5 Coupled Oscillations

In this section let us consider a system of particles experiencing small oscil-
lations about their equilibrium positions. In general the motion will be given
by a superposition of harmonic oscillations. We will unravel this coupled mo-
tion into normal modes; that is we will find the generalized coordinates each
of which oscillates at its own characteristic or eigen frequency. So consider
a conservative system with n-degrees of freedom so that we can describe
the configuration of the particles in the system by means of n-generalized
coordinates ¢%, with @ = 1,2,...,n. Let us assume the relation of the gener-
alized coordinates to the Cartesian coordinates z,, ; are independent of time
explicitly. That is

B i = B 50 (5.1)

We will assume that in the stable equilibrium configuration the values of the

generalized coordinates are

9" =gqg (5.2)

i*=0= " (5.3)

for ¢* = ¢§.

The dynamics of the system is given by the Euler-Lagrange equations of

oL d (0L
o ( 8(2“) = 0. (5.4)

d (9L
dt \ 9g°

112

motion

However, at equilibrium

=0 (5.5)

q*=qq




since it always involves a ¢* or a ¢* which vanish when the particles are at

their equilibrium positions. Hence the Euler-Lagrange equations imply that

oL
0q°

ou

oT
== _ o=
¢*=q  Oq°

9*=q5 dq°

(5.6)

q°=q5

Now if z4 ; = x4 i(¢*), we find that

a=1
only. Hence
N 3 n n N 3
1 1 0% i OZq i
T o= 30 smal@ad’ =53 3 0 > mampitostid
a:1i=12 2a—lblozl'Ll 6q aq
1 n n ‘ .
= 5 mabqaqbv (58)
a=1 b=]
where .
OT 5 8 Oy
Mah = Zma ;a LI = Mpq. (5.9)
So
oT
5.10
92 o (5.10)

since ¢* = 0 at equilibrium (where the subscript 0 is shorthand for evaluating
the expression at equilibrium ¢* = ¢§). Thus we find from the Euler-Lagrange

equations of motion that

ou
9“1l —o 5.11
0q® 'o )
that is the generalized forces
U
Qo = LUy (5.12)
0q®lo

at equilibrium.
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We can consider small oscillations about ¢§ and Taylor expand the La-

grangian L about these positions

o*U
U( QO +Z qO %\ ZZ QO)aqaaq
(5.13)

@ = 0 and for simplicity we can choose the arbitrary zero of
0

potential energy to be at the equilibrium position ¢§ so that U(g§) = 0, the
Taylor expansion starts with the second order terms and we ignore the higher

order terms for small oscillations

Ulg") = 3 Z Z (aqaaq ‘ ) ¢" — )(a" — )
2 Z Z ks (¢° — 43)(¢" — ao)- (5.14)

a=1 b=1

Il

The second derivatives of the potential energy are defined as
_ U ‘
= 9g°9gb lo

for U with continuous second partial derivatives. Hence kg is a n X n matrix

k = kb (5.15)

of numbers, independent of the generalized coordinates ¢°.
Since we are interested in small oscillations about equilibrium, the veloc-
ities will be small also so that

:}.ZZmabqaqb ZZ Mab qO +Zq _QO q°
2

a=1 =1 a—l b=1

+... ¢q°.

(5.16)
However the terms beyond m(gS) when multilplied by the velocities ¢%¢°
are third order in smallness and so we will neglect them. The to the same
order in small oscillations as the potential energy was expanded the kinetic

energy becomes

Z Z man(5)§°¢". (5.17)




From now on we will drop the argument of mq(g5) and understand it to be
just a n X n matrix of numbers independent of the generalized coordinates
q°.
The Lagrangian for small oscillations about the equilibrium positions is
given by o
= % YD [maid® — ks (4 — a8) (@ — )] - (5.18)

a=1 b=1
Since we are at a stable equilibrium as the minimum, then kg > 0. The

kinetic energy T' = 1 3" . mq @2 ; > 0, so both U and T are non-negative
and equal to 0 only when ¢* = ¢f for U or ¢* = 0 for T. The Euler-Lagrange
equations of motion now become, calling the coordinates Q* now (not to be

confused with the symbol for the generalized forces which we are not using
here)

Q" =(¢" - q) (5.19)
and
Q" = ¢, (5.20)
8L d [ 8L
= N 5.21
8@“ dt <8Qa) 0 ( )
which yields
S (mabe T ka@") =0, (5.22)
b=1
for w=1,2,...,m.

This is just a system of coupled harmonic oscillators where mg;, are the
generalized masses and kg are the generalized spring constants. We might as
well try the complex exponential solution for the coordinates (we only want
the real part of the complex coordinate, but we use the complex exponential

for simplicity in solving the linear equation of motion)

Qb(t) = abei“t=9), (5.23)




where a® and 6 are real constants determined by the initial conditions. Substi-
tuting this guess into the differential equations renders them to be algebraic

equations
n

S (—wPras + i) a® = 0. (5.24)
b=1
Thus we have an equation of the form

> Cay® =0, (5.25)
b=1

that is n-equations for n-variables y°. If there is to be a non-trivial solution
the det C = 0 so that C' ! does not exist. If det C' # 0 then we could multiply
the equation by C~! implying C~'Cy = 0 = y and hence y = 0 is trivial,

that is a® = 0 and so Q% = 0. So we require

k'ab = wgmab = i)

2
ki —w'min kg — w2m12

klg — w2m12 kgg — w2m22 v e = 0, (526)

where we have used k = k7 and m = m”. This yields an n*-order equation
for w? called the characteristic equation or secular equation of the system. It
has in general n-roots which we label wf. The w, are called the characteristic
frequencies or eigenfrequencies of the system. It can occur that two or more
w, are equal, this is called degeneracy; we will discuss this later.

For each eigenfrequency w, the Euler-Lagrange equations of motion are

n

> (Hhkas — wimap) a2 = 0, (5.27)

b=1
with no sum over » and where now we label the coefficient a® with the asso-

ciated r: thus @, is the n-dimensional eigenvector with eigenfrequencies w?
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of the operator
i (5.28)

that is
Z (m™ k), a = wlal. (5.29)

b=1

(Note that Thornton and Marion use the notation with both postscripts
downstairs ay for our al.) Since the principle of superpostion applies to
this system of linear differential equations, we can write the Q° as a linear

combination of the n eigenvectors
n
Q=" ulees Gl (5.30)
r—1

where the a® are determined for each r except for an overall factor. So we have
the n factors in a’ and n §, for the 2n needed initial conditions. We really

only need the real part for the physically meaningful generalized coordinate,

SO

¢"(t) = g5 + Z ab cos (w,t — 6,). (5.31)

r=l1
So each coordinate’s motion is compounded of motions with each of the n

frequencies. Thus, explicitly

Z Z (—w?map + kap) abe’rt=0) = Z <Z (kap — wimnap) af) gilert=0r) — (),
b=1 r=1 r=1 \b=1
(5.32)

The generalized coordinates ¢%(¢) are not yet the normal coordinates.

Example: Consider two coupled oscillators constrained to one dimensional
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motion Let the Cartesian coordinates be the generalized coordinates. The

Z‘ M 7(1L Mo ZL
0 0 0 _@ecoceoce e cer oo

S
7

>

equilibrium positions are 2% and z9. So the potential energy is given by

LY % ,
X0 B
A

r 4

A
1 1 1
B = §/€1(IL‘1 —z0)? + §f€2($2 - $3)2§f‘~'12£($2 — 1) — (23— x?))i

N

[(@2—28)—(@1~29)]”

= st Rz — 2D+ 5+ o) (02 — ) — maa(as — af) (o (58)

The kinetic energy is

1 1
T = Zmyi? + ~mois. (5.34)
2 2
So we can read off the values for the generalized spring constant matrix ke
k Al | =+
= =Ktk
11 Py B 1 12
k o ‘ Ko +
= = K K
22 D904 l0 2 12
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02U

kio = ko= = —hRi12.

02107010

The generalized mass matrix myg is such that

my; = My
Moy = M2
mie = 0 = May.

That is we have the matrices

(k1 + li12) —K12
kab =
—K12 (/ﬂz + K12)
and
ma 0
Map =
0 mo

Thus the Lagrangian is given by

2 2

2 2
L= 3 ma@@ - 5303 k@@

a=1 b=1 a=1 b=1
where
Q' = z—x]
Q> = zp—al.

In matrix notation the Lagrangian can be written as

___1'T ’_ET
L=3Q"mQ - Q"kQ.

The secular equation is

kab - meab =0.
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(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)




That is

K1 + K12 — wPmy — w?ma kis — w?mig
_ D)
0 = kiz —w®mis —Ri12
—K12 Ko + Kia — w?my

= (K1 + K12) (K + K12) — w? (M1 (K2 + K12) + ma(k1 + K12)) + whmimg — K,

(W?*)P2mymy — w? [my (kg + Ki2) + ma(k1 + K12)] + ((k1k2 + (k1 + K + 2)K12)
(5.43)

This is a quadratic equation for w?. For simplicity, let k1 = kK = kg and

mi = m = my. The secular equation then becomes

0 = m*(w?)? — 2w?m(k + k12) + k(K + 2K12). (5.44)

Solving the quadratic equation yields

e 2m(k + K12) £ /Am2(K2 + K2y + 26K12) — 4m3(K? + 2KK12)

2m?
K+ R E /K
m

_ htretRe ) ow (5.45)
m K+K12 ' '

These are the two eigenfrequencies

Wi

1l

K+ 2/‘&12
m

K

Wy = (E) (5.46)

The oscillations are then found to be (using lower postscript notation here)
z1(t) = 29+ ay1cos (wit — 1) + a2 cos (wat — d2)
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Ta(t) = @3+ agi cos(wit — 8) + agy cos (wat — by). (5.47)

Notice, although we have written 4 al,s they are not independent. The
eigenvector equation (that is just the Euler-Lagrange equation of motion)
determines the ratios of the a’s for each eigenvalue. Since the eigenequation

is linear the normalization of the a's are arbitrary. The a coefficients must

obey
2
Z (I{Iab — wfmab) Apyr = 0. (548)
b=1
That is
(kll — wfmll)alr + (klg =" wfmlg)agr = (. (549)

This has the solution

Gy = — (k’u - wfmu)al

‘s - T
(klz - w3m12)

(Ii -+ K19 — wfm)

= + A1y (550)
K12
For r = 1,2 we find
a1 = —an
Ao = aq9. (551)

Hence the Cartesian coordinates are given by

z1(t) = 3+ ay; cos (wit — 1) + @12 cos (wat — &)

Ta(t) = 29— ai1cos (wit — 61) + arpcos (wat — &). (5.52)

We can look at the ¢* as vectors in a n-dimensional vector space. Since
we have n-eigenvectors and our motion can be written as a superposition of

these, then the eigenvectors are seen form an orthogonal set of vectors in
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this n-dimensional space-they span the space. Returning to our eigenvector

equation
n

Z (k?ab = wfmab) af =0 (553)

b=1

for each r we can write this as a matrix equation. Let & and m be n X n
matrices and a, be a n X 1 column vector. Then equation (5.53) becomes in
matrix notation

k a. = wim a,. (5.54)

Multiply this by a?, where the superscript 7' means transpose matrix, in this

T

case a;

is a 1 X n row vector, thus
al ki =w g mas (5.55)
Similarly, interchanging r and s

al kas = w? al m as. (5.56)

But we assumed that & and m are symmetric matrices so that

o ko = Z BBt = Za‘;kbaaf = Z abkp,a”
a,b a,b a,b
= & k@ (5.57)
Likewise for
a';r m a, = al mas. (5.58)

That is in matrix notation
(af k a,)T = al k a, (5.59)
since this is just a 1 x 1 matrix it is equal to its transpose. But also
(af ka)X = al ka.
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= af kT aIT =ql kT a,

= gl k a, (5.60)
So applying this to our equations we have

g
ag ka, = wya

ra; ma,
al ka, = ol ka, =w?al ma,. (5.61)
Subtracting these equations yields
(w? —w?)al ma, =0. (5.62)

Hence for  # s in the non-degenerate case w? — w? # 0 means that

al ma, =0. (5.63)

For r = s we obtain no constraints.
However we also know that for each r the (n — 1) ratios of the compo-
nents of the vectors are determined from the eigenvector (Euler-Lagrange)

equations
n

Z (kab . meab) a® = 0. (5.64)

b=1
Let the n'® term be on the right hand side

(n—1)

Z (kab — wgmab) a® = (WPmoy, — ST (5.65)

b=1
But
det [k —w?m] _ #0 (5.66)

since w? is the eigenvalue of the n x n system and there is no degeneracy.

This implies that

[k — w?m] (_n_l) exists. (5.67)
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1 are all determined in terms of a™. So the overall

Hence the a',a?, ..., a™"
length of the vector d@, is undetermined. The eigenvector equation only de-
termines the @, vector’s direction. Hence we are free to normalize the vector

as we wish. We could choose

> af =1, (5.68)
r=1
BUT it is more useful to use
Zaf m =1, (5.69)
r=1
as long as my, is positive definite this is possible. And it is since
1
T = EqT m g (5.70)

and T > 0 but only zero if all z, ; = 0. That is iff all ¢* = 0. So m is positive
definite

Zar;r ma, >0 (5.71)
r=1

and equal to 0 if and only if a, = 0, which in NOT the case. (m > 0 allows

a metric to be defined on the space by a’ma.) So we have the normalization

al' m a, = 5. (5.72)

s

In detail

z": i Mapds ad = f,s. (6.73)

a=1 b=1
Thus, the @, form an orthonormal set with respect to the metric mqp.

We are now in a position to find the normal coordinates; those generalized
coordinates whose motion is harmonic with only one of the eigenfrequencies.

Recall that (complexifying the coordinate for now)
¢*(t) — g5 = ZaTafei(‘”Tt"S’). (5.74)
r=1
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Writing

so that

Q*(t) = g5 = )_Fre*ral.
r=1

Defining the normal coordinate as

we have that

e (t) = Bre™r,

g(t) = g5 + ) af m(t).
r=1

(5.75)

(5.76)

(5.77)

(5.78)

From the definition of the normal coordinate 7,.(t), equation (5.77), we see

that it obeys the uncoupled simple harmonic oscillator equation

for each r =1,2,...,n. The n, oscillate at frequencey w, only.

i () + wfnr(t) =0

(5.79)

The Euler-Lagrange equations have become separated as we desired. That

is with

we find

¢*(t) = i+ am(t)
@*(t) = > atin(t)

n n

‘;‘quq': %ZZW a;:rmas Ms
N N p=1 s=11 N

S e b= 5
=1 s=1 r=1
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(5.81)




Likewise the potential energy becomes

U = %(qT—qéF) (4~ ) Zznra k as 1s
r=1 s=1
o= _ZZW M Ns rs: Zw T My (582)
r=1 s=1

where in the second line the eigenvalue equation and orthonormality of the

eigenvectros were used

a E oy = al' mas = W2bps. (5.83)

'l"

So the Lagrangian takes on the simple form of n uncoupled simple harmonic

oscillators each with theirown eigenfrequency w,, r =1,2,...,n
1 n
L=2) [ —wi]. (5.84)
r=1

The corresponding Euler-Lagrange equations of motion for these normal co-

ordinates are

0L d OL
= SEEC 8
on. dton, (585)
which yields
iy + w2 n, = 0. (5.86)

Next we would like to relate the amplitude of the normal coordinates’

oscillations, (3,, to the initial positions and velocities of the particles. Recall

e (t) = Bre™rt (5.87)
and .
t)=q5+ > am(). (5.88)

Hence
¢(0) = g§+) alp
r=1
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¢*(0) = Y aliw, B (5.89)
r=1

Treating ¢* and ¢ as n-dimensional vectors, we find that

al m q(0) = af mqo + Zaf m a, Br, (5.90)
g T
so that
Br=a, m (q(0) - qo). (5.91)
Also "
al m§(0) =) iw, B al may, (5.92)
et T
so that .
B, = ——aT mg(0). (5.93)
w

r

Now letting ¢(0) and ¢(0) be real quantities we find

Re 8, = a; m (q(0) — qo)
Im B, = —wiarT m ¢(0). (5.94)

T

Hence we have for the normal coordinates
T 4 . wpt
1(t) =af m[g(0) = g0 — ~-d(0) | ¢ (5:99

Since only the real part is physically relevant, we have that for Ren,

T al m Q(O)

n-(t) = a, m (q(0) — qo) coswyt + — sin w,t, (5.96)

Wy
where 7, is just the real part of equation (5.95).
To summarize this, we have that the normal coordinates obey the Euler-
Lagrange equations

fip + W2 7 =0 (5.97)
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along with initial conditions for n,(0) and 7,.(0). This implies that

7w (0)

Wr

ne(t) = n-(0) cos wyt + sin w,t. (5.98)

But we have from the orthonormality of the a, eigenvectors that

m (q(t) — qo)
mi(t). (5.99)

n(t) = a
ﬁr(t) = a

S 3N

Hence evaluating these at ¢ = 0 yields

m(0) = a m (¢(0) — qo)
w(0) = al mg(0), (5.100)

and hence equation (5.96) once again

r m 4(0)

n-(t) = aX m (q(0) — qo) cosw,t + i sin wyt. (5.101)
W
Now back to our example. We found the eigenvectors

a1 = —an

Ao = +aio. (5102)

The normalization condition becomes

P
myip Mi2 air
1= E Qar Map Apr = ai, Qo
ab=1 M2y Ma2 QA2
_ 2 2
= m (a’lr + a’2r)
2m afr. (5.103)

So this yields

et (5.104)

a1 = —,
! \V2m

128




for r = 1,2. Hence in detail we find the eigenvectors

1 1
r=1 a = — ; Qo = ——
11 \/%% 21 \/%%
r=2 ap = — ; Gm=+—,
12 om 22 S

are

n-(t) = a7 m (q(0) — go) cos wyt
(a1r (¢*(0) — g2) + aar (4%(0) — ¢2)) coswrt
)

(a'(
la1, (z1(0

nr(t) = m

So for each normal coordinate we find

m(t) = [(931(0) — z2(0)) — (:E(l) = xg)] coswit

mn(t) = [(301(0) + 25(0)) — (x(f —+ zg)] coS wat.

Now first, let

which implies that

m(t) = xeV2mcoswit
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— 29) + aar (22(0) — 29)] cosw, .

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)




m(t) = 0. (5.111)

Second, let
2) (21(0) — 23) = + (22(0) — 23) = mo (5.112)

which implies that

m() = 0

m(t) = xoV2m coswst. (5.113)
Hence we have isolated the motion of the normal modes:
Mode 1: Oscillation out of phase with angular frequency w; = 5+—3le

W%
= —

Mode 2: Oscillation in phase with angular frequency wy = /=

m

%ﬁ

e &

This can be seen more clearly by considering the Cartesian coordinates

2
Ta(t) =20+ aani(t), (5.114)
F=]
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that is

i
z1(t) = 2+ anm(t) + aromp(t) = 29 + T (m2(t) +m
m
1
To(t) = 25+ anm(t) + anm(t) =25 + T (m2(t) —
Mode 1:
z1(t) — 1) = mgcoswit
To(t) — 23 = —zgcoswt.
Hence
t1(t) = —wixesinwit
To(t) = Hwixesinwit.

So we see that the velocities of particles 1 and 2 are opposite.

Mode 2:

21 (t) — 28 = mp coswat = x(t) — 0.

Hence the distance between the particles is constant

T5(t) — 21(t) = 25 — 20 = constant.

Further

i‘l (t) = Z.Cg(t) = —Wa T Siant.

So we see that the velocities of particles 1 and 2 are the same.

(5.116)

(5.117)

(5.118)

(5.119)

(5.120)

Finally let us summarize coupled oscillations and normal modes from

a slightly different point of view. For small oscillations about equilibrium,

oU/oq*

= 0, the Lagrangian has the form
9=90

1 . -a - a a
- > [mad®d® — ka (@* — @§) (¢ — &8)]
a,b=1
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where

N or, oF
Map = Map(qe) = g e e = Mg 5.122
b b(qO) ; 8qa 8qb o b ( )
and 5
0°U
by = —‘ = Tt 5.123
*T 0¢eogtlo ( )

Since T'= ¢ m ¢ > 0 and = 0 iff all ¢ = 0, My is positive definite and
symmetric. Hence we can find its inverse m;bl, moreover Mg, has no zero
eigenvalues, so we can define (m*'/2).

Now let’s transform the ¢* coordinates to new generalized coordinates

called the normal coordinates
(q*(t) — ) = ) a2 m(2), (5.124)
p=]

which implies that
§°(t) = at (1), (5.125)
r=1
where the a? are such that they are 1) eigenvectors and 2) normalized
1) kapal = w? mgp a® ( no sum on s), (5.126)
and
2) as Map a’; = . (5.127)
This implies that

b

a b 2 a 2
as kap a2 = wi ad map @, = W0y, (5.128)

Further we can invert the equations (5.124) and (5.125)

T
as

az m (q(t) - (Jo) - m Gy 77r<t) - ns(t)

ﬁS(t) -

QO3
i

m §(t). (5.129)




Substituting this into the Lagrangian yields

L = —Zmabza Qg 'r]r'r]s__zkabza a e Ms

ab 1 r,s=1 a,b=1 r,s=1

= —Z (Z MabQy maba>77r Ms — ;Z (Z kabay Mab ai) N Ms

r,s=1 \a,b=1 r,s=1 \a,b=1

L = —Z — wind). (5.130)

=1

The 7, are called normal coordinates and obey the equation of motion of the

simple harmonic oscillator with frequency w;:

fiy + w2 7, = 0. (5.131)
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