Quantum Mechanics I

Physics 660

I. Schrodinger Wave Mechanics

- 1.1. Introduction
- 1.2. Postulates
 - 1.2.1. States and Wavefunctions
 - 1.2.2. Probability density
 - 1.2.3. Observables and Spectral Decomposition
 - 1.2.4. Time Evolution: The Schrodinger Equation
- 1.3. Consequences and Physical Interpretation
 - 1.3.1. Continuity Equation
 - 1.3.2. Free Particle Wave Functions
 - a. Plane Waves
 - b. Gaussian Wave Packets
 - 1.3.3. Expectation Values
 - 1.3.4. Canonical Commutation Relations
 - 1.3.5. Ehrenfest's Theorem and Classical Mechanics
 - 1.3.6. Heisenberg Uncertainty Principle
 - 1.3.7. Stationary States, Hermitian Operators, eigenvalues and eigenfunctions
 - 1.3.8. Boundary Conditions on the Wavefunction
 - 1.3.9. Feynman's Path Integral Formulation of Quantum Mechanics

II. Applications In One-Dimension

- 2.1. Scattering off a Potential Step
 - 2.1.1. Reflection and Transmission Coefficients
 - 2.1.2. Barrier penetration
- 2.2. Bound States
 - 2.2.1. Square Well
 - 2.2.2. Simple Harmonic Oscillator
 - 2.2.3. Periodic Potentials and Bloch's Theorem, the Kronig-Penny Model and conduction bands in solids

III. Central Potential Problem

- 3.1. The Two Body Problem, the center of momentum frame
- 3.2. Spherical Polar Coordinates, Separation of Variables and Spherical Harmonics
- 3.3. Orbital Angular Momentum and the Spherical Harmonic Eigenfunctions
- 3.4. The Radial Equation and Bound States
- 3.5. The Hydrogen Atom

IV. The Abstract Formulation of Quantum Mechanics

- 4.1. Hilbert Space and Dirac bra-ket notation
- 4.2. Operators, Eigenvalues and Observables
- 4.3. The Postulates of Quantum Mechanics
- 4.4. The Schrodinger, Heisenberg and Interaction Pictures
- 4.5. Position, Momentum and Energy Representations—Eigenstate bases
- 4.6. Consequences and Physical Interpretation of the Postulates
- 4.7. One-Dimensional Simple Harmonic Oscillator
- 4.8. One-Dimensional Simple Harmonic Oscillator in an external time dependent potential
- 4.9. The N-Dimensional Isotropic Simple Harmonic Oscillator and SU(N)
- 4.10. Feynman's Path Integral Formulation of Quantum Mechanics Revisited

V. Symmetry in Quantum Mechanics

- 5.1. Transformations between physically equivalent quantum descriptions and Wigner's Theorem
- 5.2. Space-Time Symmetries
 - 5.2.1. The Principle of Galilean Relativity and the Galilean Group
- 5.3. Spatial Rotations, the Rotation Group and the Angular Momentum Operators
 - 5.3.1. Geometry of rotations and the rotation group
 - 5.3.2. The Angular Momentum operators and their commutation relations
 - 5.3.3. Physical Description of Spin
 - 5.3.4. Angular Momentum Commutation Relations and the "Standard Basis"
 - 5.3.5. Angular Momentum Operator Matrix Representation in the Standard Basis
 - 5.3.6. Spin and Orbital Angular Momentum Revisited
 - 5.3.7. Addition of angular momentum and Clebsch-Gordon coefficients
 - 5.3.8. The Wigner-Eckhardt theorem and Irreducible Tensor Operators
 - 5.3.9. Parity and Time Reversal Transformations

Physics 661 Quantum Mechanics II Spring

V. Symmetry in Quantum Mechanics

- 5.1. Transformations between physically equivalent quantum descriptions and Wigner's Theorem
- 5.2. Space-Time Symmetries
 - 5.2.1. The Principle of Galilean Relativity and the Galilean Group
- 5.3. Spatial Rotations, the Rotation Group and the Angular Momentum Operators
 - 5.3.1. Geometry of rotations and the rotation group
 - 5.3.2. The Angular Momentum operators and their commutation relations
 - 5.3.3. Physical Description of Spin
 - 5.3.4. Angular Momentum Commutation Relations and the "Standard Basis"
 - 5.3.5. Angular Momentum Operator Matrix Representation in the Standard Basis
 - 5.3.6. Spin and Orbital Angular Momentum Revisited
 - 5.3.7. Addition of angular momentum and Clebsch-Gordon coefficients
 - 5.3.8. The Wigner-Eckhardt theorem and Irreducible Tensor Operators
 - 5.3.9. Parity and Time Reversal Transformations

VI. Approximation Methods For Bound States

- 6.1. Rayleigh-Schrodinger Stationary State Perturbation Theory
 - 6.1.1. Non-Degenerate Perturbation Theory
 - 6.1.2. Degenerate Perturbation Theory
- 6.2. Brillouin-Wigner Stationary State Perturbation Theory
- 6.3. The Rayleigh-Ritz Variational Method
- 6.4. Fine Structure of the Hydrogen Atom Spectrum
- 6.5. The Hydrogen Atom in Electric and Magnetic Fields
 - 6.5.1. Constant, Uniform External Magnetic Field B: The Zeeman Effect
 - 6.5.2. Constant. Uniform External Electric Field E: The Stark Effect

VII. Approximation Methods for Continuous Energy Eigenvalues: Potential (Elastic) Scattering Theory

- 7.1. Potential Scattering
 - 7.1.1. The Scattering Green Function
 - 7.1.2. The Born Approximation
 - 7.1.3. Examples of Scattering from Potentials
- 7.2. Scattering by a Central Potential and the Partial Wave Analysis
 - 7.2.1. Scattering by Complex Potentials
 - 7.2.2. Bound States and the Lippman-Schwinger Integral Equation
 - 7.2.3. The Born Approximation for the Partial Wave Analysis
 - 7.2.4. Examples of Partial Wave Analysis

VIII. Time Dependent Perturbation Theory

- 8.1. Dirac Perturbation Theory
- 8.2. Fermi's Golden Rule
- 8.3. Semi-Classical Treatment of Electromagnetic Radiation: The Interaction of Bound States of Charge Particles with Photons
- 8.4. The Formal Theory of Scattering

IX. Identical Particles

- 9.1. Hartree-Fock Approximation
- 9.2. Exchange Effects in Elastic Scattering