yn)
- g‘l(—nn*“-l {0 @), 7 ()}
X < 0 (z2) - U (zn)W(y1) - %) U (ym) |0 > . (2.3.238)
Note that
< 0[T(y)¥(2)[0 >=< 0 {T(y), \II_(:I:)} 0 >=iS™(z - y). (2.3.239)

Thus, W™™ reduces to S* times W(»~1.7-1) and continuing the procedure
we find

<O0|¥(z1) - U(xn)P (1) - Y(ym)0 >=0, ifn#n

and
<0 (z1) - U(zn)¥(y1) - ¥ (ym)[0 >
= Y ()T ()P < 0T (@) T(yi)|0 > -
(1,n) B (41,.00)
e < 0| (zn) W (y:, )0 >, if n=m, (2.3.240)
where (—1)IFl is the parity of the transformation of (1,2,---,n) into
(11,12, ,in). That is we have simply

<O|¥(x1)- - U(zn)W(y1) - U(ym)|0 >

b -7 T <01 (2B )0 > (2.3.241)
P a=1

with (—1)% equal to the parity of the fermion field order

P
T1Yir T2Yiz *** Tnlin __ T1° TnY1 Yn. (2.3.242)
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This can be conveniently written in a form reminiscent of the Slater determinant

<O[® (1) U(@n)W(yr) - ¥(ya)l0 >

iST(z1 —y1) iST(x1 —1y2) ... iST(w1— yn)
= Gpn(—1)M if9+(x2 ) ifgﬂ@ T ifgﬂ@ =) (2.3.243)
is+(xn — 1) z';S”r(:Jcn —y2) ... z';S”r(:Jcn — Yn)
where . .
TR (2.3.244)

Besides the Wightman functions we will make use of the time ordered functions,
that is, the vacuum expectation value of the time ordered products of the fermi
fields. Since the fermi fields anticommute we will define the time ordered product
to have a sign depending upon the permutation of the operators

TV (x) = ¥(x)
TV (x) = ¥(x)
TU(2)¥(x) = 0(z° — y")T(2)T(y) — O(y° — 2)T(y)T(z), (2.3.245)

for instance. In order to make the notation concise, let ¥ stand for either ¥ or .
Then we define in general

12

= (-D)P0(), —20)0(a), —20)--- 02 | — a0 YW(wi,)-- U(ws,) (2.3.246)
P

where P permutes (1,2,---,n) into (i1,42, -, 1,) and
P _ [+1, if Piseven
(=17 = { —1 if P is odd. (2.3.247)
For instance,
TY(2)V(y) = —TVU(y)¥(x) (2.3.248)
and in general,
TU(z1) - U(x,) = (=1)PTU(24,) - U(zy,). (2.3.249)
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Now we define the vacuum expectation value of these products as the Green func-
tions, 7-functions, time ordered functions, or (n,7) point functions

G(n,ﬁ) (xlv e X, YL, ,yﬁ) =< 0|T\Ij(x1) ce \:[J(an)ﬁ(yl) . ﬁ(yﬁﬂo >
= (=DP0(f, =) 0] —af )
P

X < 0|\ij($11) T ‘i’(xzn+a)|0 >

(2.3.250)
where here (2:)
~ U (x; ifi <n
U (z;) = {W(yi_n) . (2.3.251)
and
‘ .
z; = {x ifi<n (2.3.252)
Yien if 1 >mn.
W (™) vanishes unless n = @, we find the same for G(*™,
G =0 ifn#£7 (2.3.253)

We evaluate G(™™ by using the results for W (™™ and the properties of the
functions. First, the two point function
<O ()T (y)|0 > = 0(z° —y°) < 0]¥(2)¥(y)|0 >
— 0y — 2°) < 0[¥(y)¥(x)|0 > (2.3.254)
= 0(2° —y°)iST(x —y) — 0(° — 2°)iS™ (z — ).
Since this combination occurs frequently we define it as

< O|TU(2)F ()]0 >= Sp(z — y) (2.3.255)

and call it the fermion Feynman propagator,

Sp(x) = 0(z°)iS™T () — 6(—2°)iS ™ (z)

2.3.256
(29)(iPy + m)iAT (z) — 0(—2°)(iD + m)iA~ (x). ( )

0
0
When we bring the 82 through the 6(2°) and §(—2°) we pick up 6(2°) so

Sp(x) = (ify, + m) [G(xo)iA+(33) — 0(—930)1'A_(33)} + 728 (2°) [A+(a:) + A‘(az)} ,
(2.3.257)
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but

and by equation (2.2.145)

Hence,

Sr(@) = (ids +m) [0(z°)iA™ () — 0(—2")iA™ (2)] .

Recall that the scalar Feynman propagator is given by
Ap(z) = [G(xo)iA+(33) — 0(—330)2'A_(33)}

so that
Sr(x) = (1P + m)Ap(z).

Thus, we finally secure

< 0|T¥(x)¥(y)[0 > = Sp(z —y)

= (10 + m)Ar(z —y).

Recalling the integral representation we had for Ap, equation (2.2.201),

4 .

(2m)* k? —m? + ie

we find

P oy ik +m)
Se(@ )= [ Gy O

Again we symbolically write

i(f+m) i

k2 —m?2+ie f—m

so that o
<0[T¥(x)¥(y)|0 > = Sp(z —y)

= [k e
2y =)
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(2.3.259)

(2.3.260)

(2.3.261)

(2.3.262)

(2.3.263)

(2.3.264)

(2.3.265)

(2.3.266)



Returning to the (n,7n)-point function we can show that the functions factorize
into products of propagators

< 0TV (x)¥(y)[0 >= Sp(x —y)
for instance

< 0|7 (1) W (22) W (y1) ¥ (y2)]0 >=< 0T (21) ¥ (y2)|0 >< O] 7Y (22) ¥ (y1)[0 >

In general we find
T T _ P
< O[T (zy) - V(zn)¥(y1) - Y(yw)|0 >= 0z > (—1)
(1’...’71)5(1'1’...’1'”)
< [ < 0IT®(2a)¥ (g, )[0 > (2.3.268)
a=1

where (—1)F equals the parity of the fermion order due to the permutation P

P
T1Yis T2Yio * Tnlin __ T1° " TnY1* " Yn- (2.3.269)

Again we are able to write this as a determinant

<07 (1) W (xn)P(y1) - W(ym)|0 >

iSp(x1 —y1) iSp(r1 —y2) ... iSp(r1—yn)
= S (—1)M ing(xQ ) ing(xQ ) ing(xQ ~ ) (2.3.270)
ZSF(QZn — Y1) ZSF(QZn —Y2) ... ZSF(QZn — Yn)
where 2 if n = even
M = { Ay o (2.3.271)

As before, the time ordered function of free fields is just the sum over all possible
chronological pairings of the coordinates of the product of the associated two point
functions. Since < 0|7V (z1)¥(22)]0 >=< 0|T¥(y1)¥(y2)[0 >= 0 chronological
pairings occur only between {x;} and {y;}. As in the scalar case we can represent
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this process by writing lines joining the chronologically paired fields for a particular
term in the sum. These are then said to be contracted. For example, one possible
term in the sum over all possible products of contractions is given by

< O|TW (1) (z2) ¥ (y1)¥(y2)|0 >

= — < 0T (z1)T(y1)]|0 >< 0|TT(z2) T (y2)|0 > . (2.3.272)

The minus sign comes from the odd interchange of y; and .
The proof of Wick’s Theorem for fermion field time ordered functions follows
from the lemma

<O|TU(2)¥(z1) - U(za)T(y1) - T(ym)|0 >

'M:I

(~1)"7 < 0T (2) T (y;)]0 >
1

J
x < O|TU(z1) - U(zn)T (1) - E)@ T ()0 > (2.3.273)

The proof of this follows the same lines as that for the scalar fields. In fact we can
convert our fermion fields into “boson-like” fields by multiplying each field by its
own Grassmann c-number

Vo(71) — Ma(1)¥a(z1) = O(21)

Ta(y1) — Pa(y1)na(1) = @' (y1). (2.3.274)

Then the Wightman and Green functions of the ® and ®! fields have the same
properties as the scalar fields of our previous proof on pages 140-142, that is, with
® either & or ®F we have analogous to equations (2.2.207) and (2.2.208) for the
particular time ordering z9 > 29 > --- > x? >0 > x? 41> > Tm

< 0|T®(z)®(z1) - D(zm)|0 >

=< 0[®(z1) - B(2;)@(2)®(j41) -+ B(2m)|0 >

D DICEAR S| T BRI VARSE AR I

k=1
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£ Y [0 (@), 8] <0|&><x1)...q>@...%)...@(azm)m> (2.3.275)

k=j+1

where now we have, for instance,

< 0|2 (2)®" (y)|0 > =< 0|[@* (), @ (y)]|0 >
=< 08 (2)2" (y)0 > — < 0|81 ()&" ()0 >
= 7a (@) (y) < 0|7 (2)T, ()]0 >

Ta () (y) < O[T, (y) T3 (x)|0 >

(@) (y) { U3 (2), Ty ()}

7 (€)1 (y) < 0]¥a(z) s (y)

~—

(2.3.276)

0> .
So we have converted the commutator to an anticommutator

< 012(2)®" ()]0 > = 7o (z)m(y) < O{T] (2), T, (y)}|0 >

To(2)m (2.3.277)
=1in(x)S™ (xz — y)n(y).

Furthermore since the remaining fields are still in chronological order they are time
ordered functions. As well since 2% > z{ for k > j, the anti-commutator is equal to
the Feynman propagator

[é+(x), é(xk)} =< 0|T®(2)® (z1)|0 >, (2.3.278)

for z° > z2. Similarly since 2° < 2 for k < j, the commutator is again just the
Feynman propagator for that ordering

[é(xk), é‘(z)} =< 0|T®(z)®(z1)[0 >, (2.3.279)

for 2% < z9. Thus we obtain, as in equations (2.2.211) and (2.2.212), for any chrono-
logical ordering the free field identity

< 0|T®(z)®(x1)D(x2) - - B(zm)|0 >
= i < 0|T®(2)®(z;)|0 >< 0|T® (1) - - - q}(@ D)0 > (2.3.280)
j=1
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For the above example
< O|T®(z)®" (21)|0 >= 7u(x)mp (k) < 0T 4 ()W (21)]0 >

= a ()0 (k)SFab(z — k). (2.3.281)

Next we pull out the Grassmann c-numbers from equation (2.3.280) in the same
order from each term to obtain the identity for Fermi fields

< 0|T®(z)®(z1) - D(zm)|0 >

T f(a)A(21) - i(Tm) < O[T (2)W(zy) - U(zm,)[0> . (2.3.282)

<OITE(@)® ()]0 >< 0[Té(z1) - BE) - - B(am)[0 >
= ()P (-) I ) @) RG i(an) - i(em)
x < 0|T¥(z)¥(z;)|0 >< O|T¥(z)--- @){) ()]0 >
= (-1 (=) )j"lﬁ(w)ﬁ(fvl)---ﬁ(wm)
x < 0|TT(2)¥(z;)|0 >< 0|T¥(z;) qf}{ U (2)]0 > . (2.3.283)

Hence, we obtain our desired result

< 0|7 (z)¥ (1) - U(zm)|0 >

m
= Z(— 17t < 0|T\I!(x)\I!(x])|0 >< 0|T\Il x1) \I%{ :ﬂm)IO > . (2.3.284)
j=1
Applying this lemma to the right hand side repeatedly we finally obtain Wick’s
Theorem for the Green functions, equation (2.3.268).

As in the scalar case, these product formulae for W (™™ and G(»™) are special
cases of the general reduction of ordinary and time ordered products of free Fermi
fields in terms of Wick or Normal products of the free Fermi fields. The reduction
identity again being known as Wick’s Theorem. Since the proof of Wick’s The-
orem given in section 2.2 relied only on the linearity of the normal products and
the decomposition of the free fields into a sum of positive and negative frequency
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annihilation and creation operators we can apply the results immediately to our
“bosonized” fields

() = 7a(x)Va(x)
T (2) = Vo (z)na (). (2.3.285)

Factoring the c-number Grassmann variables 1 and 7 from the products we obtain
Wick’s Theorem for free Fermi fields.
Wick’s Theorem:

) W) W(wn)P(yn) - U(ya) = N [W(z1) - W(2n)P(y1) - (ya)]

Yo o)
W ()T (y)

Y )P <o) () <yj>|o>N{

1 pairing

+ Y (PRI < 0)W (2, )W (y;, )]0 >< O] (i) ¥ (ys,)[0 >
2 p‘aim"ngs
11 <12

o)) ]
\I/(QZ“)\I/(QZZZ) (yh)\lj(yjz)

D

3 pairings

|

+ ) (1P < 0]W(z1) T (y,)|0 > -+ < O (z0)T(ys,)|0 > (2.3.286)

v

2) TU(z1)- - U(zn)U(y1) - U(ya) = N [T(21) - U(2n)T(y1) - (ya)]

wm)---wyﬁ)]
W)V (y)

+ ) (1)PED < 0T ()T (y;)|0 > N {

1 contraction

) (PP <O (4, ) U (y;, )]0 >< O[TV (i) ¥ (y,) |0 >

2 contractions
11 <12

W(a1) - U(ya) ]
TE T LT T

DY

3 contractions

|
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+ ) (1P < 07U (1) (y;, )]0 > -+ < 0|7 () ¥(ys, )]0 > . (2.3.287)
P

Wick’s Theorem also applies to the chronological product of normal products as

discussed following equation (2.2.217).

Finally, let’s check the Green function property of the fermion time ordered

functions. Since

Sr(x) = (ife +m)Ar(z)

and
(02 + m?)Ar(z) = —i6*(z)
we find
(i — m)Sp(z —y) = i6*(z — y).
That is

(i@, —m) < 0|T¥(2)¥(y)|0 >= id*(x — y).
As usual this follows directly from the ETAR, using
TU(x)¥(y) = 0(2" —y°)U(2)T(y) — O(y° —2°)T(y)¥ ()

we have

T ()W (y) = (2 — 3°) ¥ ()W (y)
—0(y" — 2°)U(y)¥(z) + 6(a” — y°){ ¥ (x), U(y)}.
But from the ETAR
6(x” — y"){ U (x), ¥(y)} = 76" (z — y).

Thus,
DTV ()W (y) = T (2)¥(y) +~°6*(z — y)

and

(i — m)T(2)T(y) = T(if)y — m)W(2)T(y) + id*(z — y).

Since (i@, — m)¥(x) = 0 by the Dirac equation we have
(i — m)T(2)U(y) = +i6"(z — ).
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(2.3.289)

(2.3.290)

(2.3.291)

(2.3.292)

(2.3.293)

(2.3.294)

(2.3.295)

(2.3.296)

(2.3.297)



Taking the vacuum expectation value and using < 0|0 >= 1 we obtain

(iPy —m) < O|TU(z)T(y)|0 >= +id*(z — ). (2.3.298)
Applying (i@, + m) on the right we also have

<O|TU(2)T(W)[0 > (i Py +m) = —i6%(x — ). (2.3.299)

Finally, applying the Dirac and adjoint Dirac equations to the lemma for Wick’s
Theorem for Green functions, equation (2.3.268), we have

(ife — m) < O|TV(2)¥(z1) - ¥(zn)¥(y1) - ¥(yz)|0 >

(—1)™HLigh(z — y;) < O|T(z1) - B,) - Tw)0>  (2.3.300)

M:l

J=1

and

<OIT(y)(z1) - U(zn)¥(y1)- - Y(ym)|0 > (i @y +m)
— zn: (=1)77Yis* (y; — x) < 0|7 (xy) )@ yw)|0 > . (2.3.301)

We are now ready to consider massless particles with spin 1, or more specifically,
the photon.
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