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6 Conservation Laws and Symmetries

When considering Newton’s Laws as the foundation of classical mechanics
we found certain conservation laws when the forces on our system obeyed
certain conditions. The Hamiltonian formulation of mechanics provides us
with an even deeper insight into the nature of these conservation laws by
relating them to symmetries of space-time that our system should have. Let’s
consider a system in which the fundamental forces are irrotational. Then we
have that our dynamical principle is that of Hamilton’s
la
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So L determines the dynamical equations of the system. Hence we can relate
our conservation equations to symmetries or invariances that L must have;
since now it determines the dynamics as F did for the Newtonian formulation.
That is imagine we change the coordinates and time in our theory, we can
then ask how that change might reflect itself in L. In particular, it is found
experimentally over the centuries that our dynamical laws should be the same
for whatever inertial frame we use.
If we are working in a closed system (a system which does not interact
with anything outside the system) we expect that where the origin of our
inertial frame is should not matter-that is the laws of physics (dynamics in

this case) should be unchanged by a uniform translation of all the coordinates
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where @ is a constant translation vector. 6
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Nor should it matter if we change the orientation of our frame of reference,

that is, apply a uniform rotation of all coordinates

/
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or in vector notation

—/

., = To+ 60 X Ts,

where 60 is the constant infinitesimal rotation angle.

(6.3)
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Further it should not matter when we start our clock in describing dynamics;

that is the zero of time is arbitrary. So the dynamics should be unchanged

by a translation in time

' =t+e,

(6.5)

where € is a constant shift in the zero of time. That is to say space is

homogeneous so we can translate our origin of the frame of reference to any

point in space and space is isotropic so we can rotate our frame of reference—

directions do not matter and time is homogeneous so that the zero of time is
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arbitrary. We can make a Galilean transformation of our frame of reference
and the laws of physics (dynamics) remain the same. Since L determines
the dynamics we would like to translate the above space-time symmetries to
properties of the dynamics, that is L.

Now we would like to distinguish the different types of transformations
between observers that can be made. In particular let’s be more careful about
our notation. The coordinates used by observer S are just the time ¢ and the
position z, ;(t) where we have made manifest the coordinates’ dependence
on the time. Likewise observer S’ uses time ¢’ and coordinates z/, ;(t') where
the time ¢’ that S’ uses is made manifest. So the general transformations we

want to consider are explicitly

' = t+e
/) = Zolt)+d+ 00 X Za, (6.6)

02

where the infinitesimal transformation parameters are given by a, for space
translations, 65, for space rotations, and ¢, for time translations. The trans-

formation of the time is denoted by
ft=t —t=c (6.7)

On the other hand we have two ways to describe the variation of the coor-
dinates. First is the total variation of T, defined as the difference between
the coordinates S’ uses to describe the location of the particles in space and

that of S, this is denoted by an upper case A
AZy =T (t') — Zo(t) = G+ 60 X Za. (6.8)

So in the case of time translations, if a particle is located at £ = 1 meter at

time ¢t = 2 seconds for observer S then the particle is at the same location
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in space, 2’ = 1 meter, but this occurs at a different value of the argument
that is at ¢’ = t + € = 2 + € seconds for observer S’. Thus z'(t') = z(t), or
the total variation of z is zero in the case of translations of the zero of time,
AZ, =T, (t") — Zo(t) = 0, as indicated above.

Instead of the difference in coordinate functions evaluated at different
numerical values of their arguments, we can consider the intrinsic variation
of the coordinate functions themselves. This is just the difference in the two
functions evaluated at the same numerical argument, and is denoted with a
lower case § (note: we have used d and d and now A in several different ways,

which we are talking about should be made clear by the context)
00 = T, (1) — Talt). (6.9)

Now for infinitesimal transformations we can relate the two types of variations

as

AZy = T (t) — Zalt) = Z,(t) — Za(t) + Za(t)) — Za(?)
= OZq + Ot Za(2). (6.10)

The second term above comes from Taylor expanding the coordinate for
infinitesimal time shifts Z,(t) = Ta(t + 6t) = Za(t) + 6t Z.(t). Putting
this together with the total variation in equation (6.8) we have the intrinsic

variation of the coordinate is
0Z0 = @+ 00 X Ty — €&a. (6.11)

Note it is only when we change the zero of time that there is a difference
between the total and intrinsic variations of the coordinates. For space trans-
lations and rotations the two types of variations are the same.

Now suppose we change from the unprimed to the primed coordinates and

time as above. The Lagrangian depends on the coordinates, velocities and
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time which will change when evaluated in the primed frame of reference. So
if observer S uses the Lagrangian L(z, i(t), Z4 :(t);t) then from observer S”’s
frame of reference this function will become L'(z., (), &, ;(t');t). The S’
observer uses the Lagrangian L’ obtained from L by substituting the inverse
transformation for the coordinates z, ; and velocities Z, ; in terms of the

z!, ., &, . and t’ on the right hand side of

a1 Ya

L'(zl, (), 2, ;(t');t) = L(zq i(t), Za i(t); 1) (6.12)

a1t a1t

This is the definition of L'.

It should be noted that the definition of S”’s Lagrangian might require a
slightly more general relation. As we have seen from Hamilton’s principle it
is the action that determines the dynamics, and so it is the action as written
by the two observers that is the same, the transformations are just a change
of variables. If the time varies in a more general manner than just shifting
the zero of time, t' = t + 6t = t + 0t(x,t), then the integral over time will
transform with an additional factor so that the action for the two observers

is related according to
t
D= [ D)8 )

— N dt L(za i(t), 3o i(t);1). (6.13)

t
Once again, this gives the definition of S”’s Lagrangian L'(z, ;(¢'), &, ;(¢); ') =
(dt/dt')L(zq i(t), Lo i(t);t). In our case equation (6.12) defines L' (we will
only consider constant shifts in the time ¢ = ¢ and € is a constant so that
dot/dt = 0, that is dt'/dt = 1).
So far we have given the definition of L', equation (6.12). For there to be

a symmetry of the system the laws of motion have to be of the same form
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for each observer in terms of their own coordinates and time, that is to be
form invariant, then L’ must have the same functional form as L so that each
set of Euler-Lagrange equations have the same appearance in each observer’s
coordinates and time. That is if the transformation between the observers
corresponds to a symmetry of the system so that the equations of motion are

of the same form in either set of variables, we must have

./ / / ’ N ’ ’ F
D@ ), 8 O8) = Lo (6, 8 (O8) 4+ S0, (6.14)

where we have demanded equality up to a total time derivative of a func-
tion of the coordinates and time since such a term, dF(z,, ;(¢');t)/dt’ =
Yo :(OF [0, ()2l ;(t')+O0F/0t', does not contribute to the Euler-Lagange
equations. Simply put L'(z!, ,(t'),z. ,(t');t) = L(zq i(t), T« :(t);t), equa-
tion (6.14) then implies that L'(z, ;(t"), &, ;(t'); ') = L(z, ;(¥'), 2, ;(t');t) =
L(z4 i(t), o i(t); t). That is the Lagrangian is invariant when S”’s variables
are substituted for those of S, L(zl, ;(t'), 2, ;(t');t) = L(za i(t), Za i(2); 1)
So equation (6.12) and equation (6.14) combine to define the Lagrangian L’
and to describe its invariance under symmetry transformations.

The change in L corresponding to a change in the time and space coor-
dinates from one observer to another can be found by considering the total

variation of the Lagrangian and expanding it to first order in the transformed

terms

AL = L(z, [(t"), 2, ;(t");t") — L(za i(t), T i(t); 1)

= L(.’Ea 1(t) + AZL'Q iy i?a 1(t) + Ai‘a iy t + 6t) — L(.’Ea i(t),j?a i(t);t)

oL oL . . oL
= 8xa iAa:a i+ 8j:—aiAxa i+ Eét (615)
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Now the intrinsic variations of the velocities are just equal to the time deriva-
tive of the intrinsic variations of the coordinates since intrinsic variations are

defined at the same time argument

ins = @b i(t) — da i(t)

= —5£Ba i (616)

On the other hand the total variation of the velocities is in general not equal
to the time derivative of the total variation of the coordinates since the time

arguments are different in the definition of the total variation

Adui = %x; () - %x ()
_ %x;i(t’) —%/a%xai(t)
— %[x;z(t') — 24 i(t)] {‘fl—i—l} %xai(t)
— %Aaza i B—i - 1} Fa i, (6.17)

where in the last line we can set the primed time derivatives equal to the
unprimed time derivatives since the [dt'/dt — 1] factor as well as the Az, ;
factor are already first order in the variation. For our consideration 0t = €
so that dt’'/dt = 1 and A, ; = d/dtAz, ;.

Proceeding in the general case again, AL becomes

oL oL d oL

AL = Dz iAxa i+ T iEiA% i+ _8?&
oL d oL d oL oL
- [axa . dto, } At it g lW Ao } + -0t (6.18)
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The formula is just an algebraic identity at this point. It becomes a dynamical
relation when we impose the Euler-Lagrange equations so that the first term
on the right hand side vanishes. Thus we obtain the first form of Noether’s

Theorem
oL

0T i

oL
A(Ea 1‘| + 8—675 (619)
If the transformation of the coordinates and time are a symmetry transforma-
tion of the system equation (6.14) is valid, then AL = L(z,, ;(t'), &, ;(¢');t')—
L(za i(t), 2a i(t);t) = L'(zg o(t), 24 4(t'); ') — L(@a i(t), #a 4(t);2) = 0. We

can stop here and utilize this general formula for our various transformations.

=% |

However, another form of Noether’s Theorem that proves very useful for
deriving conservation theorems involves the intrinsic variation of the coor-
dinates and Lagrangian rather than the total variation. Recalling equations

(6.9), (6.10) and (6.11), the intrinsic variation of the Lagrangian is given by

0L = Lz ;(t), &5 i(£);t) — L(Za i(t), Ta i(t); 1)

al Yo 1

= L(za i(t) + 02a iy Ta i(t) + 0%a 43 t) — L(xa i(t), Ta :(2); 1)

oL oL
= 2. 15% i+ 9%, 15% - (6.20)

Using equation (6.16) this can be written as

e e i o

oL = [azai_ﬂa:tai «it

Now recall the total variation of L, equation (6.15),

AL = L(zg ;(t), &4 s(t); 1) — L(za i(t), 2a (t); 1)

= [Llzo (1), 20 i(t); 1) = L(za o(t), Za +(t); 1))
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+[L(2a i(t), £a i(t); 1) = L(®a i(t), Ea i(1); 1)]

dL
— = 6.22
0L + 4t e (6.22)

where we only keep first order in the variations. Hence we find the relation

between the intrinsic and total variations of the Lagrangian

dL
= — ot—. 6.23
0L = AL — 6t 7 (6.23)
Substituting this above yields
dL d dot
= —0t— = — —[0tL]+ — L

* AL@L ” td a?:L i o 1i+ %tL
= - — 4 | 0] - 24
I:(?a:ai dtaicai] 0Tait o {&bai oz } (6.24)

Hence we obtain the final form of the algebraic relation

détL:{aL d@L}é%i d{é’L

T Dzn s — aaj:a i + a —8@1 i 0%y i + Ot L} . (6.25)

AL+

The second form of Noether’s Theorem is obtained by enforcing the Euler-

Lagrange dynamical equations of motion [affi — % af,f i] =0 to give
dét d | oL
AL+ —L=—|—— 6zqi;+dt L|. 6.26
t dt{axai Tai+o } (6.26)

We are now ready to apply Noether’s Theorem (6.19) or (6.26) to the
space and time transformations of equations (6.6), (6.7) and hence (6.8) and
(6.11). First let’s consider the invariance of the laws of physics under the
change of the zero of time, that is the homogeneity of time: dt = €, where € is
an infinitesimal constant. We demand, as a result of centuries of experiments,
that the dynamics should be independent of the origin of time, this means

that L should not depend on time explicitly and hence
L(z,%;t +¢€) = L(z, &; ), (6.27)
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that is

oL
= =0 (6.28)

From (6.8) we see that Az, ; = 0 so that (6.19) implies that AL = 0 for time
translations. Since € is a constant we have that dét/dt = 0 and from (6.11)

0Tq i = —€Zq i, SO (6.26) becomes

oL

0= _EEZ [WM Lo i — L:| . (629)

Thus we define the Hamiltonian H by

E@ngi%J—L (6.30)

=1

Noether’s Theorem then tells us that due to the observed homogeneity of

time, 8t =0, the Hamiltonian is a constant
H = constant. (6.31)

Note that if %t—L # 0, then Noether’s Theorem implies that AL = ¢0L/0t and

SO
d oL
—H=—— .
dt ot (6.32)
Further if U is independent of velocity, 0U/0i, ; = 0, and time (conser-

vative forces) then

oL AT -U) T |
Ofa: | Oia: | Ong eled
= D« i- (633)

Since T =1/23"_ . ma(Za :)?, we have that

3

N 3
%mV:ZZ ol i) = 2T. (6.34)
1 i=1 t a=1 i=1

a=
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Hence
H=2T-L=2T-(T-U)=T+U=EFE the total energy. (6.35)

So we find that as long as OU/3¢4 = 0 and z ; = T4 i(q?), we have that

8[/ aL a‘ai.
Z A - ZZ;% BZA ¢’

= 2T, (6.36)

having used ¢ = (0x/dq)¢. So homogeneity of time, dL/Jt = 0, once again
implies that

oL
H = Z 9 AqA L = E = constant, (6.37)

the total energy is conserved.

Next consider the homogeneity of space. That is the dynamics should
remain unchanged under a translation of the origin of the frame of reference
by a constant vector d@. From equation (6.7) we have that 0t = 0 and from
equations (6.11) and (6.10) we have that Az, ; = dz, ; = a; and so Az, ; =

0% i = 0. The origin of space should not matter; so we require that
L(xa i+Axa ia"ta i;t) = L(xa i:ia i;t)a (638)

that is L is left invariant under a translation of the origin of the frame of

reference. Hence, applying this to the first line of equation (6.18), we have

AL = ZZ 8:6,“ (6.39)

a=1 i=1
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The first form and second form of Noether’s Theorem reduces to the same
equation when 0t = 0, so equation (6.19) becomes

3

d [& oL
AL = E (ZZ a.’ta iai> . (640)

a=1 =1

Since AL = 0 and a; is an arbitrary constant, we find

d (L oL >
=z : =0 (6.41)
dt <; 8:13a i

for each ¢ = 1,2,3. This implies that

N
L
Z 8 = constant. (6.42)
a=1 a.'Ea g
Now once again
oL  o(T-U) 0T g
ai‘ai B aiai —8:tai_ o
= Pai (643)

the linear momentum. Hence the homogeneity of space implies that

N
Zpa ; = constant, (6.44)
a=1
that is
N
Z;ﬁ; = P = constant, (6.45)
a=1

the total linear momentum is conserved.

Finally consider the isotropy of space, that is the orientation of the axes
of the frame of reference does not alter the dynamics. In this case we have
from equation (6.7) that 0t = 0 and from equations (6.11) and (6.10) that

Ao i = 0Ta i = €j100;T x and so Aiq ; = €;x00;i4 . The orientation
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of the space axes should not matter; so we require that L be rotationally
invariant

L(Zo 4 00 X Ty Ton + 00 X Tajt) = LT, T 33 1) (6.46)

Hence, applying this to the first line of equation (6.18), we have

N 3
L
AL = Z Z ( 6131959 To k T+ ai EUk(SQ Cl?a k) = 0. (6.47)

a=1 i=1
As before the first form and second form of Noether’s Theorem reduces to

the same equation when 6t = 0, so equation (6.19) becomes

(ST

Axa 1) = 0, (648)

az

since AL = 0. So

ZZ (;zL .Axai — constant
N
= Z Z Pa i€ijk00;To k
N
= 00; Z Z €ijkPa iTa k

a=1 i=1

= 66, (Z T X 1)
a=1 j
L;

= 00;L; = constant. (6.49)

Since §6; is an arbitrary constant this implies

N
= Z (Zo X Pa); = constant, (6.50)
a=1

the total angular momentum is conserved.
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To summarize the relations between the properties of space and time,

symmetries and conservation laws we have the table

Inertial Frame Has Symmetry Property of L Conserved Quantity
Time Homogeneous L(z,&;t+€) = L(z, ;1) - 2 =0 H(=E)
Space Homogeneous L(z + a,&;t) = Lz, &;t) — Y., 0L/0zs i =0 P
Space Isotropic L(Rz, Ri;t) = L(x, &;t) L
(6.51)

where R stands for a rotation.

We can derive a further statistical “conservation” law for the ensemble of
particles by considering time averages of the motion of the system. Suppose
we know that the system has bounded motion in z,, ; and p, ;, we can define

the scalar quantity

N
S paitai= Zpa P (6.52)

a=1 i=1

S

Then consider the time derivative

N
D =S (6.53)
a=1

The time average of dS / dt over the time interval [0, T'] is given by

S(T) - 5(0)
/ —dt - (6.54)

If the motion is perlodlc and T is an integer multiple of the period, then
S(T) = S(0) so that
s
0. :
(&) (659
If the motion is not periodic but just bounded then S is bounded and for

<§> — 0. (6.56)
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So we find that
N _ N
OIATAEEIS I AT} (6.57)
a=1 a=1
Now p, - P = 2T, the kinetic energy for each particle, while f)'a = ﬁa, the

force on the ot particle. The above equation then becomes

<T> — —%<ﬁ:ﬁa-ﬂ,>, (6.58)

with the total kinetic energy T' = Zivzl T,. This is called the Clausius Virial
Theorem. [—1/2 < SN F, - 7, >] is called the virial of the system.

Suppose F, is derived from a potential, then

N
1 I
<T> - §<;m : VaUa>. (6.59)
For example, consider central forces between two bodies with
U= kr"t, (6.60)

where 7 is the distance between the bodies. Then

N
> FaVala = 7= ViU(|Fy — 7)) + 72 - VoU (| — 7))
a=1

=

= (_'1 — Fz) . le(lfl - 77’2')

= 7 VU()
d
= rd—g = (n+1)kr"* = (n+ 1)U. (6.61)
This yields
_(n+1)
<T> = <U> (6.62)
For the 1/r? force n = —2 i.e. for the gravitational force, then we find

<T> - —%<U>, (6.63)

the virial theorem for the 1/r? force (1/r potential).
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