3 Lagrangian and Hamiltonian Dynamics

Next we desire to re-formulate the laws of Newtonian dynamics in a form
that deals with scalar quantities like the energy or potential energy rather
than vector quantities like the force and acceleration. This will be particu-
larly useful when dealing with constrained motion. Remember the particle
constrained to move on a surface of a sphere, Newton’s law was somewhat
messy to write out in spherical coordinates where the constraint r = R was
simple. We would like to avoid such complications, at least initially. Besides
utility, this re-formulation will make the relationship between conservation
laws and symmetries of space and time very transparant. Also the more gen-
eral formulation in terms of Lagrangian dynamics has generalizations when
special relativity becomes important. As well it is a useful starting point for
quantum mechanical and field and string theoretical dynamics.

To repeat then, as we have seen, constraints are a cumbersome restric-
tion to apply to Newton’s law directly; in fact we never really know the
forces of constraint, F.. Hence we would like a formulation of mechanics
which allows us to describe the dynamics without explicit knowledge of the
forces of constraint, i.e. the tension in a rope or the force holding a parti-
cle on a surface. For simple cases we know what to do, we just explicitly
eliminate the resulting constrained coordinates from the problem. Then con-
sider the equation of motion in non-constrained directions we already “know”
(given) the solutions in the constrained directions. For example z = 0 implies
z — y motion. This is the case of holonomic constraints in which we have
algebraic relations amongst the coordinates themselves. This allows us to
eliminate them from the motion. This is not always possible; that is the case

of non-holonomic constraints. We shall proceed in steps. First considering
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unconstrained motion, then holonomic constrained motion and finally non-
holonomic constraints. We shall work out examples of each type of motion

as we go along.

3.1 Unconstrained Motion and Generalized Coordinates

Consider a system of N particles of mass mq,, with @ = 1,2,...,N and
position vectors 7, with respect to some inertial frame of reference. Express

the position vectors in terms of Cartesian (rectangular) coordinates

—

Ta = xag + yoj' + zalAc

= Zu 161 + Ta 262 + To 363
3
= Z.’I)a zéz (31)
i—1

If the motion is unconstrained, we will need all 3N coordinates (Za, Yo, 2a),
a=1,2,...,N to specify the state of the system at any time ¢. That is the

configuration of the system at any time ¢ can be given by no less than 3N

coordinates.

Newton’s 2™ law can be written as
ma'}_}a = ﬁa, (32)

for each a =1,2,..., N where the F., are the total force on the ot particle.

We can simply write the acceleration as

d (1 0 .. .
T (5 Tl j]Q) = &p j 0apdij (00 sum on f), (3.3)

where we have used the fact that the velocities in each direction for each

particle are independent

0 .
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For example av_?;vg y = 0 but %”-w . = 1. This identity holds for each
f=1,2,...,N and each component j = 1,2,3. So multiply the equation by

mg and sum over all 8 and components j

d 0 1 N 3
E(ajg .Zzimﬂ[ﬂbﬁjf) = Y mpip j 0apbi

B=1 j=1 B=1 j=1
= mafc'a - (35)
Hence we find Newton’s 2™ law becomes
d 0
7 T)= anai:Fah .6
dt(a:fcm- ) M (3.6)

where the total kinetic energy of the system of N particles is

N o1 ,
T = Egmﬁ’vﬂ

=1

i)

N

= 33 Tmalis ) (37)

B=1 j=l1

Equations (3.6) are called Lagrange’s equations. Since T' = T'({zq :}), we

have that
oT

8:1;04 1

= 0. (3.8)

So we can write Lagrange’s equations, (3.6), as

oT d oT
(Bxai " %oz, ) = —Fas (3.9)

If F, consists partly of forces derivable from potentials

Fai:_

g U{me b )+ Fas, (3.10)

then we find that

oT-U) doT-U) .
o @ e, = fes (3.11)
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where we have used the fact that the potential energy is independent of the

particles’ velocities

ou
ai‘a i

= 0. (3.12)

The combination T'— U = L is called the Lagrangian and it is a function

of the coordinates and velocities of the particles and perhaps the time
L= L(xa iy 11'70 i t), (313)

where we know leave off the { } symbols so that it is understood that we mean
a function of all the z, ; coordinates and %, ; velocities, with a = 1,2,..., N

and i = 1,2,3. Lagrange’s equations (3.11) become

oL d 0L .
(- fam) =~ Fus (3.14)

The definition of the Lagrangian can be generalized to include, besides

forces derivable from a potential energy function U, forces not derivable
from a potential but that can be written as the Euler-Lagrange derivative
of a scalar function. The Euler-Lagrange derivative is just the combination
of derivatives appearing in Lagrange’s equations (3.14) (also known as the

Euler-Lagrange equations)

0 d 0
(8% by z) . (3.15)
So if F, ; can be written as
0 0 d 0 ) n
Fos= 50 10~ (5o — me ) MUzash (6,10 + Fas
(3.16)

then the Lagrangian is given by
L=T-U-M (3.17)
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and Newton’s 2*¢ can be written again as the Euler-Lagrange equations

oL d OL .
- 2 = -F, . 3.18
(81130”' dt B:ba ,) ( )

An important example of such a force is that due to electromagnetic fields.
Forces due to electric, E , and magnetic, B , fields on a charge ¢ particle are
given by the Lorentz force law F = g(E + ¥ x ]§) Recall that the electric

and magnetic fields obey Maxwell’s equations

V-E = elp Gauss's Law
V- g = 0O No Magnetic Monopoles
VxE+ aa—f =0 Faraday'sLaw
VxB-— (eopo)aa—]f = uoJ  Ampere's Law (3.19)

where p and J are the charge density and charge current density, respectively,
and the speed of light ¢ = 1/ \/m. We can introduce the electric scalar
potential, ¢, and the magnetic vector potential, ff, in order to solve 2 of
the 4 Maxwell’s equations. First since there are no magnetic monopoles the

divergence of B = 0 can be solved by
B=VxA. (3.20)

Plugging this into Faraday’s Law and interchanging space and time deriva-

tives leads to .
- - QA
v E+—]=0. )
X ( + Y ) (3.21)
Since the curl of the left hand side is zero it can be written in terms of the

gradient of a scalar, hence we have

E=-V¢-— %—f. (3.22)



The remaining two Maxwell equations become the wave equations for ¢ and
A, which can then be solved as in Physics 430/431.

As far as Newton’s 2@ Law goes, the Lorentz force on each charged
particle can now be written in terms of the electric scalar potential and

magnetic vector potential

—

F, = q, (E+1’)’a XE)
- 04 W o
= Qq (—qu 3 + Uy X (V % A)) , (3.23)
with g, the electric charge of the of* particle and where the electric and

magnetic fields, and their potentials, are evaluated at the position of the

charge q,. Writing this out in Cartesian components yields

8¢  0A; . O0A,
Foi = —qa (8% ; + 5 ~ CiikhimTa 35}%—)
= —(u — Ty jo— t+ Ta j 57—
0%y ; Ot T 0% ; 704
0 d 0 .
= —Qq (axa ) —_ %8,’1";01 i) (¢ — Ty iAi) , (324)

where we have used the fact that the potentials are functions of position and
time only (they are not functions of the velocities of the particles), so for

example

d 0A; dze; OA;
& 4§ t) = o Dad y O
g iTat) = g ==+

Thus the Lorentz force on each particle can be written as

8 d 9
F"‘"‘(axai_%aﬁ:(,)M"’ (3.26)

where the scalar function M, is given by

(3.25)

My = —qa@(Zart) + qala - A(Za,t). (3.27)
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Hence for our system of N particles interacting with electromagnetic fields

the Lagrangian becomes

N
L=T-U-) M, (3.28)

a=1

and the corresponding equations of motion are given by the Euler-Lagrange

( oL _d oL ) — . (3.29)

equations (3.18)

633a i B E 8i'a i
If all the forces are derivable from a potential (or can be written as an
Euler-Lagrange derivative) then F, ;i = 0 and the Euler-Lagrange equations

of motion for the particles becomes simply

8L d 8L
( s~ E B ) = 0. (3.30)

Hence Newton’s 2"¢ Law is equivalent to Hamilton’s Principle: Of all the

possible paths along which a dynamical system may move from one point to
another within a specified time interval the actual path followed is that which
minimizes the time integral of the difference between the kinetic energy and

the potential energy. That is

t2
5 / dtL(z, 33t) = 0, (3.31)
t

1

where L = T — U is the Lagrangian and I'(¢1,ts) = fttf Ldt is the action.
This new principle replaces the N vector equations of Newton as the starting
dynamical principle. We need only calculate the kinetic energy and potential
energy of the system and form the action. Of course éI' = 0 implies, by
the calculus of variations, the 3N Euler-Lagrange equations (3.30) which
are equivalent to Newton’s 2™ law. Now T and U are the same whether

we use rectangular coordinates or any other coordinate system, for example
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spherical polar coordinates, where some of the coordinates are not spatial
distances but could be angles or some other measure of location, hence this
dynamical principle is the same independent of the coordinates we use.

In general we can use any 3N independent quantities to describe the
state of our system. We will call these generalized coordinates and denote
them by ¢#, where A = 1,2,...,3N. Also the corresponding 3N generalized
velocities are given by ¢4. We can express the configuration of the system in
terms of the ¢# or our original Cartesian coordinates z,, ;. That is there is a

transformation between them

To i = Ta i(ql)q27 ey QSN, t)) (332)

where it is possible to have moving coordinates so we need a relation for each
time ¢ as indicated by the transformation’s dependence on t. Likewise we

have that

¢* = ¢*(z1, 212, . ., TNz ). (3.33)

Hence we want the transformation to be invertible, except perhaps at isolated

points, so we require the Jacobian of the transformation to be non-zero except

at isolated points
8$a i

og4

For example consider a single particle moving in the z — y plane. Besides

£ 0. (3.34)

Cartesian coordinates z and y we can use polar coordinates r and 6 to de-
scribe the location of the particle in the plane. The transformation between

the coordinates is given by

r = rcosf

y = rsiné (3.35)
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and the inverse

r = VETE
0

= tan"ly/z. (3.36)

The transformation is invertible except at the one point, the origin

Ox Oz 1

Oz Oz cos —rsind

gr go _ =r # 0( except at the origin). (3.37)
5??{ 5% sinf rcosf

So we can convert from one set of coordinates to another. The Lagrangian
then can be written in terms of the KE and PE in Cartesian coordinates
or the KE and PE can be written in terms of the generalized coordinates.
The Lagrangian is still L = T — U. For shorthand we will simple write
L = L(z,;t) = L(q, §;t) to express the Lagrangian written in different co-
ordinates. So let’s consider the Euler-Lagrange derivative of the Lagrangian

with respect to the generalized coordinates

oL d oL oL Bxaz OL 0z, ;
o ZZ{B Bat " T 008

"4 [ OL Owai | OL Oias
O0rq i 044  0iqi 04 ||~

(3.38)

However the transformation only depends on the coordinates and the time,

SO
axa i
=0 3.39
and B
dTo i O0Tqidq”  OTa:

dt  OgA dt TR (340)
that is

fo = Paign ) O%ai (3.41)

9A L T e
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So this implies
81’0( i axoz i
9¢gA  0OgA

since Oz, ;/0¢”* and Oz, ;/Ot are independent of ¢&. Hence we can gather

=0, (3.42)

terms

oL d oL N2 (0L 8zy; OL 0in; d [ 8L Oz, ;
S — LY + ot~ |
OqA  dt 0¢A 0zq i 0¢4 04 Oq t |0ty Oq

_ ii OL Ove; , OL Dia; _ (d OL ) daa,

B 1 i=1 81;0:2 aq aj;ai an dt 8i’ai an
oL d 8.’]30”'

oL (% e )} (3.43)

The second term and the last term on the right hand side of the last equation

above cancel with eachother because

d 8.’IIa i 8i‘a i
(ﬁ dg* ) T 9 (344

This follows from the fact that ¢ and ¢4 are independent just as are z, ; and

Zo ;. Comparing the expressions for each quantitiy above we find equality

iaxai B 0%z, ; dg? + 0Ty ;

dt 0gA ~ 0q40qB dt = BtdgA
0ta; 0O 3$ai.3+3xai
¢4~ 9¢A\ 981 T o

82370:12 .B + azxa %
0q40qB e OqAot

daxai

So we finally obtain
OL 9L §ny~Otas(OL _d 0L (3.46)
og*  dtogh dg4 8:c dt 8z ;) '

a=1 1=1
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Now recall Lagrange’s equation (3.14), substitute this into the right hand

side above

8L d oL 8:1:.”
3A " 3G ZZ ; (3.47)

a=1 i=1

Accordingly we can define the generalized forces as

zzf’””“

Qa = Zzam“ E, .. (3.48)

If F, ; is derivable from a potential, F, ; = —0U(z,t)/0x4 ;, then

Qa

0zs i OU (z,t 8U ,t
ZZ ) (¢ )-

0q4 Oz, 0gA

(3.49)

a=1 i=1

We can interpret the generalized forces by the work, 6W, that they perform

for small displacements dz,, ;

W= ZF Ore = ZZFM&::M

alz—-

N 3 Oxa {5 N 8za AP
=) Fai) = Z > Z
a=1 i=1 A=1¥ a=1 i=1 ,
- =QA
= > Qadg”. (3.50)
A=1

The work 0W here is called virtual work and the displacements dz,, ;, and
correspondingly g, virtual displacements that is independent displacements
in the coordinates that are not necessarily an allowed motion of the sys-
tem because dz, ; occurs instantaneously. An allowed motion of the sys-
tem dz, ; occurs during time dt. Hence W is called vitual work. Again

8g# is a virtual displacement in the coordinate g which is a change in
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g“ that occurs instanteously, dt = 0. Note that if Q4 = —0U/dq4, then
oW = Zi{i L Qadg? = —8U, as expected. If we need to find the form of the
generalized force, @4, then usually it most easily found by find the virtual
work for virtual displacement §g4.

To summarize, we find that no matter what coordinates we use to describe
the state of our system, we have the Euler-Lagrange equations in terms of

those coordinates

oL d oL A
et 3.51
9 dtogA - 9 (8:51)
and for irrotational forces where Q 4a=0
OL d 0L
2= . .52
OgA dtogh 0 (3:52)

This follows directly from Hamilton’s Principle in any coordinate system

to
5 / dtL(q, 6 ) = 0, (3.53)
t

1

where L = T — U and the kinetic energy now may depend on the coordinates
as well as the velocities, T = T'(q,q), and U = U(q,t). Note that the dqg
variation corresponds to any virtual displacement in the coordinate path
when the calculus of variations is applied.

Once again as an example consider a particle moving in 2 dimensions un-
der the influence of a conservative force with potential U(z,y). Transforming
to polar coordinates (r, #) the kinetic energy has a radial velocity piece, %mf’“’,
and an angular velocity piece, %m’r292,

T = 1m(a'c2 +9%) = L2 + 1m’r20.2. (3.54)
2 2 2
The potential energy is expressed in terms of the polar coordinates so it

becomes a function of r and 6, U = U(r, §). The Lagrangian is then given by

L=T-U= %m’r‘Q + %mr292 —U(r,8). (3.55)
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The two Euler-Lagrange equations are found to be

oL ddL . n OU
T nar 0= —m¥ +mro pe
OL d oL d 90 oU
= _ 2 = ()= —— ) — —. 3.56
% den . | @ (m’” ) Bl (3.56)
Thus we obtain Newton’s 2" Law in polar coordinates
. oU
. 2 _ _9v
m (r rf ) 185(]
m (rc9 + 27"0) =~ % (3.57)
This is just m7 = —VU in polar coordinates!

Before investigating Lagrangian dynamics when the motion is constrained,
we will study a particle’s motion for small oscillations about a stable equi-
librium position. This will be described by the simple harmonic oscillator.
We will include damping and driving forces as well. Since we will study this
motion in one and two dimensions it can be said that we are already consid-
ering constrained motion in spaces lower than three dimensions. Essentially
we are applying one of the techniques of handling holonomic constraints: we
eliminate the constrained coordinates from the problem explicitly. For con-
strained motion along the z-axis we have set y = 0 = 2z and only consider
the z motion. After a brief introduction to the harmonic oscillator we will
return to the holonomic constraint case to formalize these techniques. Then
we will return again to the harmonic oscillator for a more detailed study of
its motion.

Consider the motion of a single particle of mass m in one dimension along

the z-axis. Suppose the potential energy of the particle is given by that of

the harmonic oscillator:

U= —kz* = —mwiz®. (3.58)



The kinetic energy is

T= %mdzz, (3.59)
 and hence the Lagrangian becomes
L=T-U= %m:z? - %mng% (3.60)
The corresponding Euler-Lagrange equation governing the motion of the par-
ticle is
g—i’ - %% =0 =—muwir — %(md:), (3.61)

cancelling the common mass factor yields the simple harmonic oscillator equa-

tion of motion
i +wiz = 0. (3.62)
In addition the particle can experience a retarding frictional force F' = —bg =

—2mfx proportional to its velocity. Since F' cannot be derived from a po-

tential the Euler-Lagrange equation becomes that of equation (3.14)

8L dOL . .
52~ e = —F =2mpe, (3.63)

which becomes upon cancelling the common mass factor
i+20i +wiz = 0. (3.64)

Finally, a time dependent driving force can be applied to the particle in order
to overcome the damping resistance to keep it oscillating. The driving force

is given by F'(t) = F(t)i and is derivable from the time dependent potential

function
U(z,t) = —zF(t). (3.65)

The total potential is then given by
1
U= 5mw§:c2 —zF(t) (3.66)
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and the Lagrangian takes the form

L=T-U-= %mﬁ’ - %mngz +2F (). (3.67)

The Euler-Lagrange equation again yields

OL doL A
I _F= L. 3.68
Oor dtozx 2mpz (3.68)
This leads to the driven oscillator equation of motion
F(t
i+ 261 +wix = % (3.69)

The solution to these equations of motion in each case will now be taken up in
turn. But first let’s return to the question of treating holonomic constraints

and applying our dynamic principle to the case of constrained motion.

3.2 Holonomic Constraints and Lagrange Multipliers

Suppose there are forces of constraint acting on our system so that in order
to specify the configuration of our system at any time ¢ it is only necessary to
use n independent variables; let’s denote these generalized coordinates again
by ¢* but now a = 1,2,...,n < 3N. That is there exists relations among the
coordinates z, ; so that some can be eliminated. Said otherwise, any z, ; at

time ¢ can be given by the generalized coordinates g%, there exists a relation
Toi=Tailqhd% .., q%1t) = T4 i(g% ). (3.70)

Or in terms of the generalized coordinates the relation becomes
7t = ¢*(g% ). (3.71)

That is we have holonomic constraints; every change in the generalized co-

ordinates d¢° is a possible virtual displacement; the d¢* are independent but
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the corresponding changes in the 3N coordinates §g“ are not independent.

There are (3N — n) relations amongst them. These can be expressed as
n7,6q% =0, (3.72)

where r = 1,2,..., (3N — n). Or integrating (holonomic) these we have

g (g%t)=0. (3.73)
Thus for dg# this yields
gg; 5¢ =0 (3.74)
so that )
= %’A. (3.75)

The number of independent virtual displacements, in this case the (number
of 6g*) = n, is called the number of degrees of freedom of the system and is
equal to n.

We have two ways to handle these constraints. To start, let’s imagine we
know not only the external or applied forces, denoted Fy, ; but also the forces
of constraint, denoted F¢ ;, needed to implement the constraints g"(g%;t) =

0. Since we know all the forces acting on the system we have 3N Lagrange’s

equations
oL d OL ~
- 7 = - a i F;; ’ .
5o~ dog ~ (FaitFi) (3.76)
or in terms of generalized coordinates
oL d oL A .
A = (@a+0Q3), (3.77)

with A =1,2,...,3N, where F and Q are that part of the external forces not

derivable from a potential. We can proceed as before in the unconstrained

case. Let

Ta i = Za i(q% 1) (3.78)
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so that the Euler-Lagrange derivative of L with respect to the ¢° yields

OL d oL oL aa;a i OL 0Oig ;
dq®  dtdj, Z Z {aza i Bx,, i 0q°

d | OL 0z, ;
dt [afsai aqa]}' (3.79)

dTo i _ 0% idg® | O%a

a=1 i=1

As previously

= — 3.80
& ogr dt | ot (3:80)
that is
0Zq i, 0Tq s
.a i= ¢ .81
z o g e (3.81)
so that
afba A axa i
= 3.82
0q® 0q° (3.82)
Hence the Euler-Lagrange derivative of the Lagrangian becomes
0L  dOL TGOz, d oL
— . 3.83
Bqa dtaqa azzzl: d0q° (axaz dtai?ai) (3.83)

Since the dq® are independent, we can multiply by them and sum over a =

1,2,...,n. There must still be term by term equality in the sum

" (0L doL 8xaz o0k 4oL
25 (8(1 Eia_qa) = ZZZ (Bxai_aads—a)

a=1 a=1 a=1 i=1

: zz(zaxw ) (- i)

a=1 i=1 a=1
(3.84)

Now recall for virtual displacements that there is no explicit change in ¢, so

the virtual displacements dz,, ; are found from just the §¢® virtual displace-

ments

Z ax“ L6¢° = 6z ;. (3.85)

a=1
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So equation (3.84) becomes
" L.(OL daL SRS oL _d oL
;6(1 (8qa - Eada) N sz%i(axai - Eaiai)
= ZZCS-’Eai(—Fai—Fg i)' (3'86)

We now have two choices in how to proceed. The first method is to

explicitly eliminate the constrained coordinates. The second method is to
introduce “extra” coordinates as Lagrange multipliers. Exploiting the first
method first, we can use the “principle of virtual work”. The virtual work
done by all the forces when the system undergoes a virtual displacement 0z, ;
is

N 3
W =Y 6za:(Fai+Fc,). (3.87)

a=1 i=1

However the forces of constraint are such that for any change in the gener-
alized coordinates dq*, only motions in z, ; consistent with the constraint
equations are allowed. That is the dz, ; are constrained. In particular, by
definition the allowed displacements in z, ; are orthogonal to the forces of

constraint

67y - FS =0, (3.88)
for each a. So the sum over particles of this equals zero also

N 3
> 6w iFE =0 (3.89)
1

a=1 i=
The work done by the forces of constraint is zero! Consider an example in

which two particles are held a fixed distance L apart

(1 — 22)® + (31 — y2)* + (21 — 22)* = L? (3.90)
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or written differentially

(CL'1 - IL‘2)(5($1 — .’L'Q) + (y1 - yg)é(yl - yz) + (Zl — 2’2)(5(21 — 22) =0. (391)

The force of the second particle on the first particle is F, the force of the first
particle on the second particle is —F. The force is along the line joining the
particles F = (71 — 72) f. So the total work done for displacements J77 and
075 is

W =F .07 — F .67 = F - §(7, — 7). (3.92)

But the centrality of the force, F= (71 — 7o) f, implies
W = f(ry —72) - 6(T1 — 72) = 0, (3.93)

by the constraint!
So we find the right hand side of equation (3.84) only involves the external

or applied forces

"\ (0L doL N3 ,
;(sq <3qa dt aqa) = - Zzéxa iFa - (394)

a=1 i=1
Now
N 3 ax
SN 6z iFui= Za —2if = qu“Qa, (3.95)
a=1 i=1

where Qa are the generalized external forces. The virtual work now becomes

SW = ZZMMFM—I—F“ —ZZMMQ, Zaana (3.96)

a=1 i=1 a=1 i=1

and hence the Euler-Lagrange derivative takes the form

d oL P
25 <aq a-az) = - ;5q Qa- (397)
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Since the dg* displacements are independent each term in the sum must be

Zero

— — —— = —hatQq, 3.98
0q* dtdq, at@ (3.98)

where a = 1,2,...,n.
Hence if all the applied forces are derivable from a potential (Q =0), we
find the Euler-Lagrange equations for the system in terms of the generalized

coordinates are derivable from Hamilton’s principle

to
5 / L(g®, @* t)dt = 0, (3.99)
t1

in terms of the independent (degrees of freedom) coordinates only. the config-
uration of the system is then determined at any time from the degrees of free-
dom ¢* and constraints g" = 0, that is z, ; = 4 i(¢%t) foralla =1,2,...,N
and i =1,2,3.

Instead of eliminating the constrained coordinates explicitly and finding
equations of motion for the remaining independent generalized coordinates ¢*
we can introduce “extra” coordinates in the form of Lagrange multipliers as
the second method to solve the motion of a system with constraints. Return

to our original Euler-Lagrange derivative equations (3.76)

oL d 3L
8CCa i dt Bcba i

- (Fa i+ FC ,.) . (3.100)

The constraint forces F'¢

a i)

although undetermined explicitly, result in the

coordinates being constrained by
9 (2o i5t) =0 (3.101)

so that for virtual displacements dz, ; (they are “instantaneous” displace-

ments) we have

ag"
—0%4; =0. .102
8xai5x 0 (3.102)
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That is we have m = (3N — n) vectors denoted 7" in the 3N dimensional

. . r _ Og7
confuguration space with components n, ;, = —5;9: so that

A 6F=0= Z Zna OTa i (3.103)

a=1 i=1

But we know that the virtual work done by the constraint forces is zero
N 3
> > Fe bzai=0. (3.104)
a=1 i=1
Hence the 3N dimensional vector F© is also orthogonal to 6Z. Since the 71"

vectors span the m dimensional space orthogonal to 6Z we can expand Fein

terms of the 7i" basis elements at any time ¢

= f: A (8)T. (3.105)

The ), (t) are independent of 6z, ;. The \.(t) are Lagrange undetermined

multipliers. So we find

oL d OL . m )
a.’Ea 1 B %83‘30‘ i o _Fa L ZArna 27 (3106)

where again n, ;, = 3—290%. In addition to the Euler-Lagrange equations we

also have the m constraint equations
9" (x4 45t) =0. (3.107)

Thus we have (3N + m) equations for the 3N coordinates z, ; plus m La-
grange multipliers A\, unknowns.

As previously we can multiply this by %—I';Ai and sum over «a and 7 to

obtain
N O0%q 4 d 0L N 3 Bz s -
;; A <8$a1 Eai‘ai) - _;;—&FFai
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N 3

- r 0 a i
_Z;/\,.ZZTLQ 157-

a=1 i=1

(3.108)
This just yields y
gq% _ %(% = —Oa- ; AN, (3.100)
where
_ SZA‘ (3.110)

So Lagrange’s equations for the generalized coordinates and Lagrange mul-

tipliers plus the constraint become

oL d oL & )
L LS AN, = =0, 111
9qh o L A Qa (3111)

with
g (¢%t) = 0. (3.112)
As before the generalized force of constraint

Z Z ax" ipe. = iATN;. (3.113)
r=1

a=1 i=1

So the Lagrange multipliers just represent the components of the generalized
force when expanded in terms of the N” generalized vectors.

Hence in the holonomic constraint case the Lagrange multiplier method
leads to equations of motion for the 3N generalized coordinates as well as

the m constraint equations themselves by treating the Lagrange multipliers

85



A as an additional m coordinates. Then we obtain (3N + m) equations of

motion as Euler-Lagrange derivatives of the auxiliary Lagrangian
Lg*, ¢ 1) + ) A (t)g (g% t) (3.114)
r=1

with respect to the (3N 4+ m) coordinates (g#, \,) and recalling that N% =

09" /0q* and the only )\, dependence is its explicit appearance in the auxiliary

Lagrangian.
If Q4 = 0, all forces (besides the constraint) are derivable from a potential
and we find .
%—%%Jr;)\m =—-Qa (3.115)
and
g (g%t) = 0. (3.116)

These again result from the Hamilton action principle. The path the
system moves along when subject to constraints ¢" = 0 is given by the

minimum of the action with Lagrange multipliers

t1

to m
[(t1,y2) = / dt [L(qA,dA;t)JrZ/\rg"(qA;t) , (3.117)
r=1

where {g4, \.} are treated independently. That is 6I" = 0 implies
O(L+ \g") d AL+ M\g")

0q4 Cdt 9gA =0
OL+MXg") dOL+Ng)
Bn 7 3% = 0. (3.118)
These just become
OL  d 0L <, 99" A

S Gt S e = ~Qa A=12..3N

86



¢ =0 , r=12...,m, (3.119)

having used dg" /8¢ = 0. Note: g" is not set to zero until after T is varied!

Example 1: Consider a particle constrained to move on the surface of a
sphere subject to conservative external forces. Method 1, we can descrive
the motion of the particle using 2 spherical polar coordinates with the con-
strained radial coordinate fixed. Method 2, we can use the 3 spherical polar
coordinates of the particle plus the Lagrange multiplier for the constraint.
Finally, we could use method 2 in Cartesian coordinates for a direct relation

to Newton’s 2" Law. Method 1: the %constraint is given by 2 4 3% + 2% = a2

or 6z + ydy + 20z = 0 and can be most easily implemented in spherical
polar coordinates in which the constraint is 7 = a or 67 = 0. So choosing the

generalized coordinates as

q =
P = o ~ (3.120)
the kinetic energy is
1 .
T = Sma? (92 + sin? 0% (3.121)

and the potential energy has the form
U=U(a,6,y). (3.122)
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The Euler-Lagrange equations for 6 and ¢ are given by

OL doJL
- = 12
o @tog (3.123)
so that
oL doL 9 oU .
—_———— = = 1 0 2 —_— 2
1 R
2t =2 2020 _
5o dtdp 0 5, d@t (ma®sin® 0¢) . (3.124)
The equations of motion are
ma?0 — ma?sinf cos0p® = —%—g
% (masin6p) = —Z—Z, (3.125)

with r = a the constraint.
Method 2: Choose the generalized coordinates as all three spherical polar

coordinates

q =
¢ =
e = o, (3.126)
and the constraint equation
g=r—a=0 (3.127)

used as a Lagrange multiplier “additional coordinate”. The kinetic energy is

now
T= %m (7'2 + 7202 + r2sin? 9¢2) (3.128)
and the potential energy has the form

U="U(r0,vy). (3.129)
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Using the Lagrange multiplier augmented Lagrangian (L+M\g), and the corre-

sponding action I' = f:lz dt (L + \g), the Euler-Lagrange equations are given

by
oL

d oL

____._i_ —_
& 4% %

dg

+

80 dtpe | o0

oL _ 8L o
Jp dtop gf
—_— 1
) (3.130)
Using g = r — a so that dg/0r = 1, these become
mr6? + mrsin? 02 — mi + A %—(7{
mr?sin @ cos «922 - % (mr2é) 68_(9;[]
a (mr2 sin2 0(,0) —%
O=r—a (3.131)
Working in reverse order, the equations of motion imply
r = a
d 2p. U
y (ma®sin®6p) = —%L.:a
ma®d = ma®sinfcos§p° = —g—glma
A = —mab?— masin® 6% + —?9—[:|r=a.
(3.132)

Note that A is the force of constraint in the 7 direction. It just cancels

F, = —9U/0r plus the centrifugal force!

T

0g
Fc= Nr: _— = .
A . A
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So we can find forces of constraint this way if desired, i.e. tension in a pulley

string, stresses in beams in buildings.

Finally we could use the method of Lagrange multipliers in Cartesian

coordinates. The Lagrangian is simply

1
L= im(12+§/2+z'2) - U(z,y,2)

and the constraint equation is

g:

N =

The Euler-Lagrange equations become

mx:—g—g—)\m
m ——a—U—/\
mz=—a—(zj—)\z,

or in vector notation

mr = vecVU — 7.

But the constraint implies g = 0, hence

22 +y% 4 22 =ad>

Thus

m7r = vecVU — A\ar.

This is just Newton’s 2*¢ Law with Fe = —)af.

(22 +y*+2°—a®) =0.

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)

Example 2: A light (massless) rod swings freely from one end in a vertical
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plane. An ant of mass m crawls along the rod towards the pivot end with

v

b
uniform speed v (relative to the rod). Find the equation of motion of the
coordinate of the ant.

Since r = ry — vt, with ry the position of the ant at ¢t = 0, we know the
position of the ant on the rod. Hence we have a moving constraint. The
angle 6 the rod makes with the vertical in the plane is all that is needed.
This is the one degree of freedom and 6 is the generalized coordinate. The
kinetic energy is

T = %m (7"2 + r292) = %m (v2 + (ro — vt)292) (3.140)

and the potential energy of the ant is
U = —mgrcosf = —mg(ro — vt) cosf. (3.141)

With the constraint equation built into the coordinates, we have

L= %m (v2 + (ro — vt)292) + mg(ro — vt) cosf. (3.142)
The equation of motion for 6 follows from Lagrange’s equation
OL dJL
— - —— = 3.143
00 dt oo 0, ( )
yielding
(ro — vt)f — 206 + gsin @ = 0. (3.144)
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The method of Lagrange multipliers may be used to solve this problem
also, however it is messier. Using the Lagrange multiplier augmented La-
grangian

L+ X —ro + vt), (3.145)

the Euler-Lagrange equations become

8_L_i8_l-/+)‘ = 0:—m’i‘+mré2+mgcose—|—)\
o 0% ar d
9u _ 290 _ 9= _ inf — —(mr2f
50 " @t gg 0 mgr sin 0 o (mr=6)
o = 0=r—rg+vt. (3.146)

Once again utilizing the equations in opposite order yields

r = 19—t
(ro — vt)f — 200 + gsinf = 0

- _ _ _ 12
A = —mgcosf m(r, — vt)6* (3.147)

force of constraint cancels gravity cancels centrifugal force

3.3 Non-Holonomic Constraints

Lastly, we study systems with non-holonomic constraints, that is constraints
that cannot be integrated to yield algebraic relations amongst coordinates.
Consider a system which requires n generalized coordinates to describe its

configuration at any time t
Toi=2Zai(dh ..., q%1), (3.148)

but the system’s motions are further constrained so that there exists rela-
tions amongst the generalized velocities and coordinates: f7(q, ¢;t) = 0 with
r = 1,2,...,m < n. There are even more general constraints than non-

holonomic, constraints, for example, that confine a particle’s motion to a
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region of space. These can be written as inequalities f"(g,q;t) < 0. We will
not deal with all possible non-holonomic constraints but only consider the

type that are expressible as a relation among coordinate differentials of the

form "
> " ni(g;t)dg® + m"(g; t)dt = 0, (3.149)
a=1
where r = 1,2,...,m < n. That is a constraints of the form
> " ni(g;t)q® +m'(g;t) = 0. (3.150)

Note, if m™ = 9f" /0t and n], = Jf"/0q* then the constraint equation be-

comes

Zaf’dq 6’f’" _ g

Zn (3:8)¢* +m"(g;) 3 dt =

a=1

=0, (3.151)

so f" = constant, and the constraint is again holonomic (integrable).

We also notice the other aspect of non-holonomic constraints, the number
of degrees of freedom is less than the number of generalized coordinates. The
number of degrees of freedom being (n — m) while we need n generalized
coordinates to specify the configuration of the system. The number of degrees
of freedom is the number of independent directions in which the system can
move (i.e. the number of independent dq*, there are n ¢* necessary to specify
the configuration of the system at any time, but there are m constraint
relations among them, hence (n —m) independent §¢®, the number of degrees
of freedom). For holonomic constraints the number of degrees of freedom are
always equal to (3N — m) which was equal to the number of generalized
coordinates necessary to describe the configuration of the system.

We can handle the non-holonomic constraints of the form of equation

(3.149) as we handled holonomic constraints with Lagrange multipliers since
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for the virtual displacements dg* the time does not vary dt = 0 and so the

constraint equation (3.149) reduces to

> (g t)5¢" =0, (3.152)
a=1

just like the holonomic case. That is the forces of constraint QS do not

contribute to the virtual work

oW = Zn: QR50¢° =0 (3.153)
a=1
where the §¢® obey the instantaneous constraint equations
inZ(q; t)6g* = 0. (3.154)
a=1
Hence we have that o
Qe => M(t)n]. (3.155)
Lagrange’s equations are then giverzzbly
- Gia =0 éxr(t)nz, (3.156)

where the Qa are forces not derivable from a potential; forces derivable from

a potential are in L. In addition we have the constraint equations (3.149)

> “nrdg® +mrdt =0, (3.157)

a=1

that is the differential equations of constraint
n
> nig*+m"=0. (3.158)
a=1

There are (n+ m) unknown coordinates {g%, A\, } but we have (n +m) differ-

ential equations (3.156) and (3.158) in order to determine them.
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If Qa = 0 the equations of motion are derivable from a variational prin-

ciple .
2
5 / gL =0, (3.159)
t1
but before we set the integrand to zero we eliminate the constrained variations
t2 t2 OL d oL
1) dtL = / dt (— - — = ) 0q” 3.160
£ t 0q* dt 0ge ( )
however the d¢® are not independent but
> négt =0 (3.161)
a=1
as does ,
2 m n
/ ity > X\ nidg* =0. (3.162)
2! r=1 a=1
Hence we add this to éI" above
2 |0 dOL &
= t - — Ar nl | 0g°. 3.163
0 /tld;[&]a dtaanr; ng | g (3.163)

Now (n — m) of the §¢* are independent, so we use m of the arbitrary A,
to cancel the integral. The remaining (n — m) of the dq* are independent.
So the integral must vanish and we obtain the Euler-Lagrange equations of

motion for the system

OL d oL < .
e e T > Anp= (3.164)

along with the equations of constraint

> “nidg® +mrdt = 0. (3.165)

a=1
For example any time rolling “without slipping” occurs we have non-
holonomic constraints. Consider a flat uniform disk which rolls upright with-

out slipping on a horizontal plane. The coordinates needed to describe the
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configuration of the disk at any time are given by 4 generalized coordinates

(z,y,9,0). (z,y) Cartesian coordinates locate the position of the point of

¥

ﬂ%\s
= A

wé\ 4

e

constact of the disk with the plane. v specifies the angle between the axis of
the disk and the z-axis. 6 is the angle between a fixed radius of the disk and

the vertical direction. The Lagrangian is
1o oy 1o 1.9
L= 5m (& +79 )+ 2I10 + 2121/) , (3.166)

where the moments of inertia of the disk are I; = 1ma? and I, = ma?. Now

if the disk rolls without slipping we have for a differential element of the path

in time dt So 3/ o &@ /_g&k O‘F 0\{9\1 A &t

dr = adfsiny
dy = adfcos. (3.167)
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So we have the non-holonomic constraints

dr —asinydd = 0=nldg"
dy —acosydd = 0=n2dg", (3.168)

which cannot be integrated. Hence, reading off from the above constraint

equations, the components of n] are

n, =0 , n}, = —asiny , n,lp=0
=1 , n2 = —acosy |, nj,=0. (3.169)

There are 2 constraint equations, hence we need 2 Lagrange multipliers

A1 and A;. The Euler-Lagrange equations

g;—%g;Jrg,\, n, = (3.170)
become
%_%Z_I’I-I_Mni—*_)qni =0
g_z_%giﬂln;ﬂgng ~ 0
%’—%%L.—+Alné+x\zn3 =0
g_z_%g_éw\l ny + X nl, = 0. (3.171)

Taking the derivatives of L these equations become

—mI + )\1 =0
-my+Ar = 0
—Ilé—/\lasintp— Xacosy = 0
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~Liy = 0. (3.172)

Thus we find 6 equations for the six unknowns z,¥, 0,10, A1, A2

mi = M\

my = Ao
Ilé+A1asin¢+A2acos¢ =0

Iop = 0. (3.173)

Note that we need 4 generalized coordinates to specify the location and ori-
entation of the disk but the velocity constraints relate 2 of the variations of

the coordinates

dx = adfsiny
dy = adfcos1. (3.174)

Hence there are only 2 degrees of freedom. This is a characteristic of non-

holonomic constraints.
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