7 Hamiltonian Dynamics

We have been treating L as a function of ¢, ¢, and ¢ where the variation
in generalized velocities d¢ is not an independent function but just the time
derivative of the variation of the generalized coordinate %5q and hence these
are related in the same way that ¢ and ¢ are related. In this way we have
obtained n second order differential equations for ¢%, the Euler-Lagrange

equations

0L(g,¢;t) _ d (__BL(q’q; t)) ~ 0. (7.1)

dq° dt DG
Any set of n second order differential equations can be converted into 2n first
order differential equations by means of Legendre transforming the function
L. That is we can treat ¢* and v* = ¢* as independent variables, that is
the variations d¢* and dv* are independent. Rather than v* it is customary
to use the momentum p, conjugate to g%, that is p, = 0L/0¢? as the other
independent variable. Then we can eliminate ¢ from our equations in favor

of p by viewing this formula

oL
a = - 7.2
Pe = 52 (7.2)
as implicitly yielding
* = ¢*(¢", pw; 1) (7.3)

We can use our definition of the Hamiltonian to determine the new first order

dynamical equations of motion
H(q% pa;t) = Y pag®(@", psst) — L(q%, 4*(¢", o 1); 1), (7.4)
a=1

where now H = H (g% p,;t) is viewed as a function of the independent vari-
ables (g, p; t) and where ¢ occurs we use ¢*(¢°.py; t). This is called a Legendre

transformation. It changes the variables from (g, ¢;t) to (¢, p;t).
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To find the equations of motion consider the change in H caused by an

increment of time dt

g

where dg and dp are independent. On the other hand we can use the definition

OH ., OH OH
8qadq + 7 dpa) + Wdt’ (7.5)

of H=3"_, pag® — L to calculate its change

= oL oL oL
dH = dp.q* + padq® — dq® — =—dg* | — —dt. 7.6
;(pqupq g 8qaq) T (7.6)
But we have that p, = gTI; and the Euler-Lagrange equations
OL d (0L
are just
. 0L (7.8)
Pa = G :
So this dynamical input implies
. ~a -a . a -a 8L
dH = z (dpaq +padq _padq _padq ) - Edt
a=1
~ . e OL
= ) (d°dpa — padq®) — 574t (7.9)

a=1
Now this must be the same result as equation (7.5) for the change in H, dH,

hence we find

.  OH
q - apa
. _ O0H
DPa = B
9L _ 0H 1
ot ot (7.10)
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Substituting this into equation (7.5) yields

n

OH
dH = (~padq® + §°dpa) + —-dt, (7.11)
a=1
which implies
dH e .a..  OH
L ;(—paq +4q %)‘FW
o0H
= (7.12)

The time derivatives of ¢® and p, are the 2n first order differential equations

of motion for the (¢% p,) system and are known as Hamilton’s equations

.  OH
q = 9pa
. O0H
—DPa = 8(]‘1. (713)

q® and p, are called canonically conjugate variables. Recall the Euler-Lagrange
equations of motion are n second order differential equations for ¢*. Note if
0H/0t = 0 then H = constant. Further, if U is velocity independent and

z = z(q) with not explicit ¢ dependence then
H=FE. (7.14)

Consider the example of a single particle in a conservative force field with

potential energy U(z,y, z)
1
L=T-U=;m (2% + 9% + 2%) — U(z, vy, 2). (7.15)

The Euler-Lagrange equations of motion are

oL d oL

o~ =0 (7.16)
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which yields Newton’s 2™¢ law
mZ; = —0;U. (7.17)
Now Legendre transform to the Hamiltonian
H(Z,pit) =p- & — L(Z,%(Z,7: t); 1), (7.18)

where we eliminate Z in terms of Z, pand t, T = f(f, P;t) by the definition

of p
~—8L—mx'~ (7.19
pz_aii_ 1) : )
so that
. 1
r = —p. 7.2
T=_p (7.20)
Hence
oo 1.
H(Z,pit) = —p-p-T+U
m
)
P11
T m 2"ma? Pty
i
= %+U(JI). (7.21)

The dynamical equations of motion are Hamilton’s equations

.o oH 1
Y Op mP:
o0H
b= G- =0U (7.22)

Thus we have two first order differential equations. Note we obtain the usual
second order differential equation Newton’s law (Euler-Lagrange equation of

motion) by substituting the p; = m; Hamilton equation into the p; = —0,U
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Hamilton equation, implying m&; = —0;U. We can then solve this for z; and
Di = MI;.

In general it is easier to obtain the equations of motion by Lagrangian
methods. However since ¢ and p are independent this sometimes leads to
simplification of the analysis of the problem. In particular if ¢ does not

appear in H then

OH
- .a — = O) 7-23
Pe = 5 (7.23)
and p, = constant = 7,. ¢ is then called cyclic. So
H=H(, ..., ..,d" D1, - Tar---,Dn;t) (7.24)

depends on (2n — 2) variables now; we have reduced the number of degrees
of freedom. ¢ is said to be ignorable. Indeed ¢* = OH /0w, = w® and hence
()= * wedt. This could lead to a practical simplification of the problem.
If ¢° is cyclic in H it is also cyclic in L, that is 0L/0q¢* = 0 (H = pg — L so
that 0H/0q = pdq/dq — OL/dq — L/0¢0¢/0q = —0L/Jq = 0.) So we see
that p, = 0L/0¢* = constant for cyclic variables.

Consider the two body central force problem with Lagrangian

1 . 1
L= §m17712 + §m2F22 — U(|T_"1 — FQ,) (725)

Using new center of mass coordinates

- m m
R = )+ ———7
my + mo my + Mo
¥ = Tp—To, (7.26)
and the inverse relations
— =4 m —
T = R+ mMQT
. = 1.
To = R — Mr (727)
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where the total mass of the two bodies is M = m; + my and the reduced

mass is defined as

my Mo
= —. 7.28
# mi + Mo ( )
Hence the Lagrangian becomes
1 = 2 1 it 2 )
L= §MR +§ur = U(|r). (7.29)

If we choose our inertial frame to be at the center of mass, then the

location of the center of mass is F = 0 in that frame. Or more generally R

is cyclic. So P = 8L/ R = MR = constant. Thus we find
R=—t+ R,. (7.30)

So without loss of generality we can ignore R. Hence the Lagrangian for the

“relative particle” is

L= %w%? —U(A). (7.31)
Next we can work in cylindrical coordinates (r, 6, z) in which L becomes
L:%&#+ﬂ¢+?)—ﬂ¢ﬁ?§) (7.32)
We see that @ is cyclic so that
g—s =0, (7.33)
which implies that
Do = g—g — 6 = constant = [. (7.34)

The Euler-Lagrange equations become

oL d <8L

ar  dt \or

) = Ozuréz—%—(:—m‘
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% @\ |
and | = pr?0. (7.35)

oL d (BL) oUu

Since the two particles move in the same plane we can orient the coordinate
axes so that there is no force in the z-direction and hence z(t) remains at
its initial value taken to be zero (along with its z component of velocity)
so z(t) = 0. This implies that the potential energy is a function of r only
U = U(r). The radial Euler-Lagrange equation becomes
2

ur = ;lﬁ — %, (7.36)
where the angular momentum equation for § = [/ur? has been used. For
the 1/r gravitational potential energy, the orbits will be conic sections as we
have seen and will see again.

Finally we can state our variational dynamical principle in terms of ¢ and

p as independent variations

to n
5/ dt (Zpaqa — H(q,p; t)) =0, (7.37)
t a=1

where dp, and d¢® are independent but d¢* = 575qa is not independent. Hence

t2 = d OH oOH
= dt 0paq® + —(Padq®) — Padq® — 6q* — 0PDa
0 /tl ;(qurdt(p %) — Padq 9 apap)

& . 8H> ( 6H) }
— dt a_ 600 — | Pa + 5q° . 7.38
/tl > [(q 3 ) P2 (Pet 5 ) 0 (7.38)

a=1

Since d¢* and dp, are independent we obtain Hamilton’s equations

. OH
q - 8pa
) o0H
P = G (7.39)
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