Physics 410 Classical Mechanics

1 Newton’s Laws

Classical mechanics is perhaps the oldest of the physical sciences with its
origins shrouded in antiquity. The first complete mathematical (quantitative)
statement of its principles was given by Issac Newton in 1687 in his Principia.
These principles have become to be known as:

Newton’s Three Laws of Classical Mechanics.

I) Law of Inertia: A body remains at rest or in uniform motion unless

acted upon by a force.

II) Law of Motion: A body acted upon by a force moves in such a manner

that the time rate of change of momentum equals the force.

I1I) Force Law: If two bodies exert forces on each other, these forces are

equal in magnitude and opposite in direction.

In order to express the consequences of these laws in a more mathematical
form, we need to discuss the fundamental or primitive concepts that are
assumed and that lie behind the laws. In that way we can fine-tune our
understanding of Newton.

Mechanics deals with the motion of bodies in space over the course of
time. In general we will deal with point particles, and we will build up the
motion of macroscopic bodies from conglomerates of point particles. By point
particle we mean our fundamental particles will not have internal structure
but will be assigned only the location of a point in 3 dimensional space. That

is as far as describing their motion is concerned, we can neglect their extent



in space, that is their dimensions. Of course this idealization depends on the
problem e.g. planets may be regarded as point particles when considering
their motion around the sun but not when considering their rotation about
their axes. Thus the fundamental particle’s mass, electric charge, dipole
moment or other property will be an intrinsic quantity given once and for
all and beyond explanation. If these quantities vary in time the “particle”
is more than fundamental. How good such a description is depends also on
whether another more complex description of our particle leads to predictions
of any of these previously intrinsic quantities.

When we speak of the position or the motion of a particle we mean the
location relative to some other body suitable for that purpose. We might refer
the moﬁon of the planets to the center of gravity of the sun or the motion of a
pulley relative to the earth. All motions are described as motions relative to
some reference body. Ideally once we have chosen our reference body (point)
we imagine setting up a framework of rods (axes) that extend into space
in 3 mutually perpendicular directions. Hence by this Cartesian coordinate
system we can characterize the spatial location of any event by 3 numbers;
the Cartesian coordinates of that space point. Thusly we have constructed a
frame of reference.

Some bodies are suitable reference bodies, others are not. Of course
we can describe nature and formulate its laws in any frame of reference we
want. However, there may exist a frame or frames in which the laws of
nature are fundmentally simpler. They may contain fewer parameters than
otherwise e.g. the laws of planetary motion have a simpler appearance in
a heliocentric rather than a geocentric frame of reference. Thus we must
determine experimentally the most suitable frame of reference in which to

describe the laws of nature. This is what is summarized in Newton’s first



law; the laws of inertia. It was proposed by Galileo and included by Newton
in his laws and summarizes experiments done on uniformly moving particles
in the absence of forces (that is zero net force). So the First Law defines the
inertial frame of reference.

Among all the frames of reference conceivable there exists a set of frames
with respect to which the law of inertia takes its familiar form: In the absence
of (net) forces, the space coordinates of a point particle are linear functions
of time. These frames of reference are called inertial frames of reference.

Certainly a free particle moving in a straight line traverses a constant
distance for each time interval (second) that passes. If a second now and a
second at some later time varied in length, the distance covered by the particle
would vary. Hence it would appear to accelerate or decelerate depending upon
the variable time interval. So we conclude that Newton’s First Law requires
time to be homogeneous in an inertial frame of reference. The interval of time
is fixed now and in the future. Likewise, for each fixed interval of time the
free particle must traverse the same distance for the velocity to be constant.
This is so wherever in space the particle travels. Thus the interval of distance
(meter) between points in space must be the same throughout space and in
whatever direction the particle moves. Thus space must be homogeneous and
isotropic in an inertial frame of reference. The First Law states properties
of space and time; in an inertial frame of reference time is homogeneous and
space is homogeneous and isotropic.

In addition, it is found experimentally that all the laws of motion take
the same form when stated in terms of any one of these inertial systems. In
these frames the properties of space and time are the same, and the laws
of mechanics are the same. Hence from the point of view of mechanics all

inertial frames are equivalent. (We can determine if a particle is accelerated



or not by comparing its motion to that of a particle not subject to forces.
But whether a free particle is “at rest” or “in uniform motion” depends on
the frame one is using—and has no absolute meaning. There is no way to
determine who is “moving” and who is “at rest”, it is all relative.) This fact
that all inertial systems are equivalent for the description of Nature is called
the principle of (Galilean) relativity. The laws of mechanics have the same
form in all inertial frames—this is called the covariance (form-invariance)
of the laws of nature.

Newtonian physics also requires that time intervals are the same for all
inertial observers, especially those in uniform relative motion. If an event
occurs in the inertial frame of observer S at time ¢, then this same event

appears to occur in the inertial frame of observer S’ at time ¢’ where
t'=t+r, (1.1)

with the two observers’ clocks differing in their zero of time by constant 7.
Consequently, the time intervals in the two frames are the same (assuming

the same units for time in both frames, as above)
dt' = dt. (1.2)

Hence we see that the law of inertia says something more significant since
at first glance all the law states is that a particle not subject to forces is
unacclerated. Mathematically if we locate the position of the particle with

coordinates z, ¥y, z or I1,To, T3; to be unaccelerated simply means
T=9y=2=0 (1.3)

or

=0 , Vi (1.4)



with

i = %x(t) - %x(t}, (1.5)
and so on for higher derivatives. That is &; = v; = constant. Of course there
always exists a frame of reference in which the particle is unaccelerated-the
rest frame of the particle. However, the real power of the First Law is that
there exists a set of frames of reference with respect to which all bodies not
subjected to forces are unaccelerated—the inertial frames of reference.

Now we would like to determine all inertial frames given one. That is,
suppose a particle is in uniform motion in the inertial frame of reference of
observer S. We can ask what types of coordinate transformations leave the
form of the law of inertia unchanged (and further exhibit the covariance of

all the laws of mechanics). The law states
21 =0,22=0,23 =0. (1.6)

Hence in the inertial frame of observer S the particle’s trajectory is described

by a straight line parameterized by time
z;(t) = zo; + vit, (1.7)

where %, is the particle’s initial position at ¢ = 0 and ¢ is the particle’s
initial velocity; both initial position and velocity vectors are constants and
the trajectory is linear in time. Likewise, observer S’ sets up an inertial frame
using coordinates z%(t'). According to observer S’ the same free particle will

have the straight line trajectory
zi(t') = zp; + vt (1.8)

We desire to determine the transformations of the coordinates between the

two frames of reference. In general the coordinates used by S’ are an arbitrary
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function of the space and time coordinates used by S
zi(t) = ai(z, t). (1.9)

The velocity and acceleration of the particle can then be found using the

chain rule

dz}(t") Oa; | Oaidz;

dt’ ot = Oz, dt
dQ.T;(t/) _ 8204- " 82ai (_1& n 820,2- _d&d.’l)k oa; d2£l7j. (110)
dt' 2 ot? O0t0z; dt = Oz;j0x, dt dt  Oxz; dt?

In general even if Z; = 0, the acceleration in S”’s frame is not necessarily
zero, and hence S’ would not be using an inertial frame. First both observers
can choose to use a Cartesian coordinate system in their respective frames

of reference. Hence a;(z,t) can only be a linear function of Z
ai(:c, t) = aij(t)ar:j(t) + bi(t). (1.11)

This simplifies the expressions for the velocity and acceleration in S”’s frame

d B e B s

.’L‘i t . i a,;j G,ij .’1)_7' IE]'

e - a9t i h m T (112)
For the free particle S observes that &; = v; and S’ must also observe -‘%ﬁ = v}

and consequently it must be that the acceleration of the particle in SPrime

/
T,

is zero: :;:,—2 = 0. This can only be achieved if
bl(t) =a; — V;t, (113)

with V and @ both constants and the matrix a;; = A;j also a constant matrix.

Now if both observers use the same unit of distance we require, considering



that V and @ are zero, that £ '-Z ' = Z- Z. This implies that the Aij matrices

are 3 X 3 orthogonal matrices
(A = N, (1.14)

that is A= = AT,

Hence all inertial frames of reference have coordinates that are related by
these transformations, a differing zero of time, a translation of the origin, a
rotation of the axes and uniform motion of the axes relative to each other.

The transformations between coordinates are summarized by the equations

t = t+71

T = Nzj+a; — Vit (1.15)
and are known as the Galilean Transformations. The acceleration of a particle
df;%(;/) = \ij dsztjz(t). So if one vanishes the

other vanishes. The square of the differential length interval ds? = dz;dz; =

as described in each frame is related
dz;d0;dz; (where the Kronecker 4 is the Euclidean space metric (see below))
remains unchanged under Galilean transformations:

t = t+4+71
T = Nz +a; — Vit, (1.16)

hence (recall that time and space are independent variables as are their dif-

ferentials)

dt’ = dt
d:l,‘: = /\,-jdmj (1].7)

and the interval is invariant implying ) is orthogonal
ds? =ds* = A1 =)\T (1.18)
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That is (A™!);; = Xji. So now to show that A™* = AT implies that the
transformation is a rotation consider the special case where z4 = z3 and

ignore 7 =0, a* = 0 and V* = 0 transformations

z; A Az 0 z1
IL‘IQ = )\21 )\22 0 To (119)
x5 0 0 1 T3

=)

Now we require \ to be a proper rotation that is det A = 1 = Aj3 A2 —
Alz)\gl = 1. Further

. A2 —Ai2 O
1= x| 2 A0 (1.20)
0 0 1

(Check this by multiplying the matrices
A2 —A2 0 Air Az 0

- 1
A= det A —Aa1 A 0 A1 A2 O (1.21)
0 0 1 0 0 1
A1A22 — A2 Ao 0 0
~ det X 0 Andiz — Azdar 0 (1.22)
0 0 1
= ]1)
But )\_—1 = )\T =
Ann A1 0
A2 A2 0 (1.23)
0 0 1



A1 = A2

= (1.24)
A1 = —A12
= A2 — A2dar = A + M, =11 (1.25)
Solve this by

A11 = cosf
e (1.26)

)\12 =sinf

which implies that

Ao = cosf ; Ao; = —sin 6 (1.27)

Hence
cosf sinf 0

A= | —sinf cosf 0 (1.28)
0 0 1

This describes a rotation about z-axis - rotation in the z; — z, plane:

Z, 2

(2




T=rcos¢ || ' =rcos(p—0) (1.29)
y=rsing Il ¥ =rsin(¢ - 6)

z' =rcos¢cosd +rsinpsing = zcos ¢ + ysin 6

Y =rsingcosd —rcosgpsingd = ycosp — zsinf (1.30)

2=z
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So

x' cosf sinf O x
y | =| —sinf cosf 0 y (1.31)
z' 0 0 1 z
z
=l (1.32)
z

(Prove every A~! = AT = rotation by infinitesimal?!)

Consider in more depth the transformations. First consider the trans-
formations that do not involve relative motion (time) of the frames. This
first type of transformation is often said not to involve a change of frame of
reference (although we will consider all coordinate transformations whether
they involve time or not as changes of frame and view this as 2 observers
S, S’ and a transformation between their frames: this is called the passive
viewpoint) but only a translation and/or a rotation of the coordinate system
within the same frame of reference (this corresponds to the active viewpoint
in which, for example, the system is translated from one point to another
in the same frame of reference). (The points of view are just inverse op-
erations to eachother. If the system is translated along the positive X-axis

that is equivalent to using the coordinate system of another observer who is
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translated an equal distance along the negative x-axis.) i.e.
!

Ny S /

N‘C uoc&-oﬁpaﬁ'
‘{>¢un“ri-c&0— tn S-Leame

(
¢ Cosd ol gorutt
\FWL'“‘*("@ tn ?S,*— Ceame

%

From the passive point of view z; is the coordinate of the point particle in

the S-frame while z) is the coordinate of the particle in the S’ frame.
IE; = /\ijl'j + a; (133)
(Einstein summation convention)

Aij = cos(z;, ;) (1.34)

(direction cosines)

a; = constant translation vector (1.35)

Einstein summation convention: Repeated indices are summed over; hence

the same letter can only occur twice in any equation since then it is summed
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over and is a dummy variable..

3
117/z = Z/\ijl'j +a; = )\ij(L'j + a; (136)
i=1
(Since both observers S and S" are using the same time t) Since this all occurs

at the same time t we have

Ty = Aij&; ** a;, \ij are constants (1.37)

(A = const or else & o (ONij/0Tk)ErE; 7# 0)

Thus a free particle in uniform motion in S is also in uniform motion in
S'. We may use either set of coordinates in our frame of reference, the law
of inertia remains the same. The position of the particle is a linear function
of the time.

Let’s focus on the transformations corresponding to spatial rotations.
Consider the position of a particle as viewed from 2 observers rotated with

respect to each other

o z




Now the direction cosines of the axes are the cosines of the angles between
them
Nij = cos(z;, T;) (1.39)

where (z), z;) denotes the angle between z; and z; (see above).

For any line, denote the angles it makes with the z,v, z axes a, 3,7, the

direction cosines of the line are cos o, cos 3, cos?y

T

¥ ?('w &,?e\

I

K

HW : cos®a +cos? f 4 cos’y =1

(line has length r = 22 + 32 + 22 =17

T =TCosu
y=rcosf =ca+cf+cly=1 (1.40)
z =TCos7)

Consider 2 lines with angle 6 between them

% (N.(%l\‘\
(
o L plx!)




HW: cos 6 = cosa cos o + cos Bcos 3’ + cosT cosy

Then the point P has coordinates in S’ related to those in S by
T =Y Xj(@iz;)Ts = Mg (1.41)
J
Consider the ¢’ coordinate of P with S coordinates (z,y, 2)

B Pz )
oL = W)
Nt wek pouak P

3

T = rcosa
y = rcosf
Z = TcCosy (1.42)

Now the x5 = 3’ coordinate of P in the S’ frame is

Y = rcosf

= rcosacosa’ +rcosfBcosB + rcosycosy

= zcosa +ycosf + zcosy
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A1 (h, 1)1 + Moo (T, T2) T + Aos(Th, T3) T3
A

Ty = )\2]‘113_7' (143)

Similarly for z’ and 2’ = z = A\ijz;. So rotations of frames are “described”
by a 3 x 3 matrix of direction cosines of the angles between the axes.

Now consider the z} axis, it has direction cosines in .S given by (N1, iz, Aiz)

T LS
( | &L(ec\zov\ Codiw? \/
| —

| \3’20\2(/[\73}\1}\

&

(\(: (>\l\l>\n.,>\l’;)

Now the angle between z; and z is 5 so

cosf = cosg = 0= (fori#7) M+ dahja + Aishjs = cos% =0 (1.44)

3
=) Ak =0= X (for i # 7) (1.45)
k=1

using the Einstein summation convention.

Further
cosa? + cos? f+ cos?y =1 (1.46)
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implies

Ti1Ti1 + TioTio + TigTiz = 1 (no sum over 1) (1.47)
that is
3
Y zpzp =1 (i=j) (1.48)
k=1

So together we have

1 2=
dij (1.49)

3 . .

0 i#7
D didie = { o
k=1

Il

the Kronecker d-symbol (identity matrix). Using the Einstein summation

convention this becomes

AikAjk = 0ij (1.50)
and yields the 6 orthogonality conditions. (Visa versa, the z; direction cosines
in S’ frame

i = cos(Zy, Ts) (1.51)
obey

Akidkj = 6ij) (1.52)

So A\ can be viewed as a 3 x 3 matrix with ¢ labelling the 3 rows and
k labelling the 3 columns Ay — matrix (M) = (M) The orthogonality

conditions can be expressed as matrix multiplication
NN je = (1)i; = M =1= AT =) (1.53)

6 conditions on 9 matrix elements implies that the rotation matrix A = 3 x 3
(real) orthogonal matrix. Hence the rotation matrix is a matrix with just 3

independent parameters.
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Another useful way to characterize a rotation is using Euler’s Theorem:
Specify an arbitrary rotation in terms of a rotation through angle 6 about a
fixed axis whose orientation is given by the unit vector 0. Hence the vector
g =00 specifies the rotation R;; = Rij(g) between 7 and 7

=

(Active viewpoint) Rotate vector in fixed frame S is equivalent to rotating

in opposite direction the axes with vector fixed (passive viewpoint)

/ 3 |
D\c‘rto e % iy ?@S&‘wc b \?5
b v ©

A o
Y = %

(Active View)Rotate P CCW(6) to P’ axes fixed.

(Passive View)Rotate axes £ CW(—0) to 2’ axes P-fixed.

Consider two observers whose Cartesian frames of reference are rotated
relative to eachother with their origins in common. Or alternatively, suppose
we rotate our system from points 7 to points 7. The coordinates used by the

two observers are related by the rotation transformation
7} = Ri;(0);. (1.55)
Since rotations about a common origin leave the length of a vector unchanged

18



we have

_I _I - ‘—’- _‘_- - L . .
7T = 7-7T=%;x; = T;05Tk

= (Riyz;)(Razr) = (R} Rix) k. (1.56)

This implies that RTR = 1 that is RT = R™!. Thus the rotation matrix
R is a real 3 x 3 orthogonal matrix. Further det (RRT) = det1 = 1, which
implies that det R = +1. Since we are interested in rotations connected
to the identity rotation, we will restrict ourselves to det R = +1 rotations
only, these are called properrotations. det R = —1 rotations can be obtained
by making a proper rotation followed by a parity transformation, that is an
inversion of the space axes. In general R;; has 9 independent matrix elements.
However RT = R~ reduces this to just 3 independent matrix elements. The
choice of which 3 parameters specify the rotation in question is arbitrary.
Again, according to Euler’s Theorem (Novi Comment. Petrop. xx (1776),
p. 189, §25, Whittaker: Analytical Mechanics p. 2, Goldstein: Chapter 4.6)
an arbitrary rotation can be specified in terms of a rotation through angle
6 about a fixed axis whose orientation is given by an unit vector denoted é.
Hence given the vector § = 00, the rotation between 7 and 7 is specified
Ri;(9).
Given 6 we can find R;; (5) by c;)\nsidering the geometry of the rotation

'\9. A’P/




So
— e
F'=0Q+ QP (1.57)
— R — —
Not to find Q P’ look down the f-axis from above and note that |QP| = |QF’|

/

P \QPl= &R

Q A 6??%;\'&9

I
QP( 080 T

— — A =
7' =0Q + QPcosf+6 x QPsind (1.58)
——-—) ~ -~
But vector Q (7 6) and vector QP —0Q =7—(7-0)8. So
7! = (7-0)0+ (Fcos — (7-0)f cos 0) + (0 x 7sin 6 — (7 0) § x fsinf) (1.59)
Hence we find
7' =7cosf + (- 0)0(1 — cosh) + 0 x 7sin b (1.60)
In terms of components this yields
) = [6;5cos 0 + 0;0;(1 — cos ) + €;jxbr sin f]z; = .Rij(é‘)xj (1.61)
Hence given 6 we have
R,ij( _*) = (5,'3' cosf + éiéj(]. — COS 9) + Eikjék sin 6 (162)

Note that TrR = R;; = 3cos0 + (1 —cosf) = 1 + 2cos 6§ and that e Ri; =

€kij€ilj0isin @ = —20) sin 0.
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We can simplify the writing of this matrix by introducing the 3 x 3 matrix

generators of rotation matrices. Define the matrix

where the 3 matrices f;j

are

D>
~

0

€k = | 0O

— b,

1

© Lz,

(Ix)ij = €j-

Writing these 3 matrice out we have

I

I3

(00 0)

—05
0
6,

00 -1
\0 1 0
0 0 1)
0 00
-10 0)
(0 -1 0)
1 0 0
\0 0 0

Since €;;, obeys the Jacobi identity

we have that

[Ii, IJ] - Eijkfk.

b,
—6,
0

0 = €ijk€mnk + €jnkEmik + EnikEmjk,

In addition ©;; has simple multiplication properties

21
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(1.63)

(1.64)

(1.65)

(1.66)

(1.67)



(GB)ij = —Oy )
(@4)ij - _(62)ij’ (1.68)

and so on. So we find

(@2n)ij = (=)™ (62)1']‘
(@), = (-1)"0y. (1.69)

L

Hence the exponential matrix yields

= 1
(eoe)ij = Oy + E 59" (@n)ij
=1
Oo 1 n n n n
- 5ﬁj+;——2 e (O +Z it (6™,
’ +i 92n 1)n+1 @2 +§: 92n+1 (@)
= 2 (2n +1)! 4
(1.70)

Using the identities (—1)"*! = —1(i?*) and (—1)" = —i(z)?™*!, the exponen-

tial becomes

. B ) e ( )2n92n 2n+1 62n+1
= &+ (©),;sinf - (@2)2'3' (cos@ — 1) (1.71)

On the other hand recall that

— A

Ri;(0) = & cos 0 + 6; (1 — cos6) +e,k]0k sin 0
= 6;¢0s0 + (0:0; — 6;5)(1 — cosB) + 65(1 — ¢os6) + (©);;sin b
= i + (@2) (1 —cosf) +(©),;sinb
— 60
= ("), (1.72)

In addition we see that we have the properties
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1) A rotation through 6 can be built up by successive rotations about 6

since
~ A 90 0'e

_ <6(0+0')e).
= Rik((9+9z'§é) (1.73)

since [©, 0] = 0. Note that

= 0 0 - 6 0 0. -
R(f) = lim [1+ Ne]N =% = I&EEO[R(NG)]N =R(g+x+t-+t7)0-
N, o’ ~ - /
=R(§/N) N—terms
(1.74)

2) Suppose 0 is infinitesimal 6 = wf = &, with w infinitesimal. Then

Ri;(@0) = (ewe)ij = 0ij +wO;

= i + wij, (1.75)
with wi; = wO;; = —€;jpwk. Thus
z; = Rij(&d)z; = z; + wijz; (1.76)
that is in vector notation
F'l=F+dx7 (1.77)

(W is an angle not angular velocity here).

Example: Rotation about the z-axis has & = wé, = w2 = —w =
—weg; and a rotation about the z-axis corresponds to a rotation in the
z1 — T2 plane. In general w;; corresponds to a rotation in the z; — x;

plane.
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e
S
P WX
%
=/
C
—-—
g
F'=r4+dX7T
Y r=z—w
? Y (1.78)
3 Y=ytw
Z =z
A Aside: Useful to define w;j = —€;jkwi s0 @, = x; + wijzj. Then the
e)( inverse relation is w; = _‘%Ei]’kw]‘k.
Finally we consider sequential rotations
7 B0 21 BO) ow (1.79)
R(5) (1.80)
Thus if
z; = Rij(02)x;
7’ = Ry (61)z
7 ]i( 1) k_‘ (1.81)

— Ri(0s)zi = Rij(62) Rjx(61) = Rix(6s)

So the composition law for rotations is matrix multiplication. Since R(é})

and R(6,) are orthogonal with determinant = 1 so is the product

det (R(A2)R(6,)) = det R(6) det R(6;) = 1
(R(G2)R(61)" = R(6))"R(6)"
= R O)RG) = (R(B)R(E:)™  (1.82)

Hence R(f3) = R(62)R(6;) is also a determinant = 1, orthogonal matrix,
and hence a rotation. Since R(0) = 1 and R7(6) = R(—6) and matrix
multiplication is associaive we see that the set of all rotations forms a group—

the group of 3 x 3 orthogonal matrices with determinant one. This group
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is denoted SO(3); the special (det R = 1), orthogonal (R™! = RT) group of
3 x 3 matrices. It is a group whose elements R(G_‘) depend continuously on 3
parameters given by g.

Finally to complete the specification of the group multiplication law, we
would like to specify 0, in terms of §; and 6. Clearly this is somewhat messy.
Since we can build up finite rotations from successive infinitesimal ones, it

will suffice to consider the group product for the transformations

P

R—l 0) =/ (1+“‘") =1

roo— =T (1.83)
1+ 7" R(6) (1.84)
Thus
zi’ = Ry;(0)z}
(IJ;/ = ((Sjk =+ wjk)xfc (185)
z}, = Ry ()
z;' = Ri;(0 )( ik ‘*“"ﬂc)sz (—‘) (1.86)
equivalently
z! = (0a + Wiz (1.87)
— ou+wy = (_‘)( djk + wjk)l_%‘l;ll(q) (1.88)
= ba+ (R(OwR(6))a

Hence given 6 and & we have that the composite rotation resulting from the

above sequence of transformations is
wi; = (R(O)wR™(6))y (1.89)
i.e.

Rz](ﬁ I) = 6ij + wéj (190)
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(
%>

SO

R(O)R(@) (1.91)

That is
R(@ ") = R( )R(JJ’)R_I(O). (1.92)

Of course we could specify our rotations by means of other parameteriza-
tions. For instance we could use the Euler angles to specify the orientation

of the rotated frame. First rotate about the z-axis by angle ¢

% =
ﬁ, > 53 & = Rij(wé.)z;. (1.93)
s

57
)

=%

Second, rotate about the £-axis by angle 6

2 -3/
'}] g g'l &' = Rij(0ée)s;. (1.94)

7
= 2

«
PY

26
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Finally rotate about the (’-axis by angle ¥

z !
0 = Ry(ven)s (1.95)

(_=2/1
VAR

{ o/
/ 3= ;7(
The Euler angles (6, ¢, 1) completely specify the rotation. Thus we can
label R by R;;(0, ¢, ). So we have
z; = Ri;(0, ¢, )z, (1.96)

where we made R;;(6, , %) by 3 successive rotations

Ris(6, 0, %) = (R@en) R(02¢) R(pe.)),; (1.97)
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But these are simple rotations about one of the coordinate axes. Hence

cosp sing 0

R(pé,) = | —sing cosp 0
\ 0 0 1
(1 0 o

R(0&) = |0 cosfd sind

\0 —sinf cosé
(COS’Q/) siny 0
R(yé,) = | —singp cosyp 0| - (1.98)
0 0 1

Multiplying these matrices together we find

R(6,,9) =
coscosp — cosfsinpsiny  cosysing + cosfcospsiny  sinsinf
—sintcosy — cosfsinpcosy —sinysinp + cosfcospcosy) cosysinb

sin fsin ¢ —sinfcos ¢ cosf
(1.99)

The inverse transformation R~! = RT gives the transformation in the active
view.

The next transformation we can consider is to another frame of reference
moving with constant velocity relative to the other. Call the new system S’.
Let the coordinates in .S and S’ be parallel and at t = 0 the origins coincide

i.e. tx'g /




So z} = x; — Vit where V = const. Here we have assumed that time is

absolute

' =t+7 (1.100)

T = constant (origin of time is irrelavant; time is homogeneous). Of course
we know that Einstein realized that signals only travel at finite speeds so
that distances and time intervals as seen by relatively moving frames must
depend on simultaneity for the observer and so space and time coordinates
in the two frames must be related; not just space coordinates. We will
return to this modification of the relation between inertial frames later to see
how Einstein saved the principle of relativity by modifying the space-time
coordinate transformation law.

So Newton (Galilean) physics assumes time is absolute; the same for all

inertial observers. From above we have
xi =z;,—V; (1.101)

the classical law of addition of velocities. Further &, = #;, and if Z; = 0 so
does Z; = 0. The law of inertia is unchanged. So all frames of reference and
coordinate systems that leave Z; = 0 valid for a free particle are the (infinite)
set of inertial frames of reference.

These inertial frames differ by uniform motion relative to each other or the
Cartesian coordinate system in the same frame differs by a rotation and/or a
translation in space. These coordinate transformations and changes of frame
leave the law of inertial unchanged. The law is covariant with respect to
these transformations. In addition all the laws of mechanics are covariant
with respect to these transformations as well as space and time having the
same properties. This is the principle of relativity. All inertial frames are

equivalent (there is no preferred or absolute frame) for the description of the
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laws of physics. As we have seen all inertial frames are related by Galilean

transformations (rotations, translations and Galilean boosts)

/

T, = )\,-jx,-—ka,-—Vit
t = t+T. (1.102)

Thus, for classical mechanics, all the laws of physics should be covariant
under these Galilean transformations, i.e. the laws have the same form in
" any inertial frame. The mathematicians have catagorized quantities that
have well defined transformation properties under these changes of frame
tensors

Note that we can summarize the Galilean invariance by specifying that
inertial frames are those in which space and time have the same properties.
In classical mchanics by properites we mean that time is absolute and

homogeneous, so that intervals of time are the same in every inertial frame
dt' = dt (1.103)

And that space is isotropic and homogeneous, hence the separation nof

points in space is what should be the same thus

=1

3 3
ds? =Y (da})? =Y (dz;)* = ds® (1.104)
i=1

Inertial frames are those frames which preserve these properties of space and
time.

The most general transformations that do this are the (10) Galilean trans-

formations

t = t+r7
JJ: = )\ij:cj +a; — Vit (1.105)
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Hence

dt' = dt
dz!, = \jdz; (1.106)
ds? = E?:l dzidz; = Z?:l Z;Ll Zi:l Aij A Aik T
= dzy(8x)dx, = da;(NijAax)dax = dz;(d5)dzy = ds®
That is |
Aijhix = 83k (1.107)

or in matrix notation ATA = 1 = ) is a 3 x 3 orthogonal (A~! = AT) matrix

and

det \TA =detl =1 = det A = £1 (1.108)

These are the rotation matrices (direction cosine matrices). As we will see
they have det A = 1 and are orthogonal. We can imagine making consecutive
rotations to yet another inertial frame, since the product of direction cosine
matrices is again a direction cosine matrix; i.e., if A =2T0 ' = \T:; and

det \; = 1 then

A=A (1.109)
has the same properties
A= M) T = I =000 = (ux)T =0T (1.110)
and
det A = det A\; det Ay = 1. (1.111)

The set of all such matrices (rotations) forms a group known as SO(3) (3

angles of rotation).
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Indeed two consecutive Galilean transformations is again a Galilean trans-
formation hence the set of all Galilean transformations forms a group called
the Galilean group. It has 10 parameters which specify which transforma-
tion in the group you are talking about (3 for d, 3 for V, 3 for Aij, plus 1
for 7.) The group of transformations has an identity (no transformation at
all), an inverse (just the opposite sign transformation parameters) and the

composition law that is associative

t = t+71

III; = )\'ijxj +a; — V;t

¢ = t'+7T=t+(T+7)
.’L';, B S\ija:} + a,,, — ‘A/it/

- A

= Aij[Awae + aj — Vit] +a; = Vit + 7)
= (j\ij)\jk)xk + (j\ijaj + d; — Vir) — (j\zJVJ +V)t  (1.112)

Hence the composite transformation is found to be

" = t+7T
.'17,/; = j\ija:j -+ [1,1; - ‘Zt (1113)
with
T = T+7T
S‘zy = (S‘A)n
a; = a;—Vit+ S\Ua]
Vi = AVi+ Vi (1.114)

Hence the Galilean group is the symmetry group of classical mechanics.
All the laws of mechanics are covariant under these group transformations.

Since the laws of physics are to have the same appearance in each inertial
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frame, it is useful to express the laws in terms of quantities that have well
defined transformation properties from frame to frame. Cartesian Tensors
are defined to have such useful transformation properties. They are invari-
ant under space and time translations but transform as products of space
coordinates under space rotations.

In Euclidean 3 (or N) space a vector is defined as a quantity which

transforms as x; under rotations

V;:/ = /\ij’l)j (1115)

That is
Vi =)\V (1.116)

(for vector fields V/(Z ') = \;V;(Z))

In general an m* rank (Cartesian) tensor transforms as the product of

the m vectors

Till-nim = )"iljl )\i2j2, ...)\imjm’_l’jlmjm (1117)
where ¢,7 = 1,2,...,m (again for tensor fields
z‘ll---z'm(f /) = )‘iljl/\izjzv "')‘imjmle---jm (f)) (1'118)
ex. 2nd Rank Tensor Ti'j = ik AjeT ke
Inertial tensor I;;
Quadrupole moment tensor Q;;
Rank 1 tensor = vector p;
Rank 0 tensor = scalar m, time intervals dt
Example of Newton’s Second Law
dp;
@i _ R 1.11
o (1.119)
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1st law = covariance of laws of Nature = form invariance in inertial frame
S: p; = F; < in inertial frame S": p} = F;. Form invariance guaranteed if
law is expressible in terms of tensor quantities as are p'and F.

Examples of special tensors that are invariant or constant tensors

1.) 2nd rank Kronecker delta

0 it
;5 = { P (1.120)
1 i=j

Consider

8; = AikAjiOw
= Aixhjk = e (1.121)
= )\ik)\;:jl = §;j

hence, d;; is invariant under rotations

2.) Levi-Civita tensor, permutation tensor, the anti-symmetric tensor of

rank 3

—1 if (4,4, k) is an odd permutation of (1,2, 3) (1.122)

+1 if (4,4, k) is an even permutation of (1,2,3)
€ijk = {
0 otherwise

i.e. 2 or more indices the same €133 = 0 = €990 = €122. So we have for the

elements of the Levi-Civita tensor

€123 = +1 = €231 = €312
€213 = —1 = €132 = €321 (1.123)

€5 =0 (No sum on i)

Properties of the e tensor
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/

€k Ail >\jm)\kn€lmn

(1.124)
= (det A)Eijk = €ijk
This can be seen from the general formula for the determinant of a matrix

M
Milekamflmn = det Mfijk

= M1 Mo Mys — Mj; Mjz Myo
+ Mo MjsMiy — M Mj) Mys
+MisMj1 Mo — MisMjo My

(1.125)

M1 Mo M3
=| M M;;M;3 ‘ (1.126)
My Mo My

Permuting the rows implies

—ep detM (1.127)
My Mo Mg

Z‘ Moy Moz Mas

M3y M3 M33

6ai5aj6ak
06i0; Ok
5ci6¢:j 6ck

(1.128)

€abc€ijk =

= 6ai5bj(sck - 6ai5bk:6cj
+  0aj0bk0ci — 0ajObiOck (1.129)
+ 5ak(5bi5cj - 5ak5bj5ci

This general formula yields the specific cases
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b.1)

61' 5im
€ijk€imk = 0i10jm — Oim0j1 = l ’ (1.130)
jlV5m
b.2.)
€ijk€lik = 203 (1.131)
b.3.)
Gijkfijk = 3' = 6. (1132)
b.4.) Jacobi Identity
€ijk€mnk T €jnkEmik + Enik€mjk = 0 (1.133)

where in the Jacobi identity the k£ index is summed over in each term, the
position of the m index is fixed in each term and finally the terms are obtained

as a cyclic permutation fixed of (i,j,n)

Two UCM'\ c) If M;; is a 3 x 3 matrix
Voluwe = = F R
= B (XA
= A BK()\_ _ fdetM = %fijkelmnMilekan (1.134)
; (
/ ( /|
9 J/ " L
(- —f——— i . (A x B); = €ijuA;By (1.135)
ALy
& 77 A.BxC = epABC
/ e ijki DUk
—C> / v = €rB;jCrA;
3/ — B-CxA (1.136)

where the permutation of the indices of the permutation tensor was used

€ijk = €;ki- Additional cyclic permutations of the vectors yields further forms
of the identity.

(6 X ‘7)1 = Eijkaj‘/k. (1137)
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After this quite extensive discussion of Newton’s First Law, we consider
the Second Law of Newton.

IT) A body acted upon by a force moves in such a manner that the time
rate of change of momentum equals the force.

Newton further gave the definition of momentum of a particle as its mass
times its velocity. Thus for a particle with coordinate z; in an inertial frame

S, the momentum is

p=mv (1.138)
or in components in that frame
i = MZ; (1.139)

where m is the mass of the particle and is the same in all inertial frames (a
scalar) while ¥ and hence p’ are vectors.

Newton’s second law states

=g d-‘
F=— 1.140
7 (1.140)
or in components
F; =p; (1.141)
and for point particles (with constant mass)
F; =mi; (1.142)

Since we know how the acceleration is defined in our inertial frame and we
will use the 3rd law to define the mass more precisely; we can view this as a
law relating the particle to its environment (force) and we need to define the

Force law independently i.e. gravitational force, harmonic force, etc.. Note
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the force is a vector. (Alternatively we can view the 2nd law as a definition
of force.)
Finally we come to the 3rd Law which is an observation about (central)

forces that will allow us to more precisely define mass.

III) If two bodies exert forces on each other then the forces are in opposite
directions and the ratio of the magnitudes of the accelerations are constant.
This constant ratio is the inverse ratio of the masses of the bodies.

So mathematically the 3rd law states

Fi=-F, (1.143)
where F; 1 is the force on particle 1 and ﬁg is the force on particle 2. The 2nd
law implies myd; = —meady, so that

ma _ | (1.144)

my ICL2|

So if we choose an object as the standard mass, say m;, then measure @; and
a2, we can define my as the ratio.

Also we can check if forces are opposite in direction. In fact, not all forces
obey the 3rd law. In particular forces that propagate at a finite speed (e.g.
electromagnetic forces) do not obey the 3rd law since they have a velocity
dependence and are not along the line joining the particles. However, we
can base most of what we do on laws 1 and 3 and the mass of a particle.
Newton’s laws really define the useful concepts of force, mass, acceleration,
and we can can then experimentally discover the force laws from this point
of view.

(Aside: Another point of view is to consider force as a primitive concept
measured by say comparing to a standard spring and using the 3rd law to

define the mass. Then F = md is a law as well as the form of the force law
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itself. Another point of view is to assume the principle of equivalence of the
inertial mass and the gravitational mass. We define mass by weighing each
particle against a standard then mgg = m;d and @ = g independent of mass,
= mg = m;. The equivalence principle was tested by Eétvos’ experiments
to 1 part to 10'!. From this point of view we then do experiments to discover
the force laws and test the 3rd law.)

The point of all this is that certain primitive concepts are assumed in the
statement of Newton’s laws and we can view the laws from various points
of view. In practice we will be concerned with finding the trajectory of a
given particle Z(¢) when we are told its mass and the force acting on it. It
is perhaps the more practical way of applying F = ma to define the force
a particle experiences. If a particle undergoes a certain trajectory then you
know the force law it is experiencing. This is what Newton “discovered”.

Finally, let’s consider some consequences of the principle of Galilean rel-
ativity onthe form of the force law. If two frames are related by a Galilean

transformation

' = t+r71
JI; = )\ijxj +a; — V;t (1145)

then Z; = A\;#; and m is invariant since it is the ratio of |@y|/|@,|. Hence
b .y
'Fi =mx; = )\,—jmazj = )\,]FJ

l.e.

F! = X Fj (1.146)

the force is a vector. So Newton’s 2nd law is covariant if F} = \;jFj reversing
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the above argument
F] = X\jF;
' I (1.147)
=ma; = M\jma;

and so implies that F; = ma;. For rotations of the coordinate system
F; = \jF; (1.148)

implies F; are the components of a vector that is a rank 1 tensor.

Further for Galiliean boosts to another frame of reference £ ' = Z — vt =
F'=F : the force must not change. This is a strong restriction. It tells
us that the Force depends upon the vector distance (i.e. the relative vector
separation between two particles (and t). For example, suppose we have two

particles with position coordinates Z,,Z» and velocities ¥,, U, etc. Then if

Fop = Fos(Ta — Zp, U — Tpy .- - 1) (1.149)
ba ba
We have, since
fa, == —’a - 6t
b b (1.150)
V) =Va—10
b b
so that
=/ 7 Vi — = —ob
o e (1.151)
va, - b/ = Ua — Up
and hence
F. = ab(fa—fb,ﬁa—ﬁb,...,t)
ba a
= ng(fa’ -z, 0 —1/,...,t) (1.152)
a
— B

Further if the force is to obey the 3rd law (the 3rd law excludes Fy
(Ta — Us) fab), then

—

Fop = (T — Tp) fab(Ta — Loy Vo — By, - - -, 1) (1.153)
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and ﬁab = —ﬁba S0 fa» = scalar i.e. invariant under rotations. That is the
forces are central forces they act along the direction of the line joining the
particles.

Often we will ignore the motion of the other particles usually because
they are constrained by forces not to move or that their mass is very large
and we will only concentrate on the motion of a single particle in the effective
force field produced by the other fixed particles.

Another important (single particle) force is that of an irrotational force.
This is a force that depends upon Z and ¢ only, not on Z, etc., and has zero
curl

—

V x F(&,t) = 0. (1.154)
If V x F(Z,t) = 0, then F(Z,t) at any time can be written in terms of a
gradiant of a scalar potential energy U(Z,1?) :

F(z,t) = -VU(Z,1). (1.155)

If we further demand invariance under time translations t' = ¢ + 7 then
F(Z t,+7) = F(Z,t) = F is time independent. In such a case F is called
conservative and F (&) = —VU(Z). As we shall see shortly, conservative

forces lead to energy conservation.
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