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In this way we will obtain all possible (finite dimensional) representations
of the Lorentz group.

In order to obtain the transformation law for spinors we will consider the
set of 2 x 2 complex matrices with determinant =1. These form the group
called SL(2,C). We will represent the Lorentz group by the action of these
matrices on two component complex spinors. Equivalently we could build the
spinor transformation law from the spin % angular momentum representation
matrices familiar from quantum mechanics, the Pauli matrices. Once we
know the action of N and N on the spinors we can reconstruct that of M.
However, it is more useful and to the point to proceed by considering directly
SL(2,C). To obtain the relation of the Lorentz group to SL(2,C) we must first
recall that there exists a one to one correspondence between 2 x 2 Hermitian
matrices and space-time points. The Pauli matrices

(UO)ME(é ?)M
(al)adz(? é)m

(%) = (—Ez _oi>ad

(0%)aa = ((1) _01>ad, (IT.1)

where a = 1, 2 labels the two rows and & = 1, 2 labels the two columns, form
a basis for 2 x 2 Hermitian matrices. Let X, be a Hermitian matrix, that
is,

X=X

(Xaa = (X)aa- (11.2)

It has the general form

Koo = ( ((;510 : 2'232)) ((210 _—2532)) >aa

= .CL"H(O'“)QQ E/Zﬁad (113)
for z,, real with 4 called “x slash”. Thus corresponding to any 4 vector z*

we associate a 2 x 2 Hermitian matrix X, by equation (I1.3). Using the
trace relation for the product of two Pauli matrices

(U“)ad(wQ)aB(UV T)Bﬁ(wz)ﬁa = —2g",
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or more succinctly written
Trlo*(ic®)o” T (io?)] = —2¢", (11.4)

we have for every Hermitian matrix X,4 an associated four vector x*
1
Tt = —§TT[X(2'J2)J“ T(io?)]. (I1.5)

This correspondence is one to one (we will use X =/ in what follows to
underscore this correspondence).

Simplifying the notation, since we would like to keep our dotted and
undotted indices separate that is when we sum over indices we would like
them to be of the same type in order to avoid extra confusion, we introduce
an antisymmetric tensor €%, that is, €*® = —e% with €'? = +1 and with
lowered indices
B

(e}
€af = —€ 7 = —€3a,

that is €135 = —€'? = —1. Note that the matrix is the same when we use

dotted indices, that is,

€ = (ig?), 5 = (_01 é)dg. (11.6)

Also note that
s

€oy = 50:{
&l _ sa
€epy = 0%,
Then we can define the Pauli matrices with upper indices

() = ea’ge‘ig(a“)ﬁg

= —(i0%)(0" T 35(i0”) ULT)

We can write the trace condition as

(0")0a(5Y)* = 21 (I1.8)
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and equation (II.5) has the simple form

o = 4o (#aa(6) =+ T "] (11.9)

The 6* matrices are given by

- 1 0
~0\dor — _ 0y .
@)= (g 1) =+
_1vaa — (0 —1) 1y
@m=(2 ) =
_9vaa — (0 —|—z'> oy
@=L ) =
- -1 0
=3\aa — — (3.
(6°)* = ( 0 +1>da (0%)da- (11.10)
We can readily derive the completeness properties of the Pauli matrices
(0")aa (") = +2¢"" (IT.11)
(0")aa(G,)% = +25,25%,. (I1.12)

Further products of two yield
(0")aa (@)% + (0")aa(@)* = 298,
(@) (0" ) o + (37)(0") g = 29" 6%, (11.13)

If S is an element of SL(2,C) (that is 2 x 2 complex matrices with deter-
minant equal to one) with matrix elements S,”, where a labels the rows and
[ labels the columns, and /4 is a Hermitian matrix, then we can define the
transformed matrix 4 as

(£)aa = S () 5555 (11.14)

with S* the complex conjugate of S, again with & labelling the rows and

3 labelling the columns, or taking the transpose we have (ST)ﬁd = (S*)(f,
with 3 labelling the rows and ¢ labeling the columns of ST. Since det S =

det £' = det £. (I1.15)
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Calculating the determinant we find
det £ = (zo+x3)(x0—23) — (11 —ixs) (21 +ix0) = (2°)* — (21)? — (27)* — (2*)?
= z,a"
= det 4" = x,a""; (I1.16)

the determinant is the Minkowski interval and is invariant. Thus, the trans-
formation

£'=S £S! (I1.17)

corresponds to a Lorentz transformation, A*, of the coordinates. In order
to determine it in terms of the SL(2,C) matrix S consider

= S a0
1 ST D o
= 2S5 () = 5SS 0" gyl
= A, (11.18)
where we identify
AP = %TT[SJ”STJ“] (11.19)

that is,
v 1 *Y/ v N *Y/( v 3
A* (Uu)ad = 55;557(0 )W(U“)ﬁﬁ(au)ad = S,BWSBW(U )W‘Saﬁéaﬁ

= SQWSE&{(O—V)’Y’;M

or more simply written

A"g, = SavSt, (I1.20)

So for every element £5 of SL(2,C) there is an element A of the Lorentz
group, the mapping of SL(2,C) into LL is 2 to 1 since £5 — A.

We can use the SL(2,C) matrices to define the spinor representations of
the Lorentz group. The spinor transformation laws are given by

P (x') = S s (x)
W) = PP (a) (ST (11.21)
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where S,°(S7); = 4, and ¢, and ¢* are two different two component
complex spinors transforming (as we will see) as the (3,0) representation of
the Lorentz group, the v are called Weyl spinors. Similarly, we can use ST and
(ST)~! to define two more different Weyl spinors, the complex conjugates of
1, denoted 1, which transform as (0, %) representations of the Lorentz group

P (2) = Py(2)(ST

W) = (ST (x) (11.22)
where, for the adjoint matrices (ST)QB, ¢ labels the rows and 3 labels the

columns. As with tensors, higher rank spinors transform just like products
of the basic rank 1 spinors, for example,

Yo (@) =5, S, Prpg g, (2)

Ut (@) = Sa e Sy Py s (a)(ST)Dy, - (ST

(I1.23)
Since S is special, i.e. det S = 1, we have
S22 =82
S—l Q,B — ( 2 1 >
( ) _521 Sll o
= €a,€3555 " (I1.24)
or in matrix notation
S = —eSTe. (11.25)

Further € is an anti-symmetric invariant second rank spinor, that is
I SS9 é
Eaﬁ a Mg €6
or again in matrix form
€ =8eST =95 e=e.
Since the indices can be confusing, let’s write this out explicitly

6/12 = 511522612 + 512521621 =—detS = —1=¢€a.
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So indeed €5 = €4, € is an invariant second rank spinor. Hence, we can use
€ to lower and raise indices of the spinors analogous to the invariant metric
tensor g"” which lowers and raises vector indices

P = ey
Yo = €a6¢6
Pt =
Ve = e;50". (11.26)

As a consequence of (I1.26) the transformation law for ¢®, for instance, fol-
lows from that of 1,

U (a) = ePy(al) = €Sy (x)
= €S est (1) = —e5,85 epat)’ () = YO (x)(S71)5". (I1.27)
Thus, we can contract similar spinor indices to make Lorentz scalars
Y@ ) () = (87158 v ()9, (@)
= 0507 (2)1, (2) = () a(@) (11.28)

and similarly for ¥41®. Also using the properties of the Pauli matrices we
can make a four vector object whose vector index then contracts with another
four vector index in order to make a scalar, for example

V() (0" )aad (@) = (ST (ST AT, (@) (0")aa ().

But

(57 (0)aa( STV 5A" = (575 (0)aal(ST)% (3Tr1S0" %))
= (574 (ST (50" 55(ac(0%)
= (ST (8780”5 38,004 = (7)1 (ST) (50”5 )as
= (0") 451 (11.29)
hence o B
V) (0")asd 5 ) = 0 (@) (0MasOu (@), (T1.30)
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As stated, 1 D1 is a Lorentz invariant.
Finally, let’s consider infinitesimal Lorentz transformations

ot =t + 'z,

(I1.31)

where now, for infinitesimal transformations, S differs from the identity by

an infinitesimal matrix X
Saﬁ — 5046 + zaﬁ

Since € is invariant we have that

€ap = 53" 55 €5 = (0] +237)(85" + g )ens

=[085 + 5705 + 500,7] €16 = €ap + 46507 + €ar Sy
which implies that X is symmetric. With lowered indices we have
Y50 — Lap = 0.

Now given w"” we desire X,4; using A" = 2Tr[Sc”ST5"] we find

¢ =2 (50450 (0 s (04 + 53 ) (o)

= %(U”)aa(ff“)‘m + ;E o (0%)pa(")™ + %( OO CORE

1 1 . v
= "+ 520" 5ald) " + 5T (")
Thus, we must find a solution for

W = 200 4 ST (0"

1
_ = V=p T=p v
—QTT[ZJJ —1—200}.
Multiplying by o, and 7, we have

56

(0)73(00) " = [(Uu)vﬁ(@)éé - (UV)W(ﬁl‘)éﬂ W

N | —
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(I1.33)

(I1.34)

(I1.35)

(I1.36)



_ 556 #0658
— 2% 9.0 + 25050, (11.37)
Using X% = 0 = X5%, we find

Ef::é[wp»wa»W——w»»wa»W}wW' (I1.38)
and similarly
55 = L0700 — (0 (00 (11.3)

The above commutators of the Pauli matrices arise frequently and so we
define the matrices

Thus we secure

+1 3

(ET)BQ = Zw,uy(a—'uy) Gt (1141)

From our definitions of (0#),4 we see that
(0")0a(69)% = 3,0 — i(™).]

(6")*(0") oy = 9" 6% — i(a™)°%. (17.42)

The infinitesimal spinor transformations can now be obtained
Z’ v
Va(@) = S p(w) = Yal@) = Jww (™) Ps()
1 v
= (@) = e (D) () (I1.43)

and

= P4 (2) — ~wu (D)5, (11.44)



Hence, the spinor representations are given by
1
(D) = o),

«

(D)’ ;(a“”)ﬁ - (I1.45)

«

We must check that these matrices indeed obey the Lorentz algebra as did
the tensor representation matrices. After some tedious Pauli matrix algebra
we find

—1
0,0 = (00" = 7"5"), (076" = 0"5")]]

= —2i(g"c"" — g" 0"’ + g"7 oM’ — g"P ") f (11.46)

«

Thus the spinor representation obeys the Lorentz algebra

(DM D] P = (g"" D" — g D"* + "7 D' — g”pD“")f, (11.47)
and 1), is the (%, 0) spinor representation of the Lorentz group. Similarly the
commutation relation for ** can be worked out and we find that the complex
conjugate dotted spinors 1, are the (0, %) representation of the Lorentz group
with the D" obeying the Lorentz algebra.

As with tensors, we find the intrinsic variations of the spinor fields are
given by
0o = () = tha(x) =

s = () — alz) =

For Poincare’ transformations

b — 0x"0, 4. (11.48)

't =t + W x, + €
we find that
- 1
(Swa = §w,uy [(x,uau - xlla“)éaﬁ - (D“V)aﬁ} wﬁ(x) - E’ua‘uiﬂa(lﬂ)

= L (M) P5() + i€ Puia2) (11.49)

and
0 = W [(xuau - 5’7”6“)5% - (DW)B@] by(x) — ¢ Oyiba ()
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1 N : -
= — wu (M" ) sts(x) + €' Puda(z). (11.50)
As with tensors, the P* and M*"” obey the defining commutation relations
of the Poincare’ group. Note that in the rest frame for ¢ (z), assuming it
describes a massive particle with rest frame four momentum p* = (m, 0,0, 0),

1 . ] . 1 .
JZ = §EijkM]k = %EijkD]k = —Zeijkajk
1 .

hence the third component of the intrinsic angular momentum J? has eigen-

1 . . 1 .. . >
values £5 and the particle has spin 5. Similarly finding K we have that

N-N = :(3+1) and NT.Nt =0, so 1o is the (3,0) representation of the
Lorentz group. Similarly we find that ¢, is the (0, 3) representation of the
Lorentz group.

For finite Poincare’ transformations
* = A"z, + a (I11.52)
we again exponentiate the generators to obtain

V(@) = S (A (@ — a))

_ [6+ia#PM€—%wW(A)M“”Lf bs(z) (I1.53)
and a _ :
B w) = B0 @ — a))(SH;
_ [6+ia“PM6—%wW(A)M“”}’8d Dy(x) (11.54)
A,uzx — §TT[SO.VST5—H] (1155)

and w(A) as given earlier

eFem (W@~ ) o _ (A\~Typ 40 (11.56)

o

Thus we have found all representations of the Poincare’ group.
Finally, let’s relate our two-component Weyl spinors to the usual Dirac
four-component spinors. We can realize the Clifford algebra defining the
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4 x 4 Dirac matrices 4"} by using the Pauli matrices, this representation
being referred to as the Weyl basis (or representation) or the chiral basis (or
representation). Defining the Dirac matrices as

0 o
T
v _<a“ 0), (11.57)

that is,

2
=
-~Q
I
—
O~ OO
_ o o o
o O O
o O~ O

[\~]

s}

o
+ oo

~.
co+ o
~.
o

(I1.58)

w
S]
o
_o oo O
o
|
—

0 0/,

Thus, the 4* obey the defining Dirac anti-commutation relations
Y 4 A = 291, (11.59)
Also, we can define an additional matrix s

v5 = +iv'y'y2?

0
—0% 0 0 -1 0 0
_(0 +00>_ 0 0 +1 0 | (11.60)
0
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In this basis the 4 component complex Dirac spinor, denoted %, is given in
terms of two Weyl spinors 1, and y¢

(G}
a — ¢a _ ¢2
¢D:(Xa>— )Z; : (11.61)
X"/

Under a Lorentz transformation the Dirac spinor transforms as
p(') = Lyp(x) (11.62)
where o5 0
LY = ( 0 (ST_l)dB>ab. (11.63)
Further since A" o, = So”ST and A*5,, = ST=157S~! we have
Ay = Loy (L)%, (11.64)

For left, v pr, and right, ¥ pr, handed spinors we have

1
Ypr = 5(1 — ¥5)¥p
1 0 0 0 Un 1
[0 1 0 0 o | | Y2
10 00 ollSl=1% (11.65)
000 0)\y 0

and |
VDR = 5(1 +¥5)¥p

0

0

i

X

Thus, we have that ¥pr, corresponds to our (%, 0) spinor v, while ¢pg cor-
responds to our (0, 3) spinor y*. If the Dirac spinor is a Majorana spinor,

g, that is ©p is self charge conjugate, then

Uiy = Oy = Y (I1.67)

(11.66)

2
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with the charge conjugation matrix C given by

C =iy*y°
0 1 0 0
ic? 0 -1 0 0 0
N ( 0 2'02) 0 0 0 -1 (17.68)
0 0 1 0
with Cy*C~! = —4#T and the conjugate Dirac spinor is defined as
¥p = Pha°. (11.69)
The Majorana condition (I1.67) implies that
Cibrg = 17°7"
=( ()
~\ig? 0 %
_ X@); :(%> [1.70
(Fa)=wu=(t2). (11.70)

or ¢ = x,¥ = x. Hence we find that a 4 component Majorana spinor is
made up of a 2 component Weyl spinor and its complex conjugate

Yar = (53) | (11.71)

Needless to say the Weyl representation for the Dirac v matrices is not
the only way we could have reralized the Dirac algebra

YA Ayt = 2¢M 1. (11.72)
After all, this remains invariant under unitary transformations U, Ut = U~!
At = U,
and so (IL.72) becomes

Y 4+ A = 291, (11.73)
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Further we can use these unitary transformations to define linear combi-
nations of the Weyl spinor components to form a four-component complex
spinor

vp = Ulyp. (I1.74)

Under a Poincare’ transformation we have
Vp(a') = Ulip(a') = ULp(x) = U'LUU Yp(2)
= U'LUYp(z) = Lipp(z) (I1.75)
where L = UTLU. As before we have for the hatted transformations
Ag, = AU, U = ULy LU = U'LUUYWUUT LU

= LAYL7 (11.76)

Thus, all relations go through as before with all quantities replaced by their
hatted values.

There are several common choices for the four- component Dirac quanti-
ties. We have first defined the Weyl (or chiral) representation, in brief review
in obvious notation

0 ot
W= (pn G ) (11.77)
That is
0 0 1
P)/Weyl = 1 0
i o o 0
P)/Weyl = 5_1' 0 = _O_i 0 : (1178)
The Weyl basis Dirac spinor, now denoted 9wy, is given as
(1
_ (Ya (G
—— (x‘i> =12 (11.79)
%

Under Poincare’ transformations

Qp{/l/eyl(x/) = LQpWeyl (-T) (1180)
with 5 .
L= (0 SH). (11.81)
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Left handed and right handed chiral spinors are defined by

1
VWeyl L = 5(1 — V5 Weyl )Y wey (T) = ( 0a>

1
YWeyl R = 5(1 + V5 wey) Vwey () = (;L)

- (—1 0 >

Another common representation is that of Dirac

with

Pygirac = UTP)/I‘L/LVeyl U

with | . .

1 1 1

(I
- b ()
Hence _ _
n :1((0—1-0)“ (a—a)“)
YDirac 2 (5. _ 0')“ _(0. + 5.)#

that is

1 0
Py%z'rac = (0 _1)
0

= (g0 5)= (2 5)
YDirac = 5.1’ 0 - _O_i 0 :

1 0 O 0
o o1 0 o0
YDirac = 0 0 -1 0
00 0 -1
0 0 0 1
. o 0 10
YDirac = 0 -1 0 0
-1 0 0 0

(11.82)

(11.83)

(I1.84)

(I1.85)

(I1.86)



0 0 0 —

, o 0o i o

YDirac = 0 i 0 0

0 0 O

0 0 1 O

0 0 0 -1

3 —

VYDirac = -1 0 0 0 (1187)

0 1 0 O

The 75 matrix becomes
0 1

Y5 Dirac = UT75 Wele = (1 0) . (1188)

Note the v matrices in all representations obey 71 = A0, 4/t = —i 4T =~

The Dirac four component spinors (or bi-spinors as they are sometimes called)
in the Dirac representation are

oo =Uwes =5 (1) 1) (4)

_ 1L w+x)
-5 () (11.89)

Hence, the chiral spinors are given by
1 L vy
irac L — & 1— irac irac — UT e = = ( >
YDirac L 2( Y5 Dirac)¥D YWeyt L 73\

1 1 Y
irac - = 1 irac irac — UT e - —F= ( >,< > . 1190
YDirac R 2( + Y5 Dirac)¥p Yweyl R 72 \x ( )

Another common representation is the Majorana representation in which
all the v matrices have pure imaginary matrix elements. In this basis we

have

P)/ﬂajorana = UTPygiracU (1191)

with the unitary transformation matrix also being hermitian and given as

1 1 0'2 o 1
U 5(02 _1>—U. (11.92)
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Let us connect this classical discussion with the treatment of the fields as
quantum mechanical operators.

Theorem: The Quantum Mechanical Poincare’ Group.

Every continuous unitary representation up to a phase of 771 can be
brought, by an appropriate choice of phase factor, into the form of a con-
tinuous representation (a,S)— U(a,S) of the inhomogeneous SL(2,C). The
multiplication law becoming

U(a, S) = U(al,Sl)U(ag,Sg) (1193)

for
(a, S) = (a1 + SlaQSI, 5152). (1194)

Recall that the inhomogeneous SL(2,C) transformations are defined by
£ =8 £ST+ 4 (11.95)

where 4 is a two-by-two Hermitian matrix corresponding to the space-time
translation by the four vector a*. It is understood that the SL(2,C) trans-
formations are performed before the translation. So

fr = Sy fS3+ fio (11.96)

and

£ = 51 /@SI—F yo

S1.99 /Zi"S;SI—i- A1+ 51 /&QSI

= 1Sy £(S189) 1+ 4 + S1 fiS]

S £ST+ 4. (1)

Hence, (a,S) = (a1, 51)(az, S2) = (a1 + Slagsg, 5152) gives the composition
law for ISL(2,C).

Finally, let’s just point out that if we have an operator, perhaps depending
on space-time, A(x), an observer in another frame describes the operator
in the same way, it is only translated, rotated or boosted as compared to
the original frame. That is, an observer S uses A(z’) to study states U’
while an observer S uses A(x) to study states W. Since the theory is to be
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relativistically invariant the corresponding matrix elements, the experimental
observations, should transform covariantly like a tensor or a spinor, hence,

< ¢(a,5)|A(a)(x/)|¢(a,s) >= D(a()ﬁ)(s) < ¢|A(6)(x)|¢ > (1197)
where o'* = A* (S)z¥ 4 a* and |1 5) >= Ul(a, S)[1p > so that
U™ (a, $)A®)(2')U(a, S) = D'}, ($)A¥) () (I1.98)

is the corresponding transformation law for operators; in particular our field
operators will transform thusly. Note that ¢’ (2') =< ¢(4.5)| A (2") |V (0,5) >
is like the classical field o'(*)(2') with the original field ¢(®)(x) =< ¢| AW ()| >
so that they transform as

P (a') = DY (S) P (2). (11.99)
Thus quantum mechanical operators transform as
e} — —1(a
U(a, S) A (2)U™ (a, S) = D15 ($) AN (). (11.100)

We are now ready to study the quantum mechanical representations of
the inhomogeneous SL(2,C). Since U(a,S) is unitary we can always write it
as the exponential map. In addition, we have that

Ua, S) = U(a,1)U(0, S)

where '
Ula,1) = "™

U(0,8) = ez wm (M (I1.101)

where the Hermitian (since U is unitary) operators are P* the space-time
translation generators identified with the energy and momentum operators
and M*" are the Lorentz transformation (rotation) generators identified with
the angular momentum operators. a, is just the translation vector a* =
iTr[ 4c"] while wy, (S) are just the angles of rotation in the z, — z, plane
parameterizing the finite SL(2,C) transformation S, that is

S = e ()o" (I1.102)

Y

this is related to A" by
1
A = A" (S) = STr [Sovsta]. (I11.103)
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For infinitesimal transformations
ot =gt 4+ Wt (I1.104)

with €* and w"” infinitesimal parameters, we can expand the unitary opera-
tors to first order

U(a,S) = 1+ ie, P — %wWMW (I1.105)

where now w,, (S) = wy,, the infinitesimal rotation angles. Recall that since

g = (Gop + Wo) 9"’ (980 + wpv)
= Gup + Wy + Wy, (2)
we find w,, = —w,, is antisymmetric and hence so is the generator M, =

— M.

To make more explicit the identification of M, with rotations consider
the transformation U = 1 — iw;s M2 describing the change in the state
vector. The corresponding infinitesimal coordinate change is

.CEIO — .CL"O
2= b 122
.217/2 — .CE2 + w12.CE1
2% =2, (I1.106)

This is a rotation in the x; — x5 plane. Hence, —iM;; is the generator of
rotations in the x; — x; plane for the state vectors and corresponds to the
total angular momentum operator

-1
J' = SeinMip = (Mas, M, Mu). (11.107)

For an infinitesimal Lorentz boost along the x! direction

.CE/O — .CL"O o .iEleI
.CEII _ .iEl o waOI
.CE/2 — .CE2



2" =2, (11.108)
the state vector is transformed by
U=1—iwy M. (I1.109)

Hence, —iM,; generates Lorentz boosts along the i** axis for the state vec-
tors. We write K for the three-vector K! = MY,

Since PH, MM are the genrators of the Poincare’ or SL(2,C) group they
obey commutation relations which characterize their group multiplication
law (the commutation relations for Pl and SL(2,C) generators are the same)

U(al, Sl)U(ag, Sg) = U(a1 + SlaQSI, 5152)
Ula,S)™ =U(-=S"taS™, 571). (11.110)

Using the above laws we find
U(al,l)U(ag,l) :U(a1+a2,1) (11111)

which implies [P, P,] = 0 . Further, we have

U0,S U (a,NU(0,8) = U(S'aS™1,1) (I1.112)
that is ' )
U0,S He P U(0,8) = e SauP", (11.113)
For infinitesimal a* this yields
U='(0,8)a,P*U(0,5) = A" (S)a, P* (I1.114)
or ) )
2 (MY g PreTwm (MY = A1V(G)q, P, (I1.115)

For infinitesimal S we have

axP* + aA%wW M P = (8} —w,)a,P"
= WP o —wP @)
Thus we obtain the commutator
M P = [P — P, (I1.116)
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Finally we obtain the angular momentum commutation relations by con-
sidering the infinitesimal S’ transformations

U0,S Hu(,S8")U(0,S) =U(0,S5'S) (I1.117)

or , ,
eéwuy(S)M“”e%zw;AMpA6_71wa5(5)./\/laﬁ
—1 —1q v
= e T wm (ST IEHMY (I7.118)

Now the parameter describing the product of Lorentz transformations S~15'S
is found by considering the action of the three successive transformations on
" . First we transform to

= A" (S)x,, (I1.119)
then to
x5y = AP(S")Ag, (S)r", (11.120)
and finally back by
wlh = AH(S) A s (S YA (S) . (I1.121)
For S’ infinitesimal we have
Aap(S') = Gap + Wig (11.122)

SO

vf = AT(S)gapN (S)zy + ATH(S)wi s A (S)
= (¢" + ATl g A (S)) s (4)

Hence, we have that

Wi (S71Y'S) = AL (S)w' P Ag, (9) (I1.123)
and thus,

U0, S HM*™U(0,8) = A(S)AP(S) Mg
= AP(S)AYP(S)Mp. (5)

Taking S to be infinitesimal also, we find
7
WM MU = (9" + ¢ Mag
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1 o U o U, (e} 14
= Zwalg™g g — g™ + g9 g

1 —g"* g 9" | Mag
= §wp/\ [gpuM/\V _ g/\uMPV + ngMu/\ _ g/\VMup]‘ (6)

We finally secure the angular momentum commutation relations
M Mp’\] = i(g“’\/\/l”p — P M 4 g MPN — g”AM“p). (11.124)

As before with the space-time differential operators we define
;1
J'= §€z’jkM jk

K= M" (11.125)
and see that they obey the algebra
(Ti, Tj| = +iein T
(Ki, Kj] = —i€ije T
(T, Cj) = +ieiji/Ch. (I1.126)

Hence J are the angular momentum operators, K the boost operators and
P, the translation operators.

In particular let’s consider the action of the space-time translations fur-
ther. In the Heisenberg representation the states are independent of time
while the operators depend on time. Thus the space-time translation of our
operators is determined by the action of P*. Recall Poincare’ invariance
implies

< Gas)| A (a5 >= D'y () < S| AP (@) ]p > (11.127)
or equivalently
U(a, $) A (2)U™ (a, §) = D) ($) AN (). (I1.128)
For 4' =+ 4 we find

ol P A(@) (x)e—z'aﬂ?# _ A(a)(.ib + a). (11.129)
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For a, infinitesimal we expand the exponentials and Taylor expand the op-
erator

(14 ia,P*) AN (2)(1 — ia,P") = A (2) + a0, AV (z), (11.130)

which implies
ia [P, A (2)] = a9, A (x). (11.131)

Thus for the translation operator we find
[PH, AW (2)] = —id" A (z) = — P*A) (1) (11.132)

with P* = i0*, as earlier. Likewise, we can consider Lorentz transformations
't = A (),
Lo Y g o, v _ e
2@ (M (@) ()T @ (M — D ( 26)(5)/1(6)(35/). (7)
For infinitesimal Lorentz transformations z'* = z# 4wz, and D_l(az 5(S) =

5((1()6) + gwh [Dpy](a()g) this becomes

(1= 3o M) A1+ 5 M) = Aa)
1 ., N N
3 (2,00 = 2,0,)8 ) = (D] )] A (2).
(8)
Hence
M, A9 ()] = —i [(a:“&, — :El,au)é(a()ﬁ) _ [DW](Q()@] AB) ()
= —M,AY (), 9)

with M, as we found earlier for the classical fields.
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