
CHAPTER 2.
LAGRANGIAN QUANTUM FIELD THEORY

§2.1 GENERAL FORMALISM

In quantum field theory we will consider systems with an infinite number of
quantum mechanical dynamical variables. As a motivation and guide for the many
definitions and procedures to be discussed, we will use concepts and techniques
from classical field theory, the classical mechanics of infinitely many degress of
freedom. The quantum fields will in addition become operators in Hilbert space
and, as we will see, not every “classical” manipulation will make sense. We will
have to discover the modifications to our theory needed to define a consistent
quantum field theory in a sort of give and take process. We begin by recalling the
basic tennants of classical field theory. In general we will consider a continuous
system described by several classical fields φr(x), r = 1, 2, ...N. (In general we will
denote classical fields by lower case letters and quantum fields by the upper case
of the same letters.) The index r can label the different components of the same
function such as the components of the vector potential ~A(x) or the index can
label two or more sets of completely independent fields like the components of the
vector potential and the components of the gravitational field gµν(x). Also φr(x)
can be complex, in which case, φr and φ∗

r can be considered independent or the
complex fields can be written in terms of real and imaginary parts which then can
be treated as independent. The dynamical equations for the time evolution of the
fields, the so called field equations or equations of motion, will be assumed to be
derivable from Hamilton’s variational principle for the action

S(Ω) =
∫

Ω

d4xL(φ, ∂µφr) (2.1.1)

where Ω is an arbitrary volume in space-time and L is the Langrangian density
which is assumed to depend on the fields and their first dervatives ∂µφr. Hamil-
ton’s principle states that S is stationary

δS(Ω) = 0 (2.1.2)

under variations in the fields

φr(x) → φr(x) + δφr(x) = φ′
r(x) (2.1.3)
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which vanish on the boundary ∂Ω of the volume Ω,

δφr(x) = 0 on ∂Ω. (2.1.4)

The physical field configuration in the space-time volume is such that the action S
remains invariant under small variations in the fields for fixed boundary conditions.
The calculation of the variation of the action yields the Euler- Lagrange equations
of motion for the fields

δS(Ω) =
∫

Ω

d4xδL

=
∫

Ω

d4x

(
∂L
∂φr

δφr +
∂L

∂∂µφr
δ∂µφr

) . (2.1.5)

But
δ∂µφr = ∂µφ

′
r − ∂µφr

= ∂µ(φ′
r − φr) = ∂µδφr. (2.1.6)

Thus, performing an integration by parts we have

δS(Ω) =
∫

Ω

d4x

(
∂L
∂φr

− ∂µ
∂L

∂∂µφr

)
δφr

+
∫

Ω

[
∂L

∂∂µφr
(∂µδφr) + ∂µ

∂L
∂∂µφr

δφr

]

=
∫

Ω

d4x

[
∂L
∂φr

− ∂µ
∂L

∂∂µφr

]
δφr +

∫

Ω

d4x∂µ[
∂L

∂∂µφr
δφr]. (2.1.7)

The last integral yields a surface integral over ∂Ω by Gauss’ divergence theorem
∫

Ω

d4x∂µF
µ =

∫

∂Ω

d3σµF
µ (2.1.8)

but δφr = 0 on ∂Ω hence the integral is zero. So

δS(Ω) =
∫

Ω

d4x

[
∂L
∂φr

− ∂µ
∂L

∂∂µφr

]
δφr = 0 (2.1.9)

by Hamilton’s principle. Since δφr is arbitrary inside Ω, the integrand vanishes

∂L
∂φr

− ∂µ
∂L

∂∂µφr
= 0 for r = 1, ...,N. (2.1.10)
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These Euler-Lagrange equations are the equations of motion for the fields φr.
According to the canonical quantization procedure to be developed, we would

like to deal with generalized coordinates and their canonically conjugate momenta
so that we may impose the quantum mechanical commutation relations between
them. Hence we would like to Legendre transform our Lagrangian system to a
Hamiltonian formulation. We can see how to introduce the appropriate dynamical
variables for this transformation by exhibiting the classical mechanical or particle
analogue for our classical field theory. This can be done a few ways, in the intro-
duction we introduced discrete conjugate variables by Fourier transforming the
space dependence of the fields into momentum space then breaking momentum
space into cells. We could also expand in terms of a complete set of momentum
space functions to achieve the same result. Here let’s be more direct and work in
space-time. For each point in space the fields are considered independent dynam-
ical variables with a given time dependence. We imagine approaching this con-
tinuum limit by first dividing up three-space into cells of volume δ~xi, i = 1, 2, · · ·.
Then we approximate the values of the field in each cell by its average over the
cell

φ̄r(~xi, t) =
1
δ~xi

∫

δ~xi

d3xφr(~x, t) ≈ φr(~xi, t). (2.1.11)

This is roughly the value of φr(x, t) say at the center of the cell ~x = ~xi .
Our field system is now is described by a discrete set of generalized coordi-

nates,
qri(t) = φ̄r(~xi, t) ≈ φr(~xi, t), (2.1.12)

the field variables evaluated at the lattice sites, and their generalized velocities

q̇ri(t) = ˙̄φr(~xi, t) ≈ φ̇r(~xi, t). (2.1.13)

Since L depends on ~5φr also, we define this as the difference in the field values
at neighboring sites. Thus, L(~x, t) in the ith cell, denoted by Li, is a function of
qri, q̇ri and q′ri the coordinates of the nearest neighbors,

Li = Li(qri, q̇ri, q
′
ri). (2.1.14)

Hence, the Lagrangian is the spatial integral of the Langrangian density

L(t) =
∫
d3xL =

∑

i

δ~xiLi(qri, q̇ri, q
′
ri). (2.1.15)
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and we have a mechanical system with a countable infinity of generalized coordi-
nates.

We can now introduce in the usual way the momenta pri canonically conjugate
to the coordinates qri

pri(t) =
∂L

∂q̇ri(t)
=

∑

j

δ~xj
∂Lj(t)
∂q̇ri(t)

= δ~xi
∂Li(t)
∂q̇ri(t)

(2.1.16)

and the Legendre transformation to the Hamiltonian is

H(qri, pri) = H =
∑

priq̇ri − L

=
∑

i

δ~xi

[
∂Li(t)
∂q̇ri(t)

q̇ri(t) − Li

]
. (2.1.17)

The Euler-Lagrange equations are now replaced by Hamilton’s equations

∂H

∂qri
= −ṗri ,

∂H

∂pri
= q̇ri . (2.1.18)

We define the momentum field canonically conjugate to the field coordinate by

πr(~xi, t) =
∂Li(t)
∂q̇ri(t)

=
∂Li

∂φ̇r(~xi, t)
. (2.1.19)

Then
pri(t) = πr(~xi, t)δ~xi

H =
∑

i

δ~xi[πr(~xi, t)φ̇r(~xi, t) − Li]. (2.1.20)

Going over to the continuum limit δ~xi → 0 the fields go over to the continuum
values φr(~x, t)and the conjugate momentum fields to theirs πr(~x, t) (recall πr is a
function of φr, ∂µφr) and Li → L. So that

πr(x) =
∂L

∂φ̇r(x)
. (2.1.21)

The Hamiltonian corresponding to the Lagrangian L is

H =
∫
d3xH (2.1.22)
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with Hamiltonian density

H = πr(x)φ̇r(x) − L(φr , ∂µφr) (2.1.23)

and Hamilton’s equations are

δH
δφr(x)

= −iπ̇r,
δH

δπr(x)
= φ̇r(x). (2.1.24)

where δ
δφr(x) and δ

δπr(x) denote functional derivatives defined by the continuum
limit of, for example,

1
δ~xi

∂H
∂φr(~xi, t)

=
δH

δφr(x)
. (2.1.25)

In terms of the discrete coordinates and conjugate momenta we can now apply
the quantization rules of Quantum Mechanics to obtain a quantum field theory.
That is, we start with a Lagranian density in terms of products of quantum field
operators (in what follows we will use capital letters to denote quantum field
theoretic quantities as a reminder that they are quantum mechanical operators)

L = L(Φr , ∂µΦr). (2.1.26)

(Even this first step is non-trivial, since products of fields are not always well
defined due to their distributional nature. We will refine this step later, but for
now we continue.) Since now Φ is a quantum operator we face our first problem
in simply carrying over classical operations to the quantum case. Specifically it
is no longer necessary that the variation in the fields, δΦ, commute with the field
operators and derivatives of the field operators. (If one assumes that the variations
of both the fields and their conjugate momenta are independent then their CCR,
to be given, imply that they commute.) Hence a priori it is not certain that the
variation of the Lagrangian can be factorized into the Euler-Lagrange equations
times δΦ and an action principle obtained. For example, the variation of Φ2 is
δΦΦ + ΦδΦ, for arbitrary variation this is not necessarily 2ΦδΦ. Since the action
principle was used to derive the Euler-Lagrange field equations which describe the
dynamical space-time evolution of the fields we must hypothesize these instead.
That is we will consider field theories for which the Euler-Lagrange equations of
motion

∂L
∂Φr

− ∂µ
∂L

∂∂µΦr
= 0 (2.1.27)
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are by fiat the field equations. Here the derivatives of L with respect to the
quantum fields (and for quantum field derivatives in general) are defined just as
a classical derivative where the fields in a product are kept in their original order
as the chain rule is applied. For instance, ∂

∂ΦΦ4 = 4Φ3. On the other hand if we
differentiate a product of fields like ΦΦ̇Φ with respect to Φ the operators must be
kept in their original order,

∂

∂Φ
ΦΦ̇Φ = Φ̇Φ + ΦΦ̇ = 2ΦΦ̇ + [Φ̇,Φ]

6= 2ΦΦ̇.

As we see the original term ΦΦ̇Φ = Φ2Φ̇ + Φ[Φ̇,Φ], hence ignoring the commu-
tator in the derivative is like throwing away the linear Φ term in the original
product. Hence we will view the Lagrangian as a short hand way of summarizing
the dynamics of the fields, which is defined to be the Euler-Lagrange equations
formally derived from the Lagrangian. The approach, as we will see when we dis-
cuss specific models, will be to define products of quantum fields, called normal
products, with the property that operator ordering within the normal product
is irrelevant and that the field equations are the normal product of the fields in
the Euler-Lagrange equations. In general we will ignore these ordering questions
at first and use the definition of operators and field equations suggested by the
classical theory. So when a specific composite operator, like H or Pµ, is defined
we will keep the order fixed according to that definition and proceed to study
the consequences. When necessary we will return to the classical definition and
re-define the ordering of the composite operators in a quantum field theoretically
consistent manner. This will be done in the framework of specific models. In
fact some fields obey equations of motion which are not derivable from local La-
grangians, their field equations are said to have anomalous terms in them. The
form of anomalies in QFT is an extremely important subject since it deals with
purely quantum mechanical corrections to field equations. The discussion of such
models will be taken up in the study of renormalization which is beyond the scope
of these notes.

The quantization rules for the operators Φr are stated in terms of equal time
commutation relations for the fields and the conjugate “momentum” fields, defined
in an analogous procedure as followed in the classical case. We divide three-space
into cells δ~xi, i = 1, 2, 3, · · · and replace the quantum fields with their averages in
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the cell
Φ̄r(~xi, t) =

1
δ~xi

∫

δ~xi

d3xΦr(~x, t) ≈ Φr(~xi, t). (2.1.28)

These coordinate operators are denoted

Qri(t) ≡ Φ̄r(~xi, t) ≈ Φr(~xi, t) (2.1.29)

and the velocity operators
Q̇ri = Φ̇r(~xi, t). (2.1.30)

Then again
Li = Li(Qri, Q̇ri, Q

′
ri) (2.1.31)

where we defined the spatial derivatives by their nearest neighbor differences,
hence, the Q′

ri in Li. The Lagrangian is

L(t) =
∫
d3xL =

∑

i

δ~xiL(Qri, Q̇ri, Q
′
ri). (2.1.32)

The conjugate momentum operators are defined similarly as

Pri(t) ≡
∂L(t)
∂Q̇ri(t)

=
∑

j

δ~xj
∂Lj(t)
∂Q̇ri(t)

= δ~xi
∂Li

∂Q̇ri(t)
≡ Πr(~xi, t)δ~xi (2.1.33)

and the Hamiltonian

H(Qri, Pri) ≡
∑

i

PriQ̇ri − L

=
∑

i

δ~xi

[
∂Li

∂Q̇ri

Q̇ri −Li

]

=
∑

i

δ~xi

[
Πr(~xi, t)Φ̇r(~xi, t) − Li

]
. (2.1.34)

(As in quantum mechanics questions of operator ordering may arise here. For
example, if one has classically pq (=qp) in an expression, should this be replaced
by PQ, QP or 1

2 (PQ + QP) in the quantum mechanical case? We will discuss
operator ordering in more detail in the context of specific models later.) Going
over to the continuum limit with Πr(~xi, t) → Πr(~x, t) we find

Πr(x) =
∂L

∂Φ̇r(x)
(2.1.35)
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and

H =
∫
d3xH (2.1.36)

with the Hamiltonian density

H = Πr(x)Φ̇r (x) − L(Φr, ∂µΦr). (2.1.37)

Since Qri(t) and Pri(t) depend on time they are Heisenberg operators and we
demand that they obey the usual quantum mechanical equal time commutation
relations

[Qri(t), Psj(t)] = ih̄δrsδij

[Qri(t), Qsj (t)] = 0 = [Pri(t), Psj (t)] . (2.1.38)

Furthermore, they obey the Heisenberg equations of motion (these are the quan-
tum analogues of the classical Poisson bracket formulation of the Hamilton equa-
tions of motion), as can be explicitly verified in each case,

[H,Qri(t)] = −ih̄∂Qri

∂t

[H,Pri(t)] = −ih̄∂Pri

∂t
(2.1.39)

that is,

[Qri(t),Πs(~xj , t)] = ih̄δrs
δij
δ~xj

[Qri, Qsj(t)] = 0 = [Πr(~xi, t),Πs(~xj , t)] (2.1.40)

and

[H,Qri(t)] = −ih̄∂Qri(t)
∂t

[H,Πr(~xi, t)] = −ih̄∂Πr(~xi, t)
∂t

. (2.1.41)

Going over to the continuum limit we find that

δij
δ~xj

= δ3(~x − ~y) (2.1.42)
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where ~x ∈ δ~xi and ~y ∈ δ~xj since
∫
d3yδ3(~x − ~y)f(~y) = f(~x)

=
∑

j

δ~xj
δij
δ~xj

f(~xj )

= f(~xi) = f(~x)

, (2.1.43)

so that the quantum fields obey the ETCR

[Φr(~x, t),Πs(~y, t)] = ih̄δrsδ
3(~x − ~y)

[Φr(~x, t),Φs(~y, t)] = 0 = [Πr(~x, t),Πs(~y, t)] (2.1.44)

and the Heisenberg equations of motion

[H,Φr(x)] = −ih̄∂Φr(x)
∂t

[H,Πr(x)] = −ih̄∂Πr(x)
∂t

. (2.1.45)

Note that the discretized version of the QFT yields the mechanical interpretation
of QFT as an infinite collection of quantum mechanical generalized coordinates.

Before proceeding further let’s consider an example with which we are already
familiar, the noninteracting, Hermitian, scalar (spin zero) field with mass m. The
Lagrangian is given by

L =
1
2
∂µΦ∂µΦ −m2Φ2. (2.1.46)

The Euler-Lagrange equations describing the time evolution of the field are

∂L
∂Φ

− ∂µ
∂L
∂∂µΦ

= 0 = −(∂2 +m2)Φ. (2.1.47)

The quantization rules are based on the Hamiltonian approach so we introduce
the momentum field canonically conjugate to Φ by

Π(x) ≡ ∂L
∂Φ̇(x)

. (2.1.48)

Now
L =

1
2
Φ̇Φ̇ − 1

2
~5Φ · ~5Φ − 1

2
m2Φ2 (2.1.49)
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hence
Π(x) = Φ̇(x). (2.1.50)

The Hamiltonian density is

H ≡ Π(x)Φ̇(x) − L(x) = Φ̇Φ̇ − 1
2
Φ̇Φ̇ +

1
2
~5Φ · ~5Φ +

1
2
m2Φ2

=
1
2
Φ̇Φ̇ +

1
2
~5Φ · ~5Φ +

1
2
m2Φ2. (2.1.51)

The canonical quantization rules are

[Π(~x, t),Φ(~y, t)] = −ih̄δ3(~x − ~y) (2.1.52)

which yield the ETCR
[
Φ̇(~x, t),Φ(~y, t)

]
= −ih̄δ3(~x − ~y) (2.1.53)

or, with the help of an equal time delta function, we write this as

δ(x0 − y0)
[
Φ̇(x),Φ(y)

]
= −ih̄δ4(x − y) (2.1.54)

and
δ(x0 − y0) [Φ(x),Φ(y)] = 0 = δ(x0 − y0)

[
Φ̇(x), Φ̇(y)

]
. (2.1.55)

The Heisenberg equations of motion are

[H,Φ(x)] = −ih̄Φ̇;
[
H, Φ̇(x)

]
= −ih̄Φ̈(x). (2.1.56)

Using the canonical commutation relations we can calculate

δ(x0 − y0)
[
H(y), Φ̇(x)

]
= δ(x0 − y0)

1
2
~5yΦ(y).

[
~5yΦ(y), Φ̇(x)

]

+δ(x0 − y0)
1
2

[
~5yΦ(y), Φ̇(x)

]
. ~5yΦ(y)

+δ(x0 − y0)
{

1
2
m2Φ(y)

[
Φ(y), Φ̇(x)

]
+

1
2
m2

[
Φ(y), Φ̇(x)

]
Φ(y)

}

= δ(x0 − y0)(+ih̄)
{
~5yΦ(y). ~5yδ

3(~x − ~y) +m2Φ(y)δ(~x − ~y)
}
. (2.1.57)
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Now
H =

∫
d3yH(y) (2.1.58)

so that

δ(x0 − y0)
[
H, Φ̇(x)

]
= ih̄δ(x0 − y0)

{
−52 Φ(x) +m2Φ(x)

}
. (2.1.59)

Furthermore, there is no explicit time dependence in our theory so H is a constant
[H,H] = Ḣ = 0. So we can integrate over y0 to obtain for Heisenberg’s equation
of motion [

H, Φ̇(x)
]

= ih̄
[
−52 Φ(x) +m2Φ(x)

]

= −ih̄Φ̈
. (2.1.60)

This implies
Φ̈ −52Φ +m2Φ(x) = 0 (2.1.61)

or
(∂2 +m2)Φ = 0 (2.1.62)

and we obtain the Euler-Lagrange equation of motion as we should.
Before Fourier transforming to momentum space to recapture the particle in-

terpretation as discussed in the introduction, let us consider symmetries in quan-
tum field theory. In particular we would like to relate the time translation operator
P0 discussed in the quantum mechanics review to H above. Further since Φ and
Π are dynamical degrees of freedom we would like a method for constructing all
symmetry generators in terms of them. Specifically we would like to construct
Pµ and Mµν the generators of the Poincare’ transformations since a subset of
these operators will form a CSCO whose eigenstates will be the particle states of
the theory. The Lagrangian formulation of field theory will be particularly use-
ful for this procedure. However, first recall, from the Hamiltonian point of view
symmetry transformations are related to operators that commute with the Hamil-
tonian, that is, are constants in time since the Heisenberg equation of motion for
an operator Q(t) is

−ih̄∂Q(t)
∂t

= [H,Q(t)] . (2.1.63)

If Q̇ = 0 this implies [H,Q] = 0 and Q describes an invariance of H. In general
symmetries are divided into two types space-time symmetries and internal symme-
tries. Space-time symmetries are transformations of the coordinate system while
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internal symmetries do not involve the coordinate system only the fields. In both
cases the invariance of the system under such symmetry transformations will lead
to conservation laws.

Recall for symmetry transformations of our system which are represented by
unitary or antiunitary operators we have a one-to-one correspondence among the
states of our Hilbert space given by

|ψ′ >= U |ψ > (2.1.64)

that preserves transition probabilities

| < ψ′|φ′ > |2 = | < ψ|φ > |2. (2.1.65)

Furthermore, operator matrix elements transform as finite dimensional matrix
representations of the symmetry group

< ψ′|Ar(x′)|φ′ >= Srs < ψ|As(x)|φ > (2.1.66)

that is,
U†Ar(x′)U = SrsAs(x). (2.1.67)

In particular if these transformations belong to some continuous group G with
elements g(α) depending on the group parameters αi, i = 1, 2, · · · , A, and A =
dimG, then for g1 · g2 = g we have that

U(g1)U(g2) = U(g) (2.1.68)

where in general we can take the phase equal to one which we will assume here.
Consequently,

U†(g2)U†(g1)Ar(x′)U(g1)U(g2) = U†(g)Ar(x′)U(g) (2.1.69)

which implies
Srs(g1)Sst(g2)At(x) = Srt(g)At(x) (2.1.70)

that is
S(g1)S(g2) = S(g). (2.1.71)
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S(g) is a finite dimensional matrix representation of the group multiplication law.
For transformations continuously connected to the identity we have that

U(g(α)) = eiαiQ
i

. (2.1.72)

Since
U−1 = U† , (2.1.73)

implies
e−iαiQ

i

= e−iαiQ†
i , (2.1.74)

we have
Qi = Q†

i , (2.1.75)

Qi is Hermitian and is known as the charge or generator of the transformations.
If U corresponds to an invariance of the system (the eigenstates are the same)

then
H = U†HU , (2.1.76)

the Hamiltonian is invariant. This implies that the transition probability of state
|φ(t0) > to evolve into state |ψ(t) > at time t is unchanged for |φ′(t0) > to evolve
into |ψ′(t) > (in the Schrödinger picture)

| < ψ(t)|U(t, t0)|φ(t0) > |2 = | < ψ′(t)|U(t, t0)|φ′(t0) > |2 (2.1.77)

implies
U†(g)U(t, t0)U(g) = U(t, t0) (2.1.78)

but U(t, t0) = e−iH(t−t0) so [U(t, t0), U(g)] = 0. Conversely, if the equation of
motion is invariant, [U(t, t0), U(g)] = 0, then the Hamiltonian is invariant since

U(t0 + δt, t0) ≈ 1 − iHδt (2.1.79)

so that
[H,U(g)] = 0. (2.1.80)

So the invariance of the law of motion implies a symmetry of the Hamiltonian and
a symmetry of the Hamiltonian implies an invariance of the law of motion. For
U(g(α)) = eiαiQ

i

and αi small we find that

U†HU ≡ H + δH (2.1.81)
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with δH the variation of H. But

U†HU = H − iαi

[
Qi,H

]
(2.1.82)

thus
δH = −iαi [Qi,H] (2.1.83)

if H is invariant then U†HU = H, that is δH = 0, so [Qi,H] = 0. By the
Heisenberg equation of motion

ih̄Q̇i =
[
Qi,H

]
(2.1.84)

so Q̇i = 0 is a constant of motion, Qi is a conserved quantity.
The Lagrangian formulation of QFT allows for a straightfoward construction

of the charges Q associated with symmetries of L (and hence H). This procedure
is incorporated in Noether’s Theorem. Rather than review Noether’s Theorem
in classical field theory and then repeat the process with appropriate changes in
the quantum field theoretic case we will proceed directly to the quantum case.
As always we are using the classical theory as a guide and we should expect
some changes when the fields become operators. Especially we will need to clarify
questions of operator ordering. Here our “give and take” approach will be used.
We will construct currents and charges that do the job we want based on the
classical manipulations. When we use the definitions in our specfic spin 0, 1

2 , 1
free field theories we will find that we must come back with a finer definition for
some quantities so that the operator nature of the fields is taken into account
consistently. As usual we start with a Lagrangian

L = L(Φr , ∂µΦr) (2.1.85)

and ask for L to be invariant under transformations belonging to the group G

L(x) = U†(g)L(x′)U(g) ≡ L + δL. (2.1.86)

The middle term is evaluated at x′ if G is a space- time symmetry group. Note
this implies that the equations of motion in the transformed system are the same
as in the original system since L is the same. Also

S′ =
∫
d4x′U†(g)L(x′)U(g)
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=
∫
d4x|∂x

′

∂x
|U†(g)L(x′)U(g) (2.1.87)

we consider the Poincare’ transformations only, so |∂x′

∂x | = 1 and if

U†L(x′)U = L(x) (2.1.88)

we have
S′ =

∫
d4xL(x) = S (2.1.89)

that the action is invariant.
Now under these transformations the fields vary

U†(g)Φr(x′)U(g) = Srs(g)Φs(x) (2.1.90)

or for infinitesimal variations

U(g) = eiαiQ
i

≈ 1 + iαiQ
i (2.1.91)

while
Srs(g) =

(
e−αiD

i
)

rs
≈ 1 − αiD

i
rs (2.1.92)

where Di
rsis a matrix. So inverting,

U(g)Φr(x)U†(g) = S−1
rs (g)Φs(x′) (2.1.93)

implies that
Φr(x) + iαi

[
Qi,Φr(x)

]
= Φr(x′) + αiD

i
rsΦs(x). (2.1.94)

Letting x′µ = xµ + αiδ
ixµ, we obtain the intrinsic variation of Φr

−iαiδ̄
iΦr(x) ≡ −i

(
U(g)Φr(x)U†(g) − Φr(x)

)

= αi

[
Qi,Φr(x)

]

= −iαi

[
δixµ∂µΦr(x) +Di

rsΦs(x)
]
. (2.1.95)

So we are now in a position to calculate the intrinsic variation of the Lagrangian

U†(g)L(x)U(g) = L(x) − iαi

[
Qi,L(x)

]
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≡ L(x) − αiδ̄
iL(x). (2.1.96)

Since L is a function of Φr and ∂µΦr, its intrinsic variation is just given by the
chain rule operation

δ̄iL =
(
δ̄iΦr

∂

∂Φr

)
L +

(
δ̄i∂µΦr

∂

∂∂µΦr

)
L (2.1.97)

where it is understood that the variations times the derivatives act as units as
they are brought inside L to the field upon which they act. Here, as in what
immediately follows, we will proceed formally as though δ̄iΦr commutes with Φr

and ∂µΦr. We may then use the manipulations of classical field theory. Eventually
we will define the composite operators making up L by means of normal products
of fields so that the fields within a product commute. Hence we can factor out
the field variations in δ̄iL to yield

δ̄iL =
∂L
∂Φr

δ̄iΦr +
∂L

∂∂µΦr
δ̄i∂µΦr. (2.1.98)

But we have that

δ̄i∂x
µΦr(x) = U(g)∂x

µΦr(x)U† − ∂x
µΦr(x)

= ∂x
µ[UΦr(x)U† − Φr(x)] = ∂µδ̄

iΦr (2.1.99)

so that differentiating by parts implies

δ̄iL(x) =
(
∂L
∂Φr

− ∂µ
∂L

∂∂µΦr

)
δ̄iΦr(x)

+∂µ

[
∂L

∂∂µΦr
δ̄iΦr

]
. (2.1.100)

But the Euler-Lagrange equations of motion require that

∂L
∂Φr

− ∂µ
∂L

∂∂µΦr
= 0, (2.1.101)

hence

δ̄iL(x) = ∂µ

[
∂L

∂∂µΦr
δ̄iΦr

]
. (2.1.102)
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It follows that
U†(g)L(x)U(g) = L(x) − αiδ̄

iL(x) (2.1.103)

or at x′
U†(g)L(x′)U(g) = L(x′) − αiδ̄

iL(x)

= L(x) + αi

[
δixµ∂µL − δ̄iL

] (2.1.104)

and consequently,
δL(x) = U†(g)L(x′)U(g) − L(x)

= −αi

[
δ̄iL − δixµ∂µL

] . (2.1.105)

By letting −αiδ̄
i ≡ δ̄ and +αiδ

ixµ ≡ δxµ we have

δL(x) = δ̄L + δxµ∂µL(x). (2.1.106)

However, equation (2.1.102) gave

δ̄L = ∂µ

(
∂L

∂∂µΦr
δ̄Φr

)
(2.1.107)

so that equation (2.1.106) becomes

δL = ∂µ

[
∂L

∂∂µΦr
δ̄Φr

]
+ δxµ∂µL(x)

= ∂µ

[
∂L

∂∂µΦr
δ̄Φr + δxµL

]
− (∂µδx

µ)L(x). (2.1.108)

Recall that for the Poincare’ group

x′µ = xµ + ωµνxν + εµ

ωµν = −ωνµ (2.1.109)

which implies that
∂µδx

µ = ωµνgµν = 0. (2.1.110)

Thus, we obtain Noether’s Theorem:

δL = ∂µJ
µ
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Jµ ≡
[

∂L
∂∂µΦr

δ̄Φr + δxµL

]
(2.1.111)

where Jµ is the current. If the Lagrangian is invariant

δL = 0 = U†L(x′)U − L(x) (2.1.112)

the current is conserved
∂µJ

µ = 0. (2.1.113)

The charge Qi is a time independent operator given by

Qi ≡
∫
d3xJ i0(x) (2.1.114)

which generates symmetry transformations. PROOF:

Q̇i =
∫
d3x∂0J

i0 (2.1.115)

but
∂µJ

µ = 0 = ∂0J
0 − ~5 · ~J (2.1.116)

which implies

Q̇i = −
∫
d3x~5 · ~J = −

∫

S∞

d~S · ~J = 0 (2.1.117)

since the fields tend to zero as the |~x| → ∞. Thus, the charge, Qi , is a conserved
quantity. The charge density is

J0 =
∂L
∂Φ̇r

δ̄Φr + δx0L, (2.1.118)

but
∂L
∂Φ̇r

= Πr(x) (2.1.119)

so that
J0 = Πr δ̄Φr + δx0L (2.1.120)

and
Q =

∫
d3xΠr δ̄Φr +

∫
d3xδx0L. (2.1.121)
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Recall that
L = −H + ΠrΦ̇r (2.1.122)

and
δxµ = ενg

νµ + ωνλx
λgνµ (2.1.123)

for Poincare’ transformations. Presently, it is simpler to consider internal symme-
tries and space-time symmetries separately.

1)Internal Symmetries δxµ = 0

δ̄Φr(x) = −αiδ̄
iΦr(x) = −αiD

i
rsΦs(x) (2.1.124)

δL = δ̄L = ∂µJ
µ (2.1.125)

with

Jµ =
[

∂L
∂∂µΦr

(
−αiD

i
rsΦs

)]
≡ −αiJ

µ
i (2.1.126)

so that we have
Jµ

i =
∂L

∂∂µΦr
Di

rsΦs. (2.1.127)

If δL = 0 this implies ∂µJ
µ
i = 0 and

Qi =
∫
d3xJ0

i (x) =
∫
d3xΠrD

i
rsΦs. (2.1.128)

Already Q̇i = 0, so

[Qi,Φr(x)] =
∫
d3y

[
Πt(y)Di

tsΦs(y),Φr(x)
]
. (2.1.129)

Since Qi is time independent its integrand can be taken at y0 = x0 so that the
equal time commutator yields

[Qi,Φr(x)] =
∫
d3y − iδtrδ

3(~y − ~x)Di
tsΦs(y) = −iDi

rsΦs(x), (2.1.130)

which agrees with our previously derived result (2.1.95) and (2.1.124). So indeed
this is Qi.

2)Translations δxµ = gµνεν
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δ̄Φr(x) = −αiδ̄
iΦr = −δxµ∂µΦr = −ενgµν∂µΦν, (2.1.131)

since Drs = 0 for translations i.e. Srs = δrs only. We have that

δL = δ̄L + δxµ∂µL = ∂µJ
µ (2.1.132)

with

Jµ =
[

∂L
∂∂µΦr

(−ενgµν∂µΦr) + gµνενL
]

= −εν
[

∂L
∂∂µΦr

∂νΦr − gµνL
]

= −ενTµν(x)

(2.1.133)

where the current Tµν is given by

Tµν(x) ≡ ∂L
∂∂µΦr

∂νΦr − gµνL (2.1.134)

and is called the energy-momentum tensor. If δL = 0, i.e. L is translationally
invariant, then we have that

∂µT
µν = 0. (2.1.135)

Furthermore, the charge

Qν ≡ Pν ≡
∫
d3xT 0ν (2.1.136)

is called the energy-momentum operator or translation operator. Now,

[Pν ,Φr(x)] =
∫
d3y

[
T 0ν(y),Φr(x)

]

=
∫
d3y

[(
Πr∂

νΦr − g0νL
)
(y),Φr(x)

] (2.1.137)

So for ν = 0 we have

P0 =
∫
d3xT 00 =

∫
d3x

(
ΠrΦ̇r − L

)

=
∫
d3xH

= H

(2.1.138)
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and [P0,Φr(x)] = [H,Φr(x)] = −iΦ̇r(x), which agrees with (2.1.95). For µ =
1, 2, 3 we have

~P =
∫
d3xT 0i = −

∫
d3xΠr

~5Φr (2.1.139)

so that [
~P,Φr(x)

]
= −

∫
d3y [Πs(y),Φr(x)] ~5Φs(y)

= i~5Φr(x)
. (2.1.140)

Hence
[Pµ,Φr(x)] = −i∂µΦr(x) (2.1.141)

which is in agreement with equation (2.1.95).

3) Lorentz Transformations δxµ = gµνωνλx
λ = ωµνxν

δ̄Φr = −δxµ∂µΦr −
ωµν

2
Dµν

rs Φs

= −ωµνxν∂µΦr −
ωµν

2
Dµν

rs Φs

=
ωµν

2
[(xµ∂ν − xν∂µ) Φr −Dµν

rs Φs]

(2.1.142)

where theDµν
rs are the tensor or spinor representations of the Lorentz group studied

earlier. So
δL = ∂µJ

µ (2.1.143)

with

Jµ =
[

∂L
∂∂µΦr

ωνρ

2
[(xν∂ρ − xρ∂ν) Φr −Dνρ

rs Φs] + gµνωνρx
ρL

]

≡ ωνρ

2
Mµνρ(x), (2.1.144)

where Mµνρis called the angular momentum tensor. We can write it as

ωνρ

2
Mµνρ =

ωνρ

2
xν

(
∂L

∂∂µΦr
∂ρΦr − gµρL

)

−ωνρ

2
xρ

(
∂L

∂∂µΦr
∂νΦr − gµνL

)
− ∂L
∂∂µΦr

Dνµ
rs Φs

ωνρ

2

+
ωνρ

2
(xνgµρL − xρgµνL + 2xρgµνL)
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=
ωνρ

2

(
xνTµρ − xρTµν − ∂L

∂∂µΦr
Dνρ

rs Φs

)
+
ωνρ

2
(xνgµρL + xρgµνL) . (2.1.145)

Since the second term in brackets on the right hand side is ν − ρ symmetric it
vanishes when multiplied by ωνρ. The first term in brackets is ν−ρ anti-symmetric
hence we have that

Mµνρ = xνTµρ − xρTµν − ∂L
∂∂µΦr

Dνρ
rs Φs

= −Mµρν . (2.1.146)

Note that we have simply

∂µM
µνρ = T νρ − T ρν − ∂µ (Πµ

rD
νρ
rs Φs) (2.1.147)

where
Πµ

r ≡ ∂L
∂∂µΦr

. (2.1.148)

¿From (2.1.143) we know this must be zero, but let’s check it

T νρ = Πν
r∂

ρΦr − gνρL (2.1.149)

hence
T νρ − T ρν = Πν

r∂
ρΦr − Πρ

r∂
νΦr, (2.1.150)

while
−∂µ (Φµ

rD
νρ
rs Φs) =

− ∂L
∂Φr

Dνρ
rs Φs − Πµ

r ∂µD
νρ
rs Φs. (2.1.151)

Now the variation yields

δL = δ̄L + δxµ∂µL

=
∂L
∂Φr

δ̄Φr + Πµ
r ∂µδ̄Φr + δxµ∂µL

. (2.1.152)

Performing the necessary algebra this becomes

δνρL =
∂L
∂Φr

[(xν∂ρ − xρ∂ν)Φr −Dνρ
rs Φs]
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+Πµ
r ∂µ [(xν∂ρ − xρ∂ν)Φr −Dνρ

rs Φs] − (xν∂ρ − xρ∂ν)L

= − ∂L
∂Φr

Dνρ
rs Φs + xν ∂L

∂Φr
∂ρΦr − xρ ∂L

∂Φr
∂νΦr

−Πµ
r ∂µD

νρ
rs Φs + Φν

r∂
ρΦr − Πρ

r∂
νΦr

+xν ∂L
∂∂µΦr

∂ρ∂µΦr − xρ ∂L
∂∂µΦr

∂ν∂µΦr

−xν∂ρL + xρ∂νL

= − ∂L
∂Φr

Dνρ
rs Φs − Φµ

r ∂µD
νρ
rs Φs + Φν

r∂
ρΦr − Πρ

r∂
νΦr

+xν∂ρL − xρ∂νL − xν∂ρL + xρ∂νL. (2.1.153)

Hence we have checked explicitly that

δνρL = T νρ − T ρν − ∂µ (Πµ
rD

νρ
rs Φs) , (2.1.154)

so
∂µM

µνρ = δνρL = 0 (2.1.155)

as proved before in general. So if L is Lorentz invariant we have

T νρ − T ρν = ∂µ (Πµ
rD

νρ
rs Φs) . (2.1.156)

We can always construct a symmetric energy momentum tensor that leads to
the same Pµ and is conserved as shown by F. J. Belinfante (Purdue professor).
Let

Hρµν ≡ Πρ
rD

µν
rs Φs

= −Hρνµ, (2.1.157)

then
Tµν − T νµ = ∂ρH

ρµν . (2.1.158)

Then we can always define a symmetric energy-momentum tensor (the Belinfante
tensor, the construction process being called the Belinfante improvement procee-
dure) by

Θµν ≡ Tµν − ∂ρG
ρµν (2.1.159)
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where
Gρµν ≡ 1

2
[Hρµν +Hµνρ +Hνµρ] . (2.1.160)

1) First we have
∂µΘµν = ∂µT

µν . (2.1.161)

PROOF:
∂µΘµν − ∂µT

µν = −∂µ∂ρG
ρµν (2.1.162)

but
Gµρν =

1
2

[Hµρν +Hρνµ +Hνρµ]

=
1
2

[−Hµνρ −Hρµν −Hνµρ]
. (2.1.163)

So
Gρµν =

1
2

[Hρµν +Hµνρ +Hνµρ] (2.1.164)

and
Gρµν = −Gµρν . (2.1.165)

Thus,
∂µ∂ρG

ρµν ≡ 0. (2.1.166)

2) Secondly Θµν is to be symmetric

Θµν = Θνµ, (2.1.167)

so
Tµν − T νµ

= −1
2
∂ρ [Hρνµ +Hνµρ +Hµνρ −Hρµν −Hµνρ −Hνµρ]

= +∂ρH
ρµν (2.1.168)

as required. Hence we also have

2′) ∂νΘµν = 0. (2.1.169)

3) Thirdly the charge is unchanged

Pν =
∫
d3xΘ0ν =

∫
d3xT 0ν −

∫
d3x∂ρG

ρ0ν

=
∫
d3xT 0ν −

∫
d3x∂0G

00ν

(2.1.170)
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but
G00ν = 0 (2.1.171)

hence
Pν =

∫
d3xΘ0ν =

∫
d3xT 0ν . (2.1.172)

Similarly we can Belinfante improve the angular momentum tensor, denote
the improved tensor by Mµνρ

B , so that

Mµνρ
B ≡ xνΘµρ − xρΘµν . (2.1.173)

First note that
∂µM

µνρ
B = Θνρ −Θρν = 0. (2.1.174)

So we have
Mµνρ

B = Mµνρ +Hµνρ − xν∂λG
λµρ + xρ∂λG

λµν

= Mµνρ +Hµνρ + ∂λ

[
xρGλµν − xνGλµρ

]
+Hµνρ

+
1
2

[Hνµρ +Hµρν +Hρµν −Hρµν −Hµνρ −Hνµρ] . (2.1.175)

This is just a Belinfante improvement to Mµνρ given by

Mµνρ
B = Mµνρ + ∂λ

[
xρGλµν − xνGλµρ

]
. (2.1.176)

Hence the charge is also unchanged

∫
d3xM0νρ

B =
∫
d3xM0νρ +

∫
d3x∂0

[
xρG00ν − xνG00ρ

]

=
∫
d3xM0νρ

= Mνρ (2.1.177)

yielding the generator of the Lorentz transformations. Also

[Mνρ,Φr(x)] = −iδ̄νρΦr(x)

= −i [(xν∂ρ − xρ∂ν) Φr(x) −Dνρ
rs Φs(x)] , (2.1.178)
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which can be checked explicitly as in the Pµ case. In general, any current can be
Belinfante improved

Jµ
B ≡ Jµ + ∂ρG

ρµ (2.1.179)

if there exist tensors Gρµ so that

Gρµ = −Gµρ, (2.1.180)

then
∂ρ∂µG

ρµ ≡ 0 (2.1.181)

and
Q =

∫
d3xJ0

B =
∫
d3xJ0. (2.1.182)

We now turn our attention to the specific Lagrangians describing spin 0, 1
2 ,

and 1 particles that are non-interacting.
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