4 Harmonic Oscillator

As we mentioned initially the utility of analyzing the (harmonic) sinusoidal
force problem comes from being able to decompose any periodic force in terms
of sums of sines and cosines a 14 Fourier series. More precisely we can use
the principle of superposition which our linear differential operator obeys.

Theorem: Let the set of functions (finite or infinite) z,(t), withn =1,2,...

be solutions of the equations

Lz, (t) = Fa(t), (4.1)
where L is a linear operator
L(az; + z2) = aLz; + Lz, (4.2)
for example P
d
L=m— — +k 4.
mdt2+bdt+’ (4.3)
then if
Fi)=Y R, (4.9
the solution of
Lz(t) = F(t) (4.5)

z(t) =Y za(t). (4.6)

Proof:

by linearity of L

La(t) =LY za(t) = D Laa(t) =) F.=F@). (47
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Now for the driven harmonic oscillator, suppose we consider a driving

force of the form
F)= Z F.(t) = Z Qi €08 (Wnt — @p). (4.8)
We desire a solution of
mi + bk + kx = F(t). (4.9)
Then by the above theorem the particular solution z, is
zp(t) = Y za(t), (4.10)
where z,, is a solution of
MEn + by + kTpn = ay cos (Wit — @n). (4.11)

Now we already know the particular solution of this equation, it is given by

an  cos(wnt — ¢n)

To(t) = — , (4.12)
(08 = 02)? + 42
where
tan 8, = (w?jl'iz) . (4.13)

Hence the particular solution for F(t) is given by the superposition of the z,

solutions
Qan cos (Wnt — ¢n)

(0 - w2)? 4 422

zp(t) = an(t) = ) (4.14)

while the most general solution to equation (4.9) includes the solution of the
homogeneous equation also
z(t) = Ae P cos (wat + 0) + z,(t), (4.15)
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where A and 6 in the transient (homogeneous) solution are determined by
the initial conditions and wy, = \/W.

Thus whenever the force can be decomposed into a sum (finite or infinite)
of cosine terms we can find the solution of (4.9) by superposition of solutions
for each term in the sum. We can also do the same if the force is in terms
of the sine function. We can either return to our complex equation and take

the imaginary part yielding
mi + bt + kxz = Fysin (wt + o) (4.16)

with particular solution

5(t) = Tmx = o8 —w?)sin (Wt +0) — 2w cos (wh + )]

m (W2 — w?)2? + 432w?2

Fo [cos §sin (wt + o) — sind cos (wit + )]
m R
Fy 1

zp(t) = pooy T i sin (wt + 6o — 9). (4.17)
2

Formally for F, = a, cos (wnt — ¢y) just let ¢, — ¢ +7/2, then cos (wnt — ¢,) —
sin (wnt — ¢n) and cos (wnt — ¢n — 8,) — sin (wnt — ¢, — d,).
Thus for

F(t) = Bnsin (wat — ¢n) (4.18)

the solution of equation (4.9) is given by
zp(t) = ) an(t), (4.19)
with z,, the particular solution of

MEp, + bZy + kTp = LB sin (wpt — @p). (4.20)
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This is
Br sin (wpt — ¢p — 6)

Tn(t) = — y 4.21
O T ar (21
where
2w, B
Then the most general solution has the form
z(t) = Ae P cos (wnt + 0) + z,(t). (4.23)

Now the power of these results is that any arbitrary periodic force function
(piecewise continuous) can be represented according to Fourier’s Theorem
by a series of harmonic terms—a Fourier series. Thus if F(t) is periodic with

period 7 = 27 /w, F(t + 7) = F(t), then by Fourier’s Theorem we have that

F(t) = %ao - Z [an cos (nwt) + by, sin (nwt)] (4.24)

n=1

with w27 /7 and where the coefficients a,, and b,, are real numbers given by

a, = 2 / dtF'(t) cos (nwt)
T Jo

w

+z
- ¢ / 4LF (£) cos (nuwt)

by = 2 / 4t F (£) sin (nuwt)
T Jo
o 1+
= - dtF(t) sin (nwt). (4.25)

-
w
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To summarize: the most general solution to the driven harmonic oscillator

equation of motion

mi + bt + kx = F(t) (4.26)
is given by
z(t) = Ae P cos (wnt + 0) + z,(t) (4.27)
with
ap 1 2. 22 cos (wpt — 0,) + 22 sin (wnt — §y)
Ty(t) = +——+ n s , 4.28
SRR D v S R 429
where w, = nw = 27n/7, withn =1,2,..., and
2wn 3
tand, = | ———= | . 4.29
i (525) (42

Now let’s step back and rewrite the Fourier series for the force, equation

(4.24), by recalling

. ¢iT _ p—iz
T o 2 ia
cosxr = §+2—e' (4.30)
Hence
F(t) = %aoeo + 2 [(%ﬁ + g—:) et + (az—" — g—:) e‘i”“’t]

e — — ——— - .-



_ 1 0 S 1 . inwt 1 —inwt
= 2aoe + ; l2 (an — iby) ™" + 5 (an+bn)e . (4.31)

So define
fn = %(an - an)
f-n = §(an+ibn) = f;:
fo = %.

Then the Fourier series for F'(t) can be written as

F() = fot+ 3 [ fae™™ + fopemmt |
n=1

(4.32)

[e3) -1
= fot (Z fne””“’t) + ( > fne“"“’t)
n=1

n=—oo

+o00
F(t) = Z fne+tha

n=—oo

(4.33)

were in the second line in the second sum we let n — —n. Exploiting the

formulae for the Fourier coefficients, equation (4.25), we also
L2,...

12 [*3 +3

have for n =

fo = 57 dtF (t) [cos (nwt) — isin (nwt)] = % / dtF (t)e™ ™"

-

12 [+5 +
for = fro= 37 dtF(t) [cos (nwt) + ¢sin (nwt)] = /
-3 -3

+Z
fo = % / " AR (1),

[SIE]

Hence we have the general formula for all n = 0, +1, £2,...

+Zz
fo = % / ? AR (H)e i,

N
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Likewise the particular solution for the coordinate becomes

1 1 N IV | N
zp(t) = 04 Z {5 [&n — ibn] etinwte=in 3 [dn + ibn} e‘m“’te*’“s"} .
n=1

T m 2w
(4.36)
Let, forn=1,2,...,
_ 1 ag
Tg = ———
0 % mwo
Tp = % (An — if)n) g i0n
T-n = 3 (dn + il;n) etin = g*, (4.37)
Hence oo
+inwt —inwt
zp(t) + o + Z (zne +z_ne ), (4.38)
n=1
that is N
Tp(t) = Y zaet™ (4.39)

Returning to equation (4.28), the coefficients in z, take on a simpler form as

well
_Jo
o = ——
muwo
o = l(an"ibn) 1 —ibn
T2 m (e -l Al
_ 1
me W — R + A
s 1
Ten = zo= fon it : (4.40)
m V(W§ — w2)? + dwif?

where recall that f* = f_,. So to summarize, we have the final form of the

Fourier series expansion of the position

+00
zp(t) = Y zaet™, (4.41)

n=—oo
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where
n 1
T, = I g-is (4.42)
mo V(g —w2)? + 4wl
and
2w,
tand, = | ——= 4.43
wi=(727) )
with 6_, = —6,.
This can be seen to follow directly from the equations of motion
F(t
ip + 287, + Wiz, = # (4.44)

by directly substituting the Fouries series for z, and F' into the equation

+o00

Z etinet { [—w?2 + 2ifwn + wi] Tn = E} . (4.45)
m
(. Solving the now algebraic relation yields our previous result
In
Tn = T
(w3 — w2 + 2w
. 1
I o=t (4.46)

m- o (0f — w2)? + 4w26

Next suppose the period 7 of the periodic force becomes infinitely long.
By calling F (‘L-\

' F———

— |

— 0 &— ~ff1 th —H+0

— — —  —

t

nw =k, =—, (4.47)



AL _+
..
R H)
k T2V T VR
we can write V\(\.'. AN/, —
&= = W= €
F(t)= ) faet! (4.48)
and
1 [*% .
fn= - / dtF(t)e %!, (4.49)
So we can visualize in k-space that
+00
D faetHnt (4.50)

n=—oo

corresponds to an integral of f(k)e?** where we have divided up the k-axis

into intervals of length

2
= —. 4.51
€= (4.51)
So

kn = ne (4.52)

and

2

Ak = kpy1 — kn = 7” —¢ (4.53)

Thus we have

+0o0
T .
Ft) = > Ak fre™!

1 ¥ :
- D" flkn)e™t Ak, (4.54)
where we have defined
f(kn) =7 fn. (4.55)
Hence r
Fl) = 1fn = / ? GLF (t)ent. (4.56)

z
2
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So as 7 — oo the Ak — dk, and we find that

Fo) = [ e

—0Q

flk) = /_ +°°th(t)e—“°t. (4.57)

These are called Fourier Integrals, f(k) = F(k) is called the Fourier transform
of F(t) and the 1/27 factor is convention. So with these notation conventions

the Fourier integrals become

o dk -~ A
— etk +ikt
F(t) = /_ e
~ +w .
Fk) = / dtF(t)e™ ™, (4.58)
The Fourier transform of the particular solution is given by
to dk | ;
z,(t) = /_ ke, (4.59)
with the Fourier transform function
. ‘ )
Tp(k) = FE) s (4.60)
m \/(wg — k2)2 + 4k232
and
2kp

Once again this can be obtained directly by substituting the Fourier integral
expansions of z,(t) and F'(t) directly into the harmonic oscillator differential
equation,

F(t
&y + 20, + Wiz, = %) (4.62)

to convert it into an algebraic equation

/ ok i { (K2 + 2ipk + w?] &p(k) = —@} : (4.63)

oo 2T m
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This yields the algebraic solution

F(k)
Tplk) = [w — k2 + 2iBK]
_ F(k) . 1
= — [cosé(k) —::ks),ln o(k)] T (4.64)
with
(%
tand(k) = (w—g — k'2> . (4.65)
Example: Suppose E(+)
|
Py q 0\ ol
1 t
F(t) = t<a (4.66)
0 lt| > a

The Fourier transform of the step function is just the diffraction function

~ +°0 . +a .
Fk) = / dtF (t)e ™ = / dte™*

— __1_0_0 —ikt |t=+a _ __1_a—ika__ +ika) __ z .
= T = T R (e ethe) = ksmka. (4.67)
(k)
o~ o~k
-7 *N‘f Mf" N
3 & >

Now notice the property that the Fourier transform of the Fourier trans-
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form should equal the original function. This implies that

oo g
F(t) = / vk (k)

—00

“+o00 dk . +o0o .
_ S +ikt 1 _—ikt’ ’
= /_m 5 (/_oo dt'e F(t))

e o dk
= / dt’ ( / 2—e—”“<t —t>) F(t). (4.68)
—co _oo 2T

In the last line we interchanged the order of integration. Hence since this
must again be equal to F'(t) we find the Fourier transform of the Dirac delta

function

+00
5t —t) = / % ) (4.69)

Thus the Fourier transform of the Dirac delta function, d(t) is just equal to
1,6(k)=1

5(k) = / +°° dt 0(t) e = €% = 1. (4.70)

—00

A similar Fourier series analysis of the Dirac delta function can be ob-
tained, but due to the required periodicity of the expansion the result is more

complicated. Consider the Fourier series for the periodic function F'(t)

+o00
F(t) — Z fne+inwt

n=-—oo

= 1 [*2 o
= E etmwt [ Z dt’e‘m“’tF(t') , (4.71)
T J_-1
2

n=—oo

interchanging the order of summation and integration, this becomes

F(t) = / " dt' (% f e-i"w“'*“) F(t). (4.72)

.
2 n=—oo
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Here we must be a little more careful due to the periodicity of F'(t). We note

that for —7/2 <t < +7/2 we have

1 R
=) el = gt — ¢, (4.73)
-

n=-—0oo

Next consider +7/2 < t < +37/2, in order for

+Z

F(t) = Tz d'A(H — t)F(¢) = F(t), (4.74)
we must have I‘L‘ t
WERSTSNR § B | I t
= TV MLt 2T
A —t)y =6t +7-1t) (4.75)

so the argument of § can vanish as we integrate t’ over (—7/2,+7/2), that
ist=t+7,and if —7/2 <t < +7/2, then 6(t' + 7 — t) = 0. Hence we see
that for —7/2 <t < +37/2 we have

+o00
% S e (¢ — t) 4+ 68 — £+ 7). (4.76)

n=—oo

So for t over the entire time range —oo < t < +00 we have

1 “+o00 “+o00
= min(t'—t) — ot —t+17). 4.77
T n=Z—oo ° l=z—-;o ( + T) ( )

Now we can check this result with the Fourier transform result as 7 — oo.

Since (t' — t) is finite, only the [ = 0 term contributes to the sum

1 X 1 ¥
- Z e—inw(t’—-t) _ 2_ Z Ake—ikn(t’—t)
T s

n=—oo n=—0oo

= 22 ekt — 5 — ¢). 4.78
/_Oo e t—t).  (478)
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