# The Postulates Of Quantum Mechanics

### Postulate 1: The State of the System

The set of all possible states of a physical system stand in a one-to-one correspondence with the vector directions (rays) in a Hilbert space  $\mathcal{H}$ . ( $\mathcal{H}$  can be finite or infinite depending upon the system. To allow for continuous basis vectors we will extend the system and space to  $\hat{\mathcal{H}}$ .)

Since the state is described by the entire ray, we have that  $|\psi\rangle$  and  $\lambda|\psi\rangle$  with  $\lambda\in\mathcal{C}$  describe the same state.

## Postulate 2: Physical Observables and Hermitian Operators

The physical observables of a system stand in a one-to-one correspondence with the set of Hermitian operators on the state space  $\mathcal{H}$ . That is, to each measurable quantity  $\mathcal{A}$ , there corresponds a Hermitian operator A acting on  $\mathcal{H}$ . Out of the set of all Hermitian operators, there is a subset which consists of mutually commuting operators and are assumed to be complete (they form a CSCO; each A is assumed an observable).

# Postulate 3: Measurement, Spectral Decomposition and Statistical Interpretation

**a.** The only possible result of the measurement of a physical observable  $\mathcal{A}$  is one of the (real) eigenvalues of the corresponding Hermitian operator A.

**b.** Let  $\{|\phi_k>\}$  be the simultaneous eigenstates of a CSCO so that

$$A|\phi_k>=a_k|\phi_k>$$
 , etc. (1)

These states form an orthonormal basis for the state space  $\mathcal{H}$ .

c. For a system in state  $|\psi\rangle$  (with  $\langle\psi|\psi\rangle=1$ ) the probability of measuring the value  $a_k$  for the physical observable  $\mathcal{A}$  is

$$P_k = |\langle \phi_k | \psi \rangle|^2 \quad . \tag{2}$$

**d.** Immediately following the measurement, the system is in the state  $|\phi_k>$ .

To be more explicit:

### Discrete Orthonormal Basis

If the orthonormal basis is a discrete basis, then the simultaneous eigenvectors,  $|\phi_{ab...}\rangle$ , of the CSCO  $\{A, B, ...\}$  obey

$$\langle \phi_{a'b'\dots} | \phi_{ab\dots} \rangle = \delta_{a'a} \delta_{b'b} \cdots$$

$$\sum_{a,b,\dots} |\phi_{ab\dots} \rangle \langle \phi_{ab\dots}| = 1,$$
(3)

where

$$A|\phi_{ab...}\rangle = a|\phi_{ab...}\rangle$$
  

$$B|\phi_{ab...}\rangle = b|\phi_{ab...}\rangle , \text{ etc.},$$
(4)

with the eigenvalues  $\{a, b, \ldots\}$  taking discrete values (in 1-1 correspondence with the integers).

For an arbitrary state vector  $|\psi\rangle$ , we have the expansion in terms of the  $\{|\phi_{ab...}\rangle\}$  basis

$$|\psi\rangle = \sum_{a,b,\dots} \psi_{ab\dots} |\phi_{ab\dots}\rangle, \tag{5}$$

with

$$\psi_{ab...} = \langle \phi_{ab...} | \psi \rangle. \tag{6}$$

This implies

$$A|\psi\rangle = \sum_{a,b,\dots} a \quad \psi_{ab\dots}|\phi_{ab\dots}\rangle$$

$$B|\psi\rangle = \sum_{a,b,\dots} b \quad \psi_{ab\dots}|\phi_{ab\dots}\rangle,$$
etc. (7)

The probability of finding the values  $a, b, \ldots$  for the system in state  $|\psi\rangle$  when  $\mathcal{A}, \mathcal{B}, \ldots$  are measured is

$$P_{ab...} = |\langle \phi_{ab...} | \psi \rangle|^2$$
 (8)

Note that

$$\sum_{a,b,...} P_{ab...} = \sum_{a,b,...} | < \phi_{ab...} | \psi > |^{2}$$

$$= \sum_{a,b,...} < \psi | \phi_{ab...} > < \phi_{ab...} | \psi >$$

$$= < \psi | \sum_{\underline{a,b,...}} | \phi_{ab...} > < \phi_{ab...} | | \psi >$$

$$= < \psi | \psi >$$

$$= 1,$$
(9)

as required of a probability. Also the expectation value of  $A, B, \ldots$  in state  $|\psi>$  is

$$\langle \psi | A | \psi \rangle = \sum_{a,b,\dots} a \qquad \underbrace{\psi_{ab\dots}}_{=\langle \phi_{ab\dots} | \psi \rangle} \langle \psi | \phi_{ab\dots} \rangle$$

$$= \sum_{a,b,\dots} a \qquad |\langle \phi_{ab\dots} | \psi \rangle|^{2}$$

$$= \sum_{a,b,\dots} a \qquad P_{ab\dots} \quad , \quad \text{etc.}$$

$$(10)$$

### Continuous Orthonormal Basis

On the otherhand if the orthonormal basis is continuous, then

$$\langle \phi_{\alpha'\beta'\dots}|\phi_{\alpha\beta\dots}\rangle = \delta(\alpha'-\alpha)\delta(\beta'-\beta)\dots$$

$$\int d\alpha d\beta\dots|\phi_{\alpha\beta\dots}\rangle\langle\phi_{\alpha\beta\dots}| = 1,$$
(11)

where

$$A|\phi_{\alpha\beta...}\rangle = \alpha|\phi_{\alpha\beta...}\rangle$$
  
 $B|\phi_{\alpha\beta...}\rangle = \beta|\phi_{\alpha\beta...}\rangle,$   
etc. (12)

with the eigenvalues  $\{\alpha, \beta, \ldots\}$  taking on a continuum of values.

For an arbitrary ket vector  $|\psi\rangle$ , the expansion in terms of the continuous basis  $\{|\phi_{\alpha\beta...}\rangle\}$  is

$$|\psi\rangle = \int d\alpha d\beta \cdots \psi(\alpha, \beta, \ldots) |\phi_{\alpha\beta\ldots}\rangle,$$
 (13)

with

$$\psi(\alpha, \beta, \ldots) = \langle \phi_{\alpha\beta\ldots} | \psi \rangle. \tag{14}$$

This implies

$$A|\psi\rangle = \int d\alpha d\beta \cdots \alpha \quad \psi(\alpha, \beta, \ldots)|\phi_{\alpha\beta\ldots}\rangle$$

$$B|\psi\rangle = \int d\alpha d\beta \cdots \beta \quad \psi(\alpha, \beta, \ldots)|\phi_{\alpha\beta\ldots}\rangle$$
etc. (15)

The probability of measuring  $\mathcal{A}$  in the range  $\alpha$  to  $\alpha + d\alpha$ ,  $\mathcal{B}$  in the range  $\beta$  to  $\beta + d\beta$ , etc. is

$$d\mathcal{P}(\alpha, \beta, \ldots) = |\langle \phi_{\alpha\beta\ldots} | \psi \rangle|^2 d\alpha d\beta \cdots \qquad (16)$$

Note that

$$\int d\mathcal{P}(\alpha, \beta, \dots) = \int d\alpha d\beta \dots |\langle \phi_{\alpha\beta...} | \psi \rangle|^{2}$$

$$= \langle \psi | \underbrace{\int d\alpha d\beta \dots |\phi_{\alpha\beta...} \rangle \langle \phi_{\alpha\beta...}}_{=1} | | \psi \rangle$$

$$= \langle \psi | \psi \rangle$$

$$= 1, \qquad (17)$$

as required of a probability. Also the expectation value of  $A, B, \ldots$  in state  $|\psi\rangle$  is

$$<\psi|A|\psi> = \int d\alpha d\beta \cdots \alpha \underbrace{\psi(\alpha,\beta,\ldots)}_{=<\phi_{\alpha\beta\ldots}|\psi>} <\psi|\phi_{\alpha\beta\ldots}>$$

$$= \int d\alpha d\beta \cdots \alpha |<\phi_{\alpha\beta\ldots}|\psi>|^{2}$$

$$= \int d\mathcal{P}(\alpha,\beta,\ldots)\alpha$$
etc. (18)

#### Postulate 4: Time Evolution and The Schrödinger Equation

The time evolution of the physical states is given by the Schrödinger equation

$$i\hbar \frac{d}{dt}|\psi(t)\rangle = H(t)|\psi(t)\rangle , \qquad (19)$$

where H = H(t) is the Hermitian Hamiltonian operator. H(t) is the total energy of the system.

For an isolated system, the Hamiltonian is time independent. Schrödinger's equation is simply

$$i\hbar \frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle$$
 , (20)

with the eigenvalues of H the possible energies of the system.

In general the observables may also have explicit time dependence A=A(t). (For example, a charged particle can interact with an external time varying electromagnetic field.) For an isolated system, as is the Hamiltonian, the observables are time independent,  $\frac{dA}{dt}=0$ .