§2.2 THE SPIN ZERO SCALAR FIELD

We now turn to applying our quantization procedure to various free fields. As
we will see all goes smoothly for spin zero fields but we will require some change
in the CCR when we apply the rules to spin 1/2 fields; we will need CAR. Further
modification will be required when we try to quantize spin 1 fields in a manifestly
Lorentz covariant manner due to gauge invariance.

First let’s consider the case of a free scalar, spin zero, mass m, Hermitian field.
As we have seen earlier it is described by the Lagrangian

1 1
L= 50,90"® — 5m2c1>2 (2.2.1)

with the Euler-Lagrange equation (0% + m?2)®(x) = 0. The canonical quantization
rules state

oL . oL
II=—=90 I* = —— = oM. 2.2.2
9% and 90,3 0 ( )

So that the Hamiltonian density becomes
H=1d-L=0d-L
1., 15 - 1 5.5
H = §(I> + §V(I> -V + 5™ 0N (2.2.3)
The equal time commutation relations are

(&, 1), 2(7.)] = |(2,), 8(7,1)] = —id*(@ ~ )

(7, 1), 8(7,1)] = 0 = [@(f, t), (7, t)} (2.2.4)

The Euler-Lagrange equations are then equivalent to the Heisenberg equations of
motion

[H, ®(x)] = —id(x)
[H,cb(x)} = —id(a). (2.2.5)

We can construct the energy-momentum tensor and angular momentum tensor as

defined earlier according to our classical Noether’s theorem

|71 Z— v 27
T _(acbaauq))c gL
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T = % (9B + 0" BOMD) — g L, (2.2.6)

where we have written T*” in symmetric form. We can check explicitly that TH" is
conserved by using the Euler-Lagrange equations of @

1 1
0,T" = 562(I>6”(I> + 58“@@6”@

+ %6“6”@@@ - %6”@62@ —90"L
(2.2.7)

2 2 1 .
- —%@6”@ - %6”@@ + 50" (0,00"®) = 0L

= 0" (%@@6*‘@ - %m%?) —9"L=0

Even though T*” = T"* there are still Belinfante improvement terms that one can
add

GPHY = b (gMvor — gPY o) ®2. (2.2.8)
So
GPrHY = —GHPY (2.2.9)
and
0,G"" =1 (g“”62 — 6“6”) P2 (2.2.10)
Now the improved energy momentum tensor is given by
e =T +9,GrPH. (2.2.11)

Usually b is chosen so that ©7, = m2®?2 but this is useful only when one considers
conformal symmetries in addition to Poincare’ symmetries. The additional current
for scale transformations is defined by

DH =z, 0%
9,D" = 07,. (2.2.12)
Now
07, =T + 360 ®?

= DD — 20, PO P + 2m2D? + 309% D2

= 2m2®2% — 9, (PO ®) + PO*P 2p2
r? O (207 @) + ©O*® + 3b0 1 (2.2.13)
= —5070% + 30707 + m?®? + & (9% + m?) @ — 50,\[0"P, D]

1
= (3b — 5)62c1>2 + m?o?
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Hence we choose

1
b=
6

So we have .
ey =T + 6 (g“”82 — 6“6”) o>

0,07 =0
o) = o)
07}, = m?®?.
The energy momentum operator is given by either TH#” or ©* as

PH = / 2T

= /d3a: E (@6”@ + 6”@@)) —go“ﬁ}

PH = /d% {H, % (o' ® +aiq>n)] :

Now using the ETCR equations (2.2.4) we find

777,000 1)] = | ($(5.00"9(7.0) + 0 8(7.08(7.))

1. .
(0" 2.1

= —id(x)3(Z—7), v=0
= —i0'®(2)8 (% — 7)), v=1,2,3.

2

that is
6(z — %) [T (y), ®(z)] = —id" ®(x)5" (x — y).

So
[P, ®(x)] = —i0" P (z)

as desired. Further the angular momentum tensor is
MHYP = gV THP — xPTHY
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(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)



8, M"P =0 (2.2.19)

since
T =T"YH,

The angular momentum operator is then

MY = /d393M0“”
. (2.2.19')
= /d3a: (as“TO” — x”TO“)

So we have using (2.2.17)
[MH ()] = —i (z#0” — x¥O") P(x). (2.2.20)

Given these quantum field theoretic properties for the field operators we would
like to further interpret the physical system being described by them. To do this
let’s go over to momentum space and expand the field operator

4 ~
(z) = / (;iﬁ]; e kT P(E). (2.2.21)

®(z) obeys the Klein-Gordon equation (9% + m?)®(z) = 0 thus we should be ex-
panding ®(x) in terms of solutions to the K.G. equation

4
(0> —m*)®(z) =0 = / (;Zﬁl; e ke (k2 4+ m?)d(k) (2.2.22)
this implies
d(k) = (2m)8(k* — m?)a(k, k°) (2.2.23)

with a(k, k%) an operator coefficient, and hence

4 = .
O(x) = / (;17:;3 §(k* —m?)a(k, k)™, (2.2.24)
As before we use
5(k2 — m?) = 217;: OR)S(R® — wi) + B(—KO)5 (K + wp)] (2.2.25)



with
wp = +\/ k2 +m? (2.2.26)

so that

Ak - e N
q)(x) - / (27)32ws [a(k’ +wk)e_u%x0+lk.x + a(k, —wk)e—i_w’“‘ro'i_lk'x
(27r)32wk (2 ) 27)

Y

d3]€ - —ikx 7 ikx
:/m [a(k,+tdk)€ k +a(—k,—wk)e+k}

where the second equality was obtained by letting k — —Fk in the second integral.

But the field is Hermitian, ®(x) = ®'(z), implying aT(E, +wi) = a(—E, —wg), thus
defining the operators

-

a(k) = a(k, +w)
a'(k) = ol (k, +wi) = a(—Fk, —wy) (2.2.28)

we have the hermitian form for the Fourier transform

3 o o
O(x) = / (2:)73];% [a(k)e_”” + al (k)etr® (2.2.29)

where it is understood that k2 = m? here, that is k* = wy. We have expanded ®(z)

in terms of the positive frequency uz(z) = e~ and negative frequency solutions
i

vp(z) = up(e) = e’** of the Klein-Gordon equation

(8% +m*)ug(z) =0

(8% + m*)vz(z) = 0. (2.2.30)

These have the orthogonality property

—~
£
=
£
)
~—
I
~

/d3xu2(x) 5(; ui{x)

— /d3.’L’(LUI +wk)e—i(wl—wk)xoei(f—g)-f (2231)
= (27r)32wk
where _
f au g = f(aug) - (6uf)9 (2-2-32)
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and the completeness relation

d®k . d3k Cik(a—y) _ A+
73 E E = 73 = - L.
) 2wku (x)uz(y) o) kae i AT (z—y) (2.2.33)

which will be discussed in further detail later. Thus

O(z) = 0T (z) + () (2.2.34)

where B o
O (z) E/ma(k)e_lkx (2.2.35)

3 — .
O~ () E/@;gi;;%cﬁ(k)e“” (2.2.36)

are the positive and negative frequency components respectively. Inverting the

Fourier transform we find

a(F) = i / Pt oy () (2.2.37)
at (k) :i/d3x(1>(a:) B ek (2.2.38)
So writing out the time derivatives, we have
a(k) =i / BB et [cb(x) —iwkcp(x)} (2.2.39)
af (k) =i / d>pe~ ke [—iwkq)(x) - @(az)} . (2.2.40)

Note, since k2 = m? the above integrals are indeed independent of time

c'z(E) = i/al?’ase“““‘7C _iwk(iD + wid 4+ O — iwk(ﬁ}

=i | dBze™ _EQ(ID +m2d + (ID}

(2.2.41)

7

d3ze (82 + m2) d =0

/ K
i/al?’ase“““‘7C = 204+ D+ mzq)}
/ ikx
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We can evaluate the commutators for a(k) and af (k) by using the equal time com-
mutation relations equation (2.2.4) for ®(x) and ®(z). We secure

[a(E),aT(f )} — (2m)32w0%(k — 1)

[a(z‘é),a(f )} —0= [aT(E),aT(f )} . (2.2.42)

We obtain the “harmonic oscillator” creation operator af (E) and annihilation oper-

—

ator a(k) commutation relations.
We can also apply the energy-momentum commutation relation

[P*, @(x)] = —i0"®(x) (2.2.43)

to a(k)and af (k) to find
[Pu,a(E)} = —Ja(k)

[Pu,aT(E)} = +ktal (F). (2.2.44)

Thus, if |p > is an eigenstate of energy and momentum

’P“|p >= p“|p >, (2245)
then . . .
Prafllp> = [P, Ip > +aByP iy > 2210
= (k" + p")a(F)|p >
Hence
P [aB)lp ] = (0 = k) [a(E)lp >] (2.2.47)
and similarly
P [at (B)lp >] = @ + k) [al (B)lp >] . (2.2.48)

thus a(k)|p > is an eigenstate of P* with energy-momentum (p — k)* and a' (k)|p >
is an eigenstate of P* with energy-momentum (p + k)*. Now we could keep acting
on |p > with annihilation operators, then

N 12
Pha(ky) - alkn)|p >= <p = k) a(ky) - a(kn)lp > . (2.2.49)

1=1
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Eventually P° = H will go negative!! However,
]_ . — —
H= /d3x§ [@2 L Ud-Ud 4 m%ﬂ (2.2.50)

is a positive operator. This implies that there is a lowest energy state so that, for

some number N, we must have

-

cué)%mkg--mean:{ — 0. (2.2.51)

Denoting this lowest energy state, called the ground state or vacuum, by |0 > and
its energy by Ey and noting that its momentum is 0, we have for equation (2.2.51)

a(k)|0 >=0 (2.2.52)

for all k. af (E) |0 > then has the energy and momentum of a single particle relative
to that of |0 >,

ffpwam>}=u%+ww[JQMO{
ﬁPWBw>}:E@W%m>} (2.2.53)

with w? = k2 + m?2, the relativistic relation. Thus we interpret the state |E >=

[aT(E)|0 >} as a single particle state with momentum & and mass m, hence energy
wg. Continuing,

k1, ko >=al (k1)a® (k2)|0 > (2.2.54)
has energy
H|]€1,]€2 >= (EO + wg, +wk2)|k1,k2 > (2.2.55)
and momentum
ﬁ|]€1, ko >= (kl + k2)|]€1, ko > (2.2.56)

and represents states with two noninteracting particles each with momentum k; and
energy wy,. Continuing further, the N-particle states are given by

E1, -k >=al (k1) - af (En)[0 > (2.2.57)
with
N
Hlky, - by >= <E0 + Zwk> ki, by > (2.2.58)
1=1



Plky, - ky >= <Zk> k1, k> (2.2.59)

Thus, we can define the number density operator as

o : -
N (k) @2 a'(k)a(k) (2.2.60)
with

[/\/(/%’), a(/‘é’)} — 8 — Ka(k) (2.2.61)
N (), al (k)] = +8(k — K)al (F) (2.2.62)

So operating on the N-particle state gives

N &)k, ky >=

[53(E—EI)+---+53(E—EN) Fi, ok >, (2.2.63)

N (E) equals the number of particles per unit volume in momentum space with
momentum k. Therefore,

N (k)d>k (2.2.64)

is equal to the number of particles with momentum differentially close to k. Hence,
the total number operator is given by

= 3 = [ —— 4f 2.2.
/ dPEN(F) / e (K)a(k) (2.2.65)
and

Noolk1,--+ kn >= Nlk1,-, kn > . (2.2.66)

So aT(E) increases the number of particles by creating a particle with momentum
k and energy wy while a(E) decreases the number of particles by annihilating a
particle with momentum k and energy wy.

For further insight into the vacuum energy Fy let’s Fourier transform our ex-
pression for the energy momentum operator P*

1., 1-_ - 1
P'=H = /d% {5@2 + 5V v+ 5m2c1>2
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- 1r. = o .
P = —/d3az§ [@vcp + 7P| . (2.2.67)

First the momentum operator

N 3 d?’k d3l 1 . 7\ —ikx . TN ik
P=-)de (27)32wy, (2m)32w; 2 [—iwka(k)e +iwpa (B)e ]

X [ifa(f)e_ilx - ifaT(f)eilI} + interchange
d3k d3l 5 1 B NP
_ S —i(k+1)
/(27r)32wk )20, /d 932[ wrla(k)a(l )e x
+ wila(k)at (e * =) 4 wplal (B)a(l et )®
— wkfaT(E)aT(f)ei(k+l )x] + interchange

(2.2.68)

$e a1 L
:/ (2m)32uy (2@3%@{@”)353(“1)6 2062 (4 o B)a(F)a(—F)

+ (2m)383 (K +1)e2v” (wpk)al (K)al (= F)

+ (27r)353(E — f) [wkEa(E)aT(+E) + wkEaT(E)a(E)}] + interchange

Thus we find
+ / (dgikk 1K |2 (a(R)a(—=F) + a(~R)a(R)) - (2:2.69)

The integrand of the second integral on the right hand side is odd in k and hence
vanishes, yielding

— 3 - - - - -
B_ / (L%k [ (B)a(k) + a(k)a! (K)] (2.2.70)

!

Similarly, in this integral we can rearrange a(k)a! (k) since the commutator is even
ik d3k d3k
]_ — — ]_ — — —
- _ fk) =2 | ———ka'(k)a(k
2/(27r)32wkka( Jal (k) 2/(27r)32wkka( Ja(k)

+% / (23;3’;%/’5 [a(E),aT(E)}
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I O B S Yo B B SR T
=5 | G Rl Bl + [ e s E - B

1 Bk - -
=~ | ———ka'(k)a(k). 2.2.71
5 | Gt (Bra(E) (2271)
Consequently, we find the usual expression for the number operator of particles with
momentum k times the momentum &

S 3k Tl
P = / iz, b (Bl (2.2.72)

27r)32wk

Thus we find P|0 >= 0 since a(E)|0 >= 0, as previously stated.
Next consider the Hamiltonian, after an integration by parts with vanishing

surface term,

H= /d3 { P2 — (V2P —m @)} (2.2.73)
but & — 2P + m2® = 0, so
H= /d3 { ——q>c’1'>]. (2.2.74)

Expanding the fields, we have

1 d3k d3l N
H == 3 . —i(k+l )z
2 /d 93/ (27)3 2wy, (27)3 2wy, [-wrwalk)a(l)e

+ wpwga(B)al (D)e ™ F =7 4 ewal (B)al)e!* 1% — wpwal (K)al (D)el*F+1 )
= (atRye™™ +al (B)e* ) (~wtall e — wfal ()e™)]

3 3 o . 0o - >
- %/ (27ra;3];wk (27ra)l3l2wl( 7)? {53(k +1)(—wp) (e_zzw” a(k)a(—k)

+ei2W°aT(E)aT(—E))

(2.2.75)



That is we finally find
H—/ﬂw ot (F)a(R) +/d3k1w 53(0) (2.2.76)
~ ) @m)32w, " g kA -
Thus when acting on the lowest energy state |0 > defined by a(E)|0 >= 0, we have
1
Hm>z:(/d%5wmﬁ00|o>:£mo>, (2.2.77)

hence 1
Ey = /d3k§wk53(0) = 00 = constant. (2.2.78)

One way to look at this is that the vacuum contains an infinite zero point energy
from the infinite number of harmonic oscillators in the Hamiltonian and that all
measurements are made relative to this vacuum state i.e. only differences in energy
are measured so that the infinite constant does not matter. Alternatively, the
Hamiltonian is defined only up to a constant, the zero of energy being arbitrary.
Thus, we can define another Hamiltonian as H = H — E, , the lowest energy state,
defined by a(E)|0 >= 0, having zero energy f[|0 >=0.

Physically it is reasonable to define the no particle state, the vacuum, |0 > |
which is the lowest energy state as having zero as its energy and momentum

a(k)|0 >=0 (2.2.79)
and

H|0 >=0 (2.2.80)

Pl0>=0 (2.2.81)

so that the vacuum is space-time translation invariant U(a,1)|0 >= |0 >. Math-
ematically what we are finding is that the formal manipulations of writing a La-
grangian and a Hamiltonian for quantum fields in analogy to classical fields or even
quantum mechanical systems with a finite number of degrees of freedom must be
modified. The problem arises from the products of field operators at the same
space-time point as in the Lagrangian or the Hamiltonian (this follows from the

equal time commutation relations
[q)(fv t)v @(y_: t)] = _i53(f_ g) ~ 0
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for ¥ — ¢). For noninteracting fields we can easily eliminate these difficulties by

defining the products of the fields more carefully. In the interacting case it is more
difficult but possible and comprises the subject of renormalization theory.

A well defined product of free fields is given by the normal ordering or Wick
ordering of the fields. For example, the normal product denoted N[®?(x)] or :
®2(x) : (or N[®(2)®(y)] for that matter) is defined so that all annihilation operators
in the product are to the right of all the creation operators, hence,

N[®*(z)] = oH(2)@T (z) + @ (2)® (2) + 20~ (2)@ " (z) (2.2.81)
so that the vacuum expectation value of a normal product vanishes
< 0|N[®*(2)]|0 >= 0. (2.2.82)
On the other hand
P (z) = dF(2)0T (2) + D ()P (z) + & (2)® T () + T (2)d ™ (2). (2.2.83)
Thus, we can relate the two products
N[®?(x)] = ®*(x) + [® (z), ®T (x)]. (2.2.84)
In terms of the Fourier transform creation and annihilation operators we have
Nla(k)a! (k)] = o’ (F)a(k) = N[a! (k)a(k)]. (2.2.85)

So for the product at zero momentum we have

/d3a:N[(I>2(a:)] = /d3a: (@*(z) + [@ (), T (2)]) . (2.2.86)

But

3 3 . -
[ st @0t @) = [ [ S et BT

271’)32(4}[

3 3 . . B B
_ / (2:)32% (27331% 2m)28%(k — D[’ (k), a(i)]

3
_ / 7(2:)3’;% (27)35%(0)

(2.2.87)
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which is just the type of singularity we are finding in the Hamiltonian and this
normal ordering can be used to eliminate the singularity in H! Thus, the well defined
product of field operators making up the Hamiltonian is

H = N[H]. (2.2.88)

Similarly, the Lagrangian should be defined with normal ordering

~

£ = N[L] (2.2.89)
as well as all other composite operators
T = N[T"| (2.2.90)

MHP = N[M*P], (2.2.91)

The field equations in the free field case stay the same since this normal ordering
of H just corresponds, as we have seen, to the addition of an infinite constant to
the naive Hamiltonian. So

(07 +m?) ®(x) =0 (2.2.92)

still holds. Fourier transforming we now obtain directly that

A~ 3 — —
Hz/agig)l;%wkﬁ(k)a(k) (2.2.93)
5, 3 o o o
P=P= / @gigéwkkd(k)a(k) (2.2.94)

and H |0 >= 0 and ]3|0 >= 0. All conservation equations stay intact and P# =
N[P#] still generates the space-time translations.

Following our quantization rules for free fields we must Wick or normal order
all products of field operators to make them well defined in the limit of coincident
points. (Of course we could have started in momentum space as in the introduction
then this would have been the natural order to appear!) The general definition
of N[®(z1)--- ®(zn)] is to rearrange all creation operators to the left and all an-
nihilation operators to the right (the order among creation operators is irrelevant
since they commute and similarly for the annihilation operators). To summarize
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the free scalar field case then, we define the dynamics through the normal product
of a formal Lagrangian
L=L(D,0,P,), (2.2.95)

with the normal ordered Lagrangian given by

A

£ = N[L]. (2.2.96)

The Euler-Lagrange equations are the same in the free field case

oL oL oL oL
-0 = -0 =0 2.2.97
0P, 00,9, 09, "90,9, ( )
and so is the momentum
oL
I, = —. (2.2.98)
0P,
The canonical commutation relations are
[IL.(Z,1), ®s(7,1)] = —i6,50° (T — %)
[ (2, 2), s (5,1)] = 0 = [®,(Z, 1), s (¥, 1)]. (2.2.99)
The Hamiltonian density becomes the normal product of the classical formal Hamil-
tonian
H = N[H] = N[I,®,] — L
H=1&, — L (2.2.100)
and
H= /d39:N[H]. (2.2.101)

The quantum action principle and quantum Noether’s theorem have the same
form except N-products appear on all operator products (note that operator order-
ing does not matter in a normal product since the N operator normal orders all
products)

T = N[T"|

oL
00, ®

™ = D — g L. (2.2.102)
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One can prove that 0, TH = 0 since T and T+ differ by a constant (the only
change is —FEy from H) and since the operators are normal ordered T = TVH,
Further the energy-momentum operator is given by

PH = / A3z (2.2.103)
with
[PH,®(z)] = —id"D(x). (2.2.104)
Similarly, the angular momentum tensor is defined by
MWP = gV THP — P TH (2.2.105)
with
9, MMP =0 (2.2.106)

and the angular momentum operator is
MW = / A3 MO (2.2.107)

with
MW ®(2)] = —i(zH0” — 27 0")D(x). (2.2.108)

The particle states of the system are given by the vacuum state |0 > defined as the
no particle state a(k)|0 >= 0 with H|0 >= 0 = P|0 > . The N-particle state is
given by |E1, e kn >= aT(E1) e aT(EN)|0 > . The inner product is given in terms
of the one particle subspace and < 0|0 >= 1 so that

< k|K >= (21)%2wp0° (k — ). (2.2.109)

Finally, we can see that the spin of the particle is zero by considering the action
of the angular momentum operator (the generator of rotations in coordinate space)
on the one particle state |E >. Recall from the review of relativity and quantum
mechanics that

M, ()| = —i(a0” — 27 ) (2)
= —M" (). (2.2.110)
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The angular momentum operator is given by
—_— 1 ~
Ji = ieijk/\/ljk (2.2.111)

and is represented on the fields as space-time differential operators

J' = ieijijk = Z(f X V)Z (2.2.112)

The operators obey the angular momentum algebra
(T3, Tj] = i€iji Tk (2.2.113)

and J generates spatial rotations on the states and field as represented by the

unitary operator
Uy (6) = e 7 (2.2.114)

Fourier transforming the field we find

d3k

N, B(2)] = —i(a* 0 —xjai)/m

= [ et g~ ko7 (R
= (2@32%(—@)[6 (K70 — k'O )a(k)
+e** (K19 — k'09)al (k). (2.2.115)

k

So for the creation operator this yields

MY at ()] = +i(k*d] — K78} )al (k). (2.2.116)

Hence, for rotations
[T, al (k)] = ieik? OLat (k) (2.2.117)

or in vector notation
[T, at (B)] = —ik x ypal (K). (2.2.118)

For a particle at rest, i.e. in the particle’s rest frame, k=0. So

[T, al(0)] =0 (2.2.119)



and since 7|0 >= 0
Tk =0>=0. (2.2.120)

The angular momentum as measured in the rest frame is zero and hence the spin
is zero, therefore, in general the totat angular momentum

TNk >= —ik x x|k > (2.2.121)

is just the orbital angular momentum L=Frx p, the spin is equal to zero. Thus,
the free hermitian, scalar field ®(z) describes a system of non-interacting, mass m,
spinless particles.

Let’s return to the equal time quantization conditions and show that our quan-
tization procedure, although it singles out time, is Lorentz invariant due to the
scalar nature of the field and the invariance of the field equations. (Although we
have chosen an equal time surface on which to specify these initial conditions, the
quantization conditions can be specified in terms of general space-like surfaces and
hence be made to appear explicitly covariant.) The fact that the field is a scalar

under restricted Poincare’ transformations implies
[PH,®(x)] = —i0* P(z)
M ()] = —i(ax" 0" — ¥ 0")P(x). (2.2.122)

Thus, finite transformations are given by the action of the unitary operator

Ula, A) = e'Pra” =z (MM (2.2.123)
and according to (2.2.122) implies

e_Ti“’WMW(I)(x)e%“’WMW = ®(Ax)
ePua" o (y)e e = B(y + a) (2.2.124)

that is
Ul(a, \)®(Az + a)U(a, A) = ®(x). (2.2.125)

As we have seen the field equation leads to the momentum decomposition

3 o . - .
P(z) = / (2:)73];% [a(k)e‘”’” + al (k)eTike
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=&t (2) + @ ()

which can be used to calculate the all-time commutator of ®(z) and ®(y)

[@(2), 2(y)] = [2F (), 2" ()] + [ (2), 27 (y)]
since [a(k),a(l)] = 0 or [®F(z), ®T(y)] = 0 = [®~(z), D~ (y)]. Now

d3k d3l

—tkx _+ily 7 (7
(271-)32(4}]{; (27r)32wle € [a(k)7a (l )]7

@ (@) 0 ()] = |
but the creation and annihilation operator commutation relation
la(k), a’ (k)] = (27)* 204 8° (k — 1)

may be used to obtain

33:, )
[©(z), B (y)] = / : P2 mika—) = it (@ — ),

2 )32wk
This function appears often and so we have given it a special symbol

d3k ,
N _ —ik(x—
TYAN (x—y):/me ( y).

Using §(k? — m?) = 52 [5(k° — wy) + 0(k° + wy)] we have

4
iANT(x—y) = / %2%5(162 — m2)9(k%)e~*=—v)

(2.2.126)

(2.2.127)

(2.2.128)

(2.2.129)

(2.2.130)

(2.2.131)

(2.2.132)

Note that under restricted Poincare’ transformations this is invariant since k° does

not change sign under such transformations and all other terms are manifestly

invariant. We also need

3
(@) 87 ()] = ~is (- a) =~ [ _ Tk tika-y)

(27r)32wk

4
= - / (;’;4 (2m)8 (k> — m?*)0(—k0)eFr—v)

= +iA" (x —y).
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As seen from above the function A~ is given by
A (x—y)=-AT(y —2) (2.2.134)

and is also PJTF invariant. The all time field commutator is given by the sum of AT
and A~ and is just a c-number

[@(2), D(y)] = iAT (z —y) +iA (z —y)
=i(AT(z—y)+ A (z—y)). (2.2.135)
=iA(x —y)
Thus, A(x — y) is restricted Poincare’ (Pl) invariant. This also follows directly
from ®(z) being a scalar field and A(x — y) being a c-number

Ula, A) [@(2), 2(y)] U'(a, A) = [@(Az + a), ®(Ay + a)] = iA(A(z — y))
= Ul(a, N)iXN(x —3)U (a, A)

= iA(z —y)
(2.2.136)
So adding and subtracting a*, we have
Az —y) = A([Az + a] — [Ay + a]), (2.2.137)

hence A(x — y) is Pl invariant. We can now represent A(z — y) in several ways
which will be useful later on, for instance

A —y) = _Z./ _ &k [e—iku—y) _ tik(z—y)
(27r)32wk

3k )

kiR a—g 0_ 0
=2 me sinwg(x” —y")

Alternately we can express A as an energy-momentum integral

iz —y) = / %%5(1@2 —m?)e k=) [9(k0) — o(—k°)] . (2.2.139)
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Figure 2.2.1

The difference of the step functions is defined as

(k%) = (k%) — 0(— k)

41 L for k9 >0- (2.2.140)
1 -1 ,fork%<0
So i
iNz —y) = / sza(xﬁ — m?)e(k0)e ==Y (2.2.141)

again revealing the PJTF invariance of A. A(z—y) is a genralized function, performing

the integrals we find

m? Ji(mVa?) } (2.2.142)

A(z) = ;—736(330> {5(z2) - TH(xz)m—\/?

where J; is a Bessel function (see Bogoliubov and Shirkov).
Finally we see that the equal-time commutation relations are just the initial
conditions that A must satisfy. That is, A(z) is a solution to the Klein-Gordon

equation
(0% +m?) A(z) =0 (2.2.143)

since
(6% +m?) ®(z) = 0. (2.2.144)
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It satisfies the initial conditions

A(Z,0) = A(0,0) = (2.2.145)
since
[®(Z,t), ®(0,t)] = 0. (2.2.146)
Further 5 B
1 =
— NA(#,t) = — —wget T t 2.2.147
50 (Z,1) Gn) / o wie cos wit, ( )

so at time t = 0, multiplying by i, we find

0. . .. —1
—iA(Z, ) |t=0 = @)

o / PBPhetiF = —i3(7). (2.2.148)

This is just the initial condition

iA(F,0) = [cb(.f, t), (0, t)} — i3 (7), (2.2.149)

and of course A(Z,t)|i—o = 0 since [(I)(a_:', t),(iD(O,t)} = 0. Furthermore, we note
that since
ANz —y) = ANz —y)), (2.2.150)

and, for any space-like separation (z — y)? < 0, we can always find a Lorentz
transformation such that z/° = ¢/°, we have

Az —y)=AE —7',0). (2.2.151)
. From equation (2.2.146) A(#,0) = 0, thus
ANz —y)=0 for (z—y)? <0 (2.2.152)

and consequently
[®(z),®(y)] =0 for (x —y)? < 0. (2.2.153)

This space-like commutivity property is known as the principle of microcausality.
For observables depending on ®(x), two observations performed at space-like separa-
tions cannot interfere with each other. This is a statement of relativistic invariance

since the theory of special relativity forbids signals with v > ¢ from being sent
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between points and this would have been required for the disturbance due to one
measurement at point = to propagate to space-like separated point y to effect the
measurement there.

Besides various integral representations for A we can also write A% in various
ways. Recall we defined

4 < M
inNE(z) =+ (;171)”42715(18 — m?2)0(£k%)e" k=, (2.2.154)
In particular for
AT (z) —/ P ika (2.2.155)
1 T) = (27r)32wke , 2.

we can express/AT as the contour integral

d4k3 . 7
- A+ —ikx
iIANT(z) = /+ ———(2 )46 ——(k2 7) (2.2.156)

where the C contour is chosen in the imaginary k%-plane as shown below.

ATk Lle”

AN
~ )
©
\’l‘ ™~ % R Q\Q
‘(Ok ‘(-h)b_
N
/
/Cy
Figure 2.2.2
Performing the k° integral first we have
d3k dko _,0.0, 7= 1
At (z) = e TR 2.2.157
AT () / (2m)3 (27) ¢ (k0 + wg] [k — wi] ( )
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since k2 —m?2 = k% — k2 —m? = k%2 — w? = (k° + wi)(k® — wy) and noting that the
path is taken clockwise and hence the integral is minus the residue at the k° = wy

- dsk 2 _ie—ikozo+iE-i'
8T (z) = (2m)3 o (K 4+ wy) ko=

d3k. —ikx

as claimed. Note that it is understood, as usual, that k% = wy in the final integral.

pole

Similarly A~ (z) can be written as

N dk . 1
ia (x):/c_ G G

/ Pk dk® om0k s ;
= —e
(2m)3 (2m) (k0 4+ wi] (k0 — wi]

(2.2.159)

with the k% integration performed first over the contour C_ below.

A T "
C_

/N

X % > ({Q\Qb
[ e ik
<

Figure 2.2.3
This yields the desired result

A — . d3k +iw IL’0+‘iE'LE .
ZA (.17) Z/(—2;r—)3—2w—k€ k (—'L)

—— / d’k e+ikx
(27)3 2wy,
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where k° = w;, is understood in the final integral.

In addition to these covariant commutators we can also evaluate the vacuum
expectation values of the fields and time ordered products of the fields. These play a
fundamental role in quantum field theory since they are related to matrix elements
of observables as we will see. First the vacuum expectation value of ®(x)®(y),

< 0|®(x)®(y)|0 >, (2.2.161)
is simply related to AT
< 0[@(2)2(y)|0 >=< 0[(2*(z) + 2~ (2))(2" (y) + 2~ ())[0 >

=< 0|®1 (z)® (y)]|0 > (2.2.162)

since ®*|0 >= 0 and < 0|®~ = 0. Then since T (z)|0 >= 0 we can replace TP~
with the commutator

< 0|®(x)®(y)|0 >=< 0|[®T (x), @~ (y)]|0 > . (2.2.163)

Thus
< 0[@(2)2(y)|0 >= [2F (2), 2™ (y)]
= iAT(z —y) (2.2.164)

since < 0|0 >= 1 and the commutator is a c-number. This VEV of two fields is
called the two point Wightman function, and is denoted W(?)(z,y). In general the
n-point Wightman function is

Wz, 2,) =< 0]®(z1) - B(2,)|0 > . (2.2.165)

We can evaluate this product by using the creation and annihiltion properties of ®.
Hence, using < 0|®~ (z1) = 0 and &1 (x1)|0 >= 0 and the fact that the commutator

is a c-number, we have
< 0|®(x1)P(z2) - - P(x,)]0 >

=< 0|®F (21)®(22) - - P(20)[0 >=< 0] [®F (21), P(22) - - D(y)] [0 >

=< 0] [®F (21), ®(a2)] P(z3) - P(zn)[0 >
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+ < 0|®(z2) [@F (1), P(x3)] ®(z4) - @(2)]0 > + - -
+ < 0|(I)(332) s (ID(a:i_l) [(I)Jr(a:l), q)(xl)} q)(QZH_l) s (ID(asn)|0 >+

= [(I)Jr(asl),q)_(a:i)} < 0|(I>(a:2)(ID(asl_l)(I)(a:1+1)(I>(a:n)|0 > (2.2.166)
=2
Thus, we have reduced W™ (zy, -+ x,) to AT times W™= (z;,,- -, 2, ). Pro-
ceeding until no fields are left we find

(2) (. Y W@ (s .
W (g o) = {ZPW (@i j0) - W @iy, iy ) meven g o 467y
, n odd
where ), is a sum over all permutations P of (1,---,n) into & pairs (i1,j1)---

(in,jn) with iy < ji,--+,in < jr and i} <iz <--- <in. For example, the 4-point
Wightman function is

W( )($1,$2,ZE3,ZE4) [(I)Jr(a:l), (332) < 0|(I)(333)q)($4)|0 >

]
+ [(I)+(331) (333)} < 0|q)($3)q)(334)|0 >
+ [@F (1), @ (x )} < 0|P(x2)P(23)]0 > (2.2.168)
= W( )(331 .’EQ) )(333 .’E4)

+W( )($1,$3)W( )(332,1E4)
+ W(Q)(Qfl, ZE4)W(2) (332, ZE3).

These product formulae for the Wightman functions are just special cases of
the general reduction of a product of free fields in terms of Wick or Normal products
of the free fields. The reduction formula is known as Wick’s Theorem and is given
by (here we have generalized to possibly different free fields denoted by subscript i,
;)

Wick’s Theorem:

Dy (z1)Pa(w2) - Pp(wp) = N [@1(m1) - - P (7,)]

+ Z < 0|q)1($1)q)](ajj)|0>N (I)l(xl)"'q)n(ajn)

1 pairing q)l (xl)q)J (IL'])
1<i<j<n
+ Z < 0|q)i1 (xh)q)h ($j1)|0 >< 0|(I)i2(xi2)q)j2 ($j2)|0 >

2 pairings
11 <iz2,11 <j1,i2<J2
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« N {@1(271) - Pn(zn)
Dy Py, 5y P,

+ Y e Y < 0@ (30,05 (25,)|0> - < 01®iy (zig ) Pjg (255 )0 > -
P

3 pairings
P g n even

(2.2.169)
The ratio of products of fields in the normal products is just shorthand notation
to indicate that the fields in the denominator are absent from their location in the
product in the numerator. Equation (2.2.167) is obtained from Wick’s Theorem by
simply taking the vacuum expectation value of (2.2.169) and noting that only the
last term on the right hand side is non-zero for n even and for n odd the VEV of
the right hand side is zero. A more compact notation is one which represents the

Wightman function between two fields by a curved line connecting them
P(z)P(y) =< 0|®(z)P(y)|0 > (2.2.170)
—/

with fields in the order left to right ®(z)®(y) and in a normal product

@(y)2(2)

N[®(z)- - B(y) - B(2) - B(w)] =< 0]@(y)D(2)[0 > N {M} |
~ (2:2.171)

So Wick’s Theorem can be written as

P1(z1) - Pnlan) = N[P1(z1) - Pnlzn)] + Z N[®y- Do D). Dy
—

1 pair

+ Z N[®y - By ooy Djy Dy - By -+ (2.2.172)
2 pairs
For the proof of Wick’s Theorem we must first prove a Lemma that allows us
to bring a field inside a Normal product for outside the product. We will then be
able to prove our main result by induction.
Lemma:

(N[@1+ @p) D= N[ 2p®]+ »_ N[®--- P 2,8 (2.2.173)

1<i<n —

Since the normal product is linear the lemma follows as soon as we prove it for each
®; and ® being cither creation or annihilation operators. If @ is an annihilation

operator then the identity is true since ®* is in its normal order already

N[®; @, 0t =N [®)---,07F]. (2.2.174)
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Further ;& =< 0|®;®%|0 >= 0 since ®*|0 >= 0. Thus we only need consider
the case vkvl{ere ® = &, a creation operator. In addition, if any of the ®; are
creation operators they can be brought outside of the normal product to the left.
Also the pairings of any of these creation operators with &~ is zero since = ¢~ =<
0|2~ @ |0 >= 0 because < 0|®~ = 0. Hence we have

- +1H- — H— - + + | &-
N[o; - of]0” = o) 0 N [of - 0f | @
— o] ---@;N{@le@ﬂ + Y N [cb;lm@;j .--<1>;:<1>—}. (2.2.175)
1<5<1
Hence to obtain the lemma we only need to prove it for all annihilation operators
inside the normal product and a creation operator outside the normal product.
Thus we consider N [<I>1" e @;] ®~. The lemma applied to it will be proven
by induction. First for m =1

7P =0 of + [0, 7]

_ Nfe-at] + [ora]. (2.2.176)

But we have that
(07, @7] = WP (21, 2) =< 0|®1(21)®(z)[0 > (2.2.177)

and N [@‘(I)ﬂ =N [@f@“] and N [<I>ﬂ = ®]. So we have the first step in the
lemma
N[®f] @™ = N[27® 7]+ < 0|®1(z1)®(x)[0 >

2.2.178
=N [¢]o] +N[<I$1>]. ( )

Next we assume the lemma true for m > 2 annihilation operators <I>;'"

N[ef---af]e" =N [of - ofa ]+ Y N[of.--af-ohe].
1<i<m
(2.2.179)
In order to prove the lemma for m 4 1 annihilation operators we multiply this by
@4 on the left

DEN [@F - 0F] & = BFN [0} - o 07]

+ ) N [BF - df 0t (2.2.180)

1<i<m
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First &~ is the only creation operator in the second term on the right hand side
+

7 )

and it is paired with ®;", it is now a c-number factor. Hence, only annihilation

operators appear in this last term. But they all commute amongst themselves, so
their Wick product is their ordinary product

Yo eiN[ef-ef ot = ) N[®Fef @ L], (2.2.181)

1<i<m 1<i<m
Next we analyze ®f N [@f’ .- @} @], clearly since
N[®F - 0}d7| =N [® 0 ---dF] =0 N [0f --- ] (2.2.182)

we find

OGN [2f - 2R 07| = DTN (D] - B
— o efN[oF 0% + (07,07 N [oF - 07
(2.2.183)
Now the first term on the right hand side has the operators in their normal order,

hence
O PFN [BF -+ DF] =N [®OfOF - 0]

- (2.2.184)
=N[ef --ofo].

As before [®f, @] is just the pairing of ®~ with ®F, so
OfN [0F ---of 7] =N [efef - of o ]|+ N[®Fof - 0/ 0], (2.2.185)

Putting this together we have

SN [@f--- o) @

OFN [&F -2 ]+ Y N[fef - of - 0h7]

1<i<m
=N [B7®]---OrOT]| + N [Dfd] - 0} 7]
+ z N[@S‘@T...@j‘..@;@— (2.2.186)
1<i<m
= N[ofof -2t ]+ Y N[ofef - of - -aho].
0<i<m
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Now &7 is an annihilation operator as are the @?‘, so the left hand side is simply
PIN [®F ---dF] =N [pfOF --- O ]. (2.2.187)
Thus we have proven the lemma for m + 1 annihilation operators ®;°
N 030t ah] o = N [af ot ohe ]

+ ) N[@fef---of - 0ho]. (2.2.188)

0<i<m

Now then we have the lemma we desire

N[® - &) & =N[®) - Dp®]+ Y N[By- Dy B0 (2.2.189)

1<i%n N/

We now turn to the proof of Wick’s Theorem, again for n = 2 we verify the
theorem directly

(1)1(5131)(1)2(.7!2) =N [‘I’l(l‘l)(DQ(IEz)] + < 0|(D1(:E1)<I)2(:E2)|0 > . (22190)

The proof of the theorem proceeds by induction. Assuming the theorem valid for
n operators

OB, = N[ D] + Z N[® - BB By

1 pair

+ > N[‘Pl""U;"-'@k-“@z"'@n]+---,

2 pairs

(2.2.191)

we multiply by ®,4; on the right and apply our lemma in order to show that the
theorem is valid for n+1 operators. Since Wick’s Theorem for the ® - - - ®,, already
has all possible pairings amongst these fields, multiplying by ®,, 41 and applying our
lemma yields the sum over all additional pairings with ®; ---®,, and ®,,1 as well
as the non-paired normal product of them all. Hence we have immediately the proof
of Wick’s Theorem.

In addition to pure products of fields we see that Wick’s Theorem is imme-
diately applicable to the case of products of normal products of fields also, such
as

N[y @y | N[®sy 1 Diy] o+ N [®s 410 P (2.2.192)
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The proof is as in the pure field product case, the only difference being we now no
longer have pairings between fields in the same normal product since their “internal
order” is already normal (thus we have “no self-pairings”). We only have pairings
between fields in different normal products.

Besides Wightman functions we can also evaluate the time ordered functions
for free fields, that is, the vacuum expectation value of the time ordered products
of the fields, which, as we recall, will be relevant when we consider the perturbative
expansion of the S-matrix. Recall the definition of the time ordering operator for
one and two operators

T (x1)®(22) = (2 — 29)®(21)®(22) + (2 — 20)B(22)®(21), (2.2.193)

and in general

0 0 0 0 0 0
= Z e(xll - xig)e(xig - xig) e e(xi(n_l) - xln)@(xll) e Q(xln)'
(1,"',71)—>(i1,"',in)

(2.2.194)
The vacuum expectation values of the time ordered product of operators are called
the time ordered functions, the Green functions, the 7-functions, or the n-point
functions and are denoted

G (zy,- xp) =< 0|TP(x1) - P(a,)]0 > . (2.2.195)

Since G(™ is expressible in terms of Wightman functions we see that G+ = (.
Also as with the Wightman functions, we will express the n-point function for free
fields in terms of products of the free field 2-point functions. Hence we start by
evaluating the 2-point function, also known as the Feynman propagator

< 0|T®(z1)P(22)|0 > = O(2? — 29) < 0|®(21)P(22)|0 >
+ 0(2Y — 29) < 0|®(22)P(21)]0 >
=02 — 29)iAT (21 — x2) + (2§ — 20)iAT (xg — 21)
=i [0(z) — 29 AT (21 — 22) — 0(2 — 27) A (21 — 22)]
= Ap(z1 — x2).

(2.2.196)
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Since this combination of A* and A~ occurs frequently we have denoted it by a
special symbol, Ap(z; — x2), called the Feynman propagator,

Ap(z) = 0(z°)iAT (z) — i0(—z0) A~ (z). (2.2.197)

Hence, we find that

AT () ,if 20 >0
Ar(z) = { —iN"(z) ,ifz% < 0. (2.2.198)

Using our integral representation for A*, equations (2.2.156) and (2.2.159), we have

4 i
Ap(z) = / (;iﬂ];e—mm (2.2.199)

where we use Cy when z° > 0 and —C_ when z° < 0 for the contour of integration

in the complex k°-plane shown in Figure 2.2.4.

PO C_ e’
s
e \

\ .

/ g / ()
L X > —>Re W
- W
l \tl i (
I 7 /

— —
N f\ N _
C *f Figure 2.2.4

Hence, we can write

d'k
Ap(z) = /CF (27T)4e_”” D) (2.2.200)
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Figure 2.2.5

with the contour Cr in the complex k%-plane given in Figure 2.2.5.

Thus when evaluating the integral for z° > 0 the contour is closed in the lower
half plane to give i/AT. This is the case since the contribution from the semi-circle
vanishes for an infinite radius (e=#*°*" — ¢=I¥°I* — 0 for 2° > 0 and k° — —100).
For 2% < 0 the contour is closed in the upper half plane to give —i/A~. Similarly this
is the case since the contribution from this semi-circle vanishes for infinite radius
(e=#"=° — ¢=IF°ll2°l _, 0 for 2° < 0 and k° — +ico). Note this contour integration
is equivalent to the integration over the contour given by Figure 2.2.6.

Equivalently, we can add a small imaginary part to the denominator in order
to miss the poles at k® = +wy, and integrate along the real axis

Ap(z) = / d'k gtk ! (2.2.201)
(2m)4 (k%2 — m?2 + ie)
where it is understood that € — 0" at the end of all calculations. Since the poles
are now at ‘
KO = {“”“ —ie (2.2.202)
—wg + 1€

since we have

(k® — wi + i€ ) (K° + wi — i€') = k92 — w2 + 2i€ wy, + €
) . (2.2.203)
=k —m” +ie
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Figure 2.2.6

we integrate along the real axis (—oo, +00) as shown in Figure 2.2.7 and take e — 0%
at the end. As done previously one can perform the k-integration first by closing
the contour in the lower half plane for z° > 0 and in the upper half plane for z° < 0,
then subsequently taking e — 0% and we find again

+iAT(z) , for 2° >0

AF@%:{ﬁA‘@),bmﬂ<0' (2.2.204)

Returning to the n-point functions, we would like to show that we can reduce
them to products of Feynman propagators. That is we will have for the 2-point and
4-point functions

< 0|TP(z1)P(22)|0 >= Ap(z1 — x2)
< O[T (21)®(22)®(5)B(24)[0 > =< O[TD(21)D(22)|0 >< 0[TD(z5)®(z4)|0 >
+ < 0|T‘P(1}1)®(CE3)IO > OIT(I)(iz)q)(ILq),O >
(

+ < 0|T@ $1)‘P(£L‘4)|0 >< OIT(p(ZIZQ)@(IEg)[O > .
(2.2.205)
In general we will derive the result for the n-point function

< 0|T®(x1).....2(x,,)|0 >

B {ZP <OIT®(2iy )®(z,)[0> -+ < OIT(D(;L‘i%)@(:L'j%)IO > ,n = even
0 ,n = odd
(2.2.206)
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where again ), is a sum over all permutations P of (1,---,n) into % pairs
(Ll,Jl)(Z%,j%) with 77 < j1,~-°,’i% < ]% and i; < i < -+ < l% As in the

Wightman function case we can prove this result directly by using the fact that
®*|0 >= 0 and < 0|®~ = 0. That is without loss of generality we may consider a
particular chronological ordering, say 3 > z§ > --- > 22 > 29 > 20 ., > .20,

then the time ordered function reduces to the ordinary Wightman function with
the fields in that chronological order

<O0|T®(z1) - P(xn)|0 >=< 0|D(z2) - - - P(2m)P(21)P(Tmt1) - - P(xn)]0 > .
(2.2.207)
We can write ®(z) in terms of its positive and negative frequency components,
®(z) = T (x) + ¢ (z), and exploit the definition of the vacuum state to obtain

<O0|T®(z1) - P(xy)|0 >
=< 0[®(z2) -+ P(zm) [@F (1), D(Tm+1) -+ P(20)] [0 >
+ < 0] [®(x2) - P(2m), @7 (21)] B(xmy1) - P(xn)]0 >
= ( > [@T(21), B(a)] +Z [@(:Lﬂ,@‘(xﬂ]) X (2.2.208)
=2

i=m-+41

(z1) - O(zy)
O(x1)P(x;)

P
x < 0] |0 >
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Now the remaining fields in the Wightman function on the right-hand side of equa-
tion (2.2.208) are still in chronological order, thus the functions are time ordered
functions. Further since 29 > z{ for i > m, the commutator is just the expression
for the Feynman propagator

[®% (1), ®(2:)] =< 0|T®(z1)®(z:)[0 >  for z9 > . (2.2.209)
Similarly since z9 < z¥ for i < m, the commutator is again just the Feynman

propagator for that ordering
[®(zi), @ (#1)] =< 0|T®(x1)®(2:)[0 > for 29 < z0. (2.2.210)
Thus equation (2.2.208) becomes

<0|TP(z1) - P(zn)|0 >=

zn: < 0|T®(z1)P(z;)|0 >< 0|TP(xz) - - % - D(x,)]|0 > . (2.2.211)

Similar results are obtained for any chronological order, hence we obtain the desired
lemma, writing this out again

<0|T®(z)®(z1) -+ (x,)|0 >

En: < O|T®()B(,)]0 >< O|Td(z1) - M--@(z—nnw. (2.2.212)

So applying the lemma again to the < 0|T®(z1)...8%t;)...2(x,)|0 > function
we can “contract” out two more fields. Continuing until all fields are chronologically
paired we obtain the reduction of the free field n-point function into product of free
field 2-point functions, that is equation (2.2.206) (again we see that the n-point
function vanishes for n odd). Writing this in a cryptic fashion we have for n even

<O0|T®(z1)--- D(x,)|0 >

= Z < 0|T¢(111)®($71)|0 > < O|T(b($7n/2)(b(xjn/2)|0 >

pairs

= > Ar(ay —5) - Dp(miy —35,). (2.2.213)
pairs
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Recall that the time ordered functions are symmetric

< 0|T®(z)®(y)|0 >=< 0|T®(y)P(z)|0 >, so the summation includes each pair
only once. Hence, the time ordered function of free fields is just the sum over all
possible pairings of the coordinates of the product of the associated two point func-
tions. Often this process is written with straight lines joining the chronologically
paired fields which in turn are said to be contracted. For example, one possible
term in the sum for < 0|T®(z1)P(z2)P(x3)P(x4)|0 > is given by the contraction

< O0|TP(z1)P(22)P(z3)P(x4)|0 >=< 0|TP(z1)P(x3)|0 >< 0|TP(z2)P(z4)]0 > .
(2.2.214)
These product formulae for the time ordered functions are just special cases
of the general reduction of the time ordered product of free fields in terms of Wick
or Normal products of free fields. As with the ordinary product of fields, Wick’s
Theorem applies to the time ordered product also (here again we have generalized
to possibly different free fields denoted by the subscript i, ®;)

T(I>1(:r1) tee ‘I’n(l‘n)

= N[®1(z1) - Pulaa)]+ > N[@r-- Do By By

1 contraction

+ Z N[®y-o By oDy Dy Dy D] 4 - - (2.2.215)

2 contractions
where the contracted fields in the normal products stand for the time ordered func-
tion between the two fields. In order to prove this all we need to recall again is that

for a specific chronological ordering the T-product reduces to an ordinary product
of fields

To1(z1) - Pu(zn) = iy (i) -+ i (ms,)  foraf >a) >z . (2.2.216)
We then apply Wick’s Theorem to this ordinary product with all ordinary pairings
of the fields. However, since the fields are chronologically ordered already when
0 > with i4 < j,), hence
the pairing is a chronological pairing, a contraction, that is a Feynman propagator

you pair (recall pairing is in a definite order < 0|®;, ®;,

for the fields. Since inside the T-product the order of the field operators does not
matter as is the case inside the normal product, the fields can be brought into the
same order as initially ®;(xy)--- ®p(z,). That is a similar reduction occurs for
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each chronological ordering. Thus we obtain the Wick Theorem expansion for the
time ordered product of free fields.

Similar to the product of normal products, we can derive a Wick expansion for
the chronological product of normal products

T (N [®@1(z) - Pa(2)] N [Pat1(y) - Patn(y)] -

N [Bagprsr(2) - Ba(2)]). (2.2.217)

Wick’s Theorem has just the same form as for the time ordered products of the
fields themselves except now there are no contractions between fields from the same
normal product allowed on the right hand side of the Wick expansion. Our theorem
for Green functions follows directly from Wick’s Theorem by taking the VEV of
equation (2.2.215). The VEV of all normal products on the right hand side vanish
and hence we are left with

< 0|T®(x1) - P(x,)|0 >

0 , N0
= { Sp < OT®(w:,)®(x,)|0 > -+ < 0T (w3 )®(25,)[0 > , n even (2.2.218)

where ), is a sum over all permutations P of (1,---,n) into & pairs (i1, ji)---

2
(Z%,j%) with 71 <j1,"',i% <]g and i1 <11y < --- <Zg.

Finally let’s see why these time ordered functions are called Green functions.
They are the Green functions of the Klein-Gordon equation, that is,

(83 +m2) < 0|T®(z)®(y)|0 >= (0% + mo)Ap(z — )

4 .
:/ d°k (_k2+m2)e—ik(1’—y) ?

(2m)4 k2 —m? 4+ ie
Ak ,
= [ e < st e ), (2:2.219)

This also follows directly from the definition of the time ordered operators and the

equal time commutation relations. Consider the time derivative of
To(z)®(y) = (2" — y*)@(2)®(y) +0(y° — 2°)@(y)P(2),

05T ()2 (y) = (2" —y°)2(x)D(y) +0(y° — 2°)2(y) ()

0 o o o (2.2.220)
+ [050(«" — 4°)] @(2)@(y) + [050(y° — 2°)] D(y)D(x).
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Recall that 8260(z® — 3°) = 6(2° — »°) and hence,
OFTP(2)®(y) = 6(° — y°)@(2)2(y) + 0(y° — 2°) () ® (=)

+6(z° — ) [®(z), B(y)] - (2.2.221)

The last term on the right-hand side of equation (2.2.221) vanishes by the ETCR.
Taking another time derivative we have

050, T®(2)D(y) = 0(a° — y°) () B (y) + 0(y° — 2°)P(y)(x)

+5(z° — ¢°) [cb(x), @(y)} . (2.2.222)
By the ETCR
5(z° — 4°) [<i>(x), @(y)} — _it4(z - v) (2.2.223)
this yields
V' Td(x)B(y) = TH(x)0(y) — i6*(z — ) (2.2.224)
and thus,
(02 + mHT®(z)®(y) = T(8? + m?)®(z)P(y) — i64(z — y). (2.2.225)

The first term on the right-hand side vanishes by the Euler-Lagrange field equations.
Taking the vacuum expectation value with and using < 0|0 >= 1, we obtain

(0% +m?) < 0|T®(z)®(y)|0 >= —id*(z —y). (2.2.226)

Further, applying the Klein-Gordon equation to our lemma equation (2.2.212), we
find
(0% +m?) < 0|T®(z)®(z1) - - - B(2,)]0 >

=3 —ish(@ - 2y) < O TD(z1) -%) D)0 > (2.2.227)
j=1
Alternatively one can derive equation (2.2.227) from the general definition of the
time ordered product of operators, the Euler-Lagrange equations and the ETCR.
This could then be viewed as the definition of the Green functions, the solution to
these equations will simply be equation (2.2.213), that is the time ordered function
Wick’s Theorem with the two point function given by the Feynman propagator.
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Before leaving the scalar field let’s consider the case where we have two hermi-
tian scalar fields ®; and ®5. Suppose the Lagrangian is

L=NIL]

L= %&@18“@1 + %a&za#@z - %mféf — %m%@%. (2.2.228)
In addition to our usual space-time symmetries generated by P and M* suppose
we require this system to have an internal symmetry which considers ®;, and &9
as components of a two dimensional vector, and the symmetry to be rotational
invariance of these components into each other. More specifically suppose U(a) =
e'®@ is the unitary operator generating these internal rotations. Only one charge

Q is needed since the vector is two dimensional. We now define

UW@@@mma);<‘”“’ ““a>@@) (2.2.229)

—sina  cos«

where (@)
(131 T
= 2
d(x) = <¢2($)> : (2.2.230)
Pictorially we can imagine rotations in “field space” as depicted in Figure 2.2.8.
/ = (O (% — SCV\O( é
(%l Cosd O+ ,\ ( a®y

2 (b(: CoSal ée\-\- Gk é?p
g -7
~

// -
4,

Figure 2.2.8
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For infinitesimal rotations, that is, infinitesimal o, U = 1 4+ i@ and thus,

(1—iaQ) (g;) (1+iaQ) = (_1@ ‘f) (g;) = @; fggi) . (2.2.231)
This implies
—i [Q, q)l] = oz(IDQ
—ia [Q, P2] = —ad, (2.2.232)

or alternatively,
(Q,®1] =i®Py = —i0D,

(Q, @] = —i® = —i6Ds. (2.2.233)
We may express these relations in the notation discussed in section 2.1 on Noether’s
Theorem
[Q,®,] = —iD,,®, (2.2.234)
where r = s =1,2 and
0 -1
D,y = (+1 0 ) . (2.2.235)

Now we check if the Lagrangian is invariant under such rotations. It is sufficient to

consider infinitesimal rotations. So
L =6L=—i]Q,L] (2.2.236)

and performing the variations of the Lagrangian we find (note, we have no operator
ordering problems since [0®1, 1] = 0 = [0P2, D2])
oL oL
0L=—0b, + ——0,090,
5%, 90,1,
= 6uq)1 (8“(5(1)1) + 6uq)2 (8“(5(1)2) — m?@ldtbl — m%(bgd(bg (2.2'237)
= 6uq)1 (—6“@2) + 6Hq)2 (6“@1) + m%@lq)g — m%tﬁgcbl
= (m% — m%) q)lq)g.
If the masses of the particles are equal, m; = ms = m, then 0L = 0 and internal
rotational symmetry is a good symmetry of the system. By Noether’s theorem we
have a conserved current

oL oL
_ o+ % 50
90,0, %1 T 5,5,

= 0F Dy (—Dy) + 04Dy (D) (2.2.238)

JN

=&y 0¥ Psy.
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(Again note that JH = N[JH] = JF since ®; and ®2 commute.) Let’s check
explicitly that this current is conserved

Ot = — (0°®@1) Dy + ©10°D, (2.2.239)

where the cross terms cancel. However, each field obeys the Klein-Gordon equation

oL ., oL

9%, "09,®, 0=—(0"+m;) @, (2.2.240)

where r=1,2. Thus,
6HJ“ = m%@lq)g — m%@lq)g

2.2.241
= (m% — m%) q)lq)g ( )

and
5L =8,J" (2.2.242)

as Noether’s Theorem required. Hence for equal masses, m; = ms = m, we have

an invariant Lagrangian and a conserved current
0L=0
8" = 0. (2.2.243)
The charge Q is given by Noether’s Theorem accordingly
Q= / d3xJP

(2.2.244)
= /d393 [q)lHQ — q)QHl]

which is independent of time, that is, Q = 0. So we check using the ETCR that
this is indeed @

(Q, ®4] :/d3y [— @10y, @]
:i/d3y53(a:—y)<bg
= Dy

(Q, D] :/d3y (@411, o]
= —i®;.

(2.2.245)
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The group multiplication law that U(«) obeys is
Ular)U(ag) = e!*1Qei2@
= eilata)Q (2.2.246)
= Uy + az).
This is just the product law for the Abelian group O(2) or more generally called
U(1), the Abelian group of phase transformations. To make this explicit consider

defining the non-hermitian (that is, complex) fields ® and ®' in terms of the two
real fields in the following manner

1
d=— (P — 19
7 (1 — iP2)
: (2.2.247)
T = — (1 +iD,).
7 (P +iP2)
Under these O(2) or U(1) rotations we find
1 .
Q,®] = NG ([Q, ®1] =7 [Q, P2])
r . L
= NG (1®Pg —i(—i) Dq)
1 ’
= ﬁ (q)l - Zq)g)
Q, P] = —9, (2.2.248)
and similarly
[Q, @T] = +a. (2.2.249)
So calculating the multiple commutators trivially, we have for finite phase transfor-
mations
Ul(@)®U(a) = e 1Qpei*? = ¢i°® (2.2.250)
and
Ul(a)®U(a) = e 2®T, (2.2.251)

The O(2) rotation transformation of the real fields is just the U(1) phase symmetry
transformation for the complex fields. Futhermore, all the quantities we have can
be rewritten in terms of ® and ®' since

1

P = 7 (@ + o) (2.2.252)
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and

i
Py = — (& — ). 2.2.253
Hence,
L = N[L]
L=0,0"0"d —m?®d (2.2.254)

where the factors of % disappear and as expected ® — eT*® ; dT — e~ *PT is a
symmetry of this Langrangian.

The Euler-Lagrange equations and commutation relations can now be formu-
lated in terms of ® and ®T. We obtain the results directly by treating ® and ®' as
independent fields

oL 0L o
R T A
oL oL 2 oy
_ _0=— , 2.2.2
55 6“6@(1) 0 (0 +m?) @ (2.2.255)

The canonical momenta for the complex fields are IT and IIT. So

II= 6_£ =
0P
=25 _g (2.2.256)
0T
and the equal time commutation relations become
[ciﬂ(f, t), (7, t)} — 6@ — §) (2.2.257)
or conjugating
[d)(a?, t), ' (7, t)} — 037 — ) (2.2.258)

while



[cﬁ(f, 1), &1 (7, t)} — 0. (2.2.259)

In addition, we have the current and associated charge in terms of the complex
fields

JH = iN {qﬂ o @]

Q=i [ d®zN [T — TI®] . (2.2.260)

To further physically interpret this complex scalar field let’s Fourier transform
to momentum space. As previously derived we have the momentum decomposition
for the two Hermitian fields

3 L L
Oy (z) = / (27373];% [al(k)e_”” +a§(k)e+”‘”} (2.2.261)

" By(z) = @k ke~ 4 al (k)etike 2.2.262
Q(x)_/m[az( e~ + al(Ryetike]. (2.2.262)

The operator aI(E) creates particles of type » with momentum E, mass m, spin zero
and energy wy. Since [H, Q] = 0, the @ eigenvalues will also label the states. As a
consequence of the fact that ® and ® diagonalize the “rotation matrix”, the states
created by them will have a definite charge, that is

1 :
o = ﬁ (@1 —Zq)g)

~ [ e | 5 () —ioa()) e + - (al ) iabty) 7

27r)32wk \/5 \/5
(2.2:263)
where the complex creation and annihilation operators are given by
. 1 . .
alk) = [al(k) - iaz(k)}
b)) = = [al (F) — ial ()] (2.2.264)
V2
Note that af(k) and bf (k) are independent, that is,
at (R) = — [a] (F) + ia} (B)] # b1 (F). (2.2.265)
V2

150



So we have the momentum decomposition of the complex fields

®(z) = / LN a(B)etke 4 bf (k)etike]
(27r)32wk L J

and

ot (z) = / (dgik (K )e—ike +aT(E)e+ikI: .

2m)3 2wy, L

Hence, by inverting our Fourier transform we have
a(k) =i / Bl 5y ()]
ot (7) = i / Bt (z) Dy e ko]
b(k) =i / Bl 9y ot (2)]

bR =i / B al®(z) 5y e~ 7).
The CCR for a and b follow as usual from the ® and II ETCR

—

[a(E),aT(f )} — (2m)32wp0%(E — 1)

—

[b(E),bT(f )} — (2m)32w 0% (% — 1)

all other commutators vanish. As before

= [ e ol (Bya(R) + 01 Ry

ﬁ:/@%%;ﬂ (E)alk) + b (F)p(F)]

and

—

Q= [ e [ (yalh) — b/ ()]

(2.2.266)

(2.2.267)

(2.2.268)

(2.2.269)

(2.2.270)

(2.2.271)

Thus, we again have two types of particles “a” and “b” type. In addition note that

Q.a(k)| = —a(F)
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(Q.al(R)| = +al (F)
|Q.0(R)| = +b(k)
[Q,bT(E)} = —b' (k). (2.2.272)

Since [P*, Q] = 0 we label the one particle states with E, m?, and the eigenvalues
of () which are +1 on this subspace. So the Hilbert space of states is built up from
the vacuum state, |0 >, which is defined as the no particle state, a(k)|0 >= 0 and
b(k)|0 >= 0. As a result, H|0 >= P|0 >= Q|0 >= 0. The one particle states are
constructed by

Ik, + >=al (k)]0 >

Ik, — >= bl (k)]0 > . (2.2.273)
So using the charge commutation relations |Q, a(l_c’)} = —a(k), etc., we find
E,+>: af (K)]0 >= ,aTE 0>
Ql Qat (R0 >= |Q,a’ ()] | -

= +al(K)]0 >= +|k,+ >

and similarly Q|E, — >= —|l_5, — >. Thus, “a” particles have a U(1) charge of +1
unit and “b” particles have a unit of negative charge, —1. This could be electric
charge or hypercharge.

As we have done previously we can introduce a positively charged particle

number operator

Ny = / ﬂﬂ(%)a(lg) (2.2.275)
"7 @r)32w -
and a negatively charged particle number operator
d3k N
N_= [ ————0b'(k)b(k). 2.2.276
| G ) (2.2:276)

The total number operator is given by Ny = N4 + N_ while the charge operator
is Q = Ny — N_. Thus, the many particle state is

ng,n > = | (k1 +); (ko )55 (kg s (I
:aT(El)---aT(En+)bT(f1)---bT(ljl )0 >
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and as usual

n4 n_—
Hng,n_ >= Zw”“ +Zwlj ng,n_ >
i=1 j=1

n4 n—
P|TL+,TL_ >= Z ki + Z lj |TL+,TL_ >
i=1 j=1

Qng,n— >= (n4 —n-)[ny,n_ >
Noo|ng,n_ >=(ny +n_)|ny,n_ > . (2.2.278)

The particles are identical except for their charge. This pairing of oppositely charged

particles has a deep reason associated with CPT invariance and the “a” and “b”

particles are called particle and antiparticle (which is which is convention).
Finally, the CCR imply the (all time) covariant commutation relations

[®(z), ®(y)] =0 (2.2.279)
and
[@(2), @ (y)] = iA(z —y). (2.2.280)
Furthermore,
< 0|®(2)®T(y)|0 >=iAT(z —y) (2.2.281)
and
< 0|T®(2)®T ()]0 >= iAp(z — y) (2.2.282)
while
< 0|T®(z)®(y)|0 >=< 0|T®T(x)®'(3)|0 >= 0. (2.2.283)

Wick’s theorem has an analogous form to that previously obtained. We are now
ready to consider particles with spin %
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