The Postulates Of Wave Mechanics

The postulates of wave mechanics for a single particle of mass m are:

Postulate 1: The State of the System

The quantum state of a particle is characterized by a wave function, a complex func-
tion of space and time, (7, t), which contains all the information it is possible to

obtain about the particle.

Postulate 2: Statistical Interpretation

The wave function ¥(r,t) is the probability amplitude for the particle’s presence.
That is the probability, dP(7,t), of observing the particle at time ¢ in the volume
element d®r about the position 7 is
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where N is a constant of normalization.

Since the probability of finding the particle somewhere in space at time ¢ is 1,
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the normalization constant is simply
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Hence t(7,t) must be square-integrable. Thus
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with |4(7,t)|* interpreted as a probability density and (7, t) as a probability ampli-
tude. Note that |¢(7,t)|? is unchanged if 9 — ™1 with w € R. The overall phase
of 1 is unobservable, hence all ¥ differing only in phase represent the same state of

the particle.



Postulate 3: Measurement and the Principle of Spectral Decomposition

Every observable property A of the system corresponds to a hermitian operator A
acting on the wave function.
The principle of spectral decomposition applies to the measurement of physical

quantities A:

1. The result of a measurement of observable A4 is one of the eigenvalues of the

hermitian operator A. The set of eigenvalues of A is denoted by {a}.

2. To each eigenvalue a of A is associated an eigenfunction () such that
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(If the eigenvalue a is N,-fold degenerate, there are N, linearly independent eigen-
functions.)

The eigenfunctions of the hermitian operator corresponding to any observable are
assumed to form a complete set, that is any wave function at time ¢, (7, t), can be

expanded in terms of them.

3. For any state of the system (7, t), P.(t), the probability of obtaining the eigen-
value a of A during a measurement of A at time ¢, is found by expanding (7, ¢) in

terms of the complete set of eigenfunctions ¢, (7),
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The probability is then given by
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Note that > ¢ P.(t) = 1, as required since a measurement of .4 must yield one of
the eigenvalues of A. This has been written for the case that the eigenvalues are
discrete, so the completeness of the orthonormal eigenfunctions, [ d*rgk(7)py(7) =

Oab, 1s expressed as
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If the eigenvalue spectrum is continuous then (7, t) is represented by an integral

over the set of continuous eigenvalues
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with the expansion coefficient c¢(a,t) a function of the eigenvalue a and time ¢. The

eigenfunctions ¢, (7) now obey the continuum normalization conditions
[ drei@er) = N¥(@b(a —b) (10)
with N2%(a) an arbitrary normalization factor. Hence, completeness is expressed as
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The probability, dP(a,t), of obtaining a result between a and a + da when mea-

suring property A at time ¢ is
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dP(a,t) =

As required of a probability [i,, dP(a,t) = 1.

>4. In the case of a discrete eigenvalue spectr‘um, if the measurement of A at time
t yields the value a, then the wave function of the particle immediately after the
measurement, t = ¢+, is Y(r;tY) = (7). This is known as the collapse of the
wave function. (If a is a degenerate discrete eigenvalue of A, then ¥(rt) is a linear
combination of the eigenfunctions of A with eigenvalue a. The general the spectral
decomposition of the (normalized) wave function (7, ¢) is given by a sum over all the
(normalized) eigenfunctions ¢{*)(7) where a, = 1,2,..., N, labels the N, linearly

independent eigenfunctions with eigenvalue a
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Immediately after the measurement of A at time ¢ = ¢* the normalized wave function

becomes
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the wave function has collapsed to this eigenstate of A.

In the case of a continuous spectrum of eigenvalues of A, if a measurement of A at
time ¢ yields the value of a to within a range Aa, then the wavefunction immediately
after the measurement collapses to that part of the wavefunction that was within the

Aa range of a at time ¢
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where the wavefunction has been normalized once again.

Postulate 4: Time Evolution and The Schrdidinger Equation

The time evolution of the state described by the wave function (7, t) is given by the

Schrodinger equation

zh%w(f’, t) = %v%( t) + V(F Hw(r,t) . (16)



