The Postulates Of Quantum Mechanics

Postulate 1: The State of the System

The set of all possible states of a physical system stand in a one-to-one correspondence
with the vector directions (rays) in a Hilbert space H. ( H can be finite or infinite
depending upon the system. To allow for continuous basis vectors we will extend the
system and space to 7:l)

Since the state is described by the entire ray, we have that [¢) > and Al¢) > with
A € C describe the same state.

Postulate 2: Physical Observables and Hermitian Operators

The physical observables of a system stand in a one-to-one correspondence with the set
of Hermitian operators on the state space H. That is, to each measurable quantity A,
there corresponds a Hermitian operator A acting on H. Out of the set of all Hermitian
op_erators, there is a subset which consists of mutually commuting operators and are

assumed to be complete (they form a CSCO; each A is assumed an observable).

Postulate 3: Measurement, Spectral Decomposition and Statistical Interpreta-

tion

a. The only possible result of the measurement of a physical observable A is one of

the (real) eigenvalues of the corresponding Hermitian operator A.

b. Let {|¢x >} be the simultaneous eigenstates of a CSCO so that
Al >= aglgp > , ete. (1)

These states form an orthonormal basis for the state space H.

c. For a system in state |t > (with < ¢|¢ >= 1) the probability of measuring the

value a;, for the physical observable A is

Po=|<gulp > . (2)



d. Immediately following the measurement, the system is in the state |¢y >.

To be more explicit:

Discrete Orthonormal Basis
If the orthonormal basis is a discrete basis, then the simultaneous eigenvectors,
|ap... >, of the CSCO {A4, B, ...} obey

< ¢a’b’...|¢ab... > = 6a'a5b’b trt
> e, >< bw.] = 1, (3)

a,b,...

where

Alpap... > = a|ba.. >
B|¢ab...> — b|¢ab...> ’ etc., (4)

with the eigenvalues {a, b, ...} taking discrete values ( in 1-1 correspondence with the
integers).
For an arbitrary state vector |1 >, we have the expansion in terms of the {|¢u.. >}

basis

[ >= > Yab..|Bas... >, (5)

a,b,...
with
VYab... =< G|t > . (6)

This implies

Alp> = > a Ya.|bas. >
b

ab,...

Bl > = Eb Vab...|Pab... >,

ab,...
etc. (M
The probability of finding the values a,b, ... for the system in state |[¢) > when

A, B, ... are measured is
Pab... = | < ¢ab...|lp > 12 . (8)



Note that

Y Pu. = D | <da. >
a,b,...

ab,...

= Y <Pl >< bap.. |t >

ab,...

your

N /
N

=1

=1, (9)
as required of a probability. Also the expectation value of A, B, ... in state |¢) > is

<YlAp > = Y a Y, < Y| Pap... >

o >

= Z a | < ¢ab...|¢ > |2
a,b,...

= Y a Pu. , etc (10)
a,b,...

Continuous Orthonormal Basis

On the otherhand if the orthonormal basis is continuous, then

< Pup. |bap.. > = 0(a —a)o(B —p)---

[dedB - 1gap. >< das.| = 1, (11)
where
A|¢aﬂ... > = a|¢aﬂ... >
etc. (12)

with the eigenvalues {a, 3, ...} taking on a continuum of values.

For an arbitrary ket vector |¢p >, the expansion in terms of the continuous basis

{|¢ap.. >} is
I >= /dadﬁ---w(a,ﬂ,...)|¢a5,,_ >, (13)
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with
(e, B,...) =< gap..|th > . (14)
This implies

Al > = /dadﬁ---a W, B, .. Vbas.. >

B> = /dadﬂ--ﬁ W@, B, .. Vbas.. >
etc. (15)

The probability of measuring A in the range a to a + da, B in the range 3 to
B+ dg, etc. is
dP(a,3,...) = | < ¢ap.. |t > |*dadB--- . (16)

Note that

[aP(a,p,..) = [dadB-- | < gap. o>
— <9l [dadB- - |dag.. >< Gap.. |1t >

=1

= <YlY>
= 1, (17)

as required of a probability. Also the expectation value of A, B, ... in state |y > is

<vlAlw> = [dadf-a (B, ) < lbas.. >
=<@agp...| >

- /dadﬁ---a | < ¢ap.. [ > |

_ /d’P(a,B, L )a
etc. (18)

Postulate 4: Time Evolution and The Schrodinger Equation

The time evolution of the physical states is given by the Schrédinger equation

R o(t) >= HOWD > | (19)

where H = H(t) is the Hermitian Hamiltonian operator. H(t) is the total energy of
the system.



For an isolated system, the Hamiltonian is time independent. Schrédinger’s equa-
tion is simply
R (e) >= HRb(E) > | (20)
with the eigenvalues of H the possible energies of the system.
In general the observables may also have explicit time dependence A = A(t). (For
example, a charged particle can interact with an external time varying electromag-
netic field.) For an isolated system, as is the Hamiltonian, the observables are time

. dA _
independent, % = 0.



