2 Conservation Theorems

First consider conservation theorems for single particle motion and then for
systems of particles.

1} The first conservation law follows immediately from the 2nd law

F=yp (2.1)
if a particle is free, i.e. experiences no net force, then
p=0=f=const. (2.2)

The linear momentum is said to be conserved. Alternatively if F.3=0
for some constant vector 5, then 5-§ = 0 and P - § = constant: The linear
momentum is conserved in the direction § in which the force vanishes.

2) For a single particle we can define its angular momentum L with

respect to the origin of our coordinate system by

L=7Fxg (2.3)
where 7 is the position vector of the particle and ' is the linear momentum

of the particle.

The torque N with respect to the same origin is defined as

N=fxF=7Fxp (2.4)
by N 2nd law. Hence
s~ d, Lo .
L:E(rx,ﬁ):rx;oer/p (2.5)
but
Fxp=mrxrf=0=>L=Fxp=N (2.6)



Hence, if there are no torques on a particle, N = 0, then L =0= L = const.
The angular momentum of a particle subject to no net torque is conserved.
3} Consider the power that is work/timne provided by the force F acting

on the particle

di’ — :
= F. =77 2.7
’ G=p-70 (2.7)
for constant mass
dW - - 1 d,. d,1 _s
- =t (TN = (2 . 2.8
g = MU U= gma - d) = S (Gmi) (28)

The work done by the force in the time interval between ¢ and ¢ + df appears

as a change in KE of the particle
dW = F . ddt = d(lma B =dT (2.9)

with T = ymv 2. Between t; and to we find

t2 1 1
f F-idt=T,-T, = ﬁmﬂzz’ - §m1712, (2.10)
ty

where ¥; is the velocity of the particle at time ¢,.

Further note that Udt = dr, the displacement along the particles tra-
jectory, so if the force is given as a function of position at times along the
trajectory F (7.t) we find that the KE change is given by the line integral of
the work

7

- T, :] Fdr (2.11)
1

with 7 the position of the particle at time ¢; (note: F = F(7, () here ic.

we integrate along the trajectory.)

In many cases the line integral of the force around a closed path vanishes
fﬁ-dﬁ:ﬂ (2.12)
c
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(at a fixed time ¢, that is 7 and ¢ considered independent here). Then the

force is irrotational and the line integral

/ F(7 t) - dF (2.13)
g

at fixed time is independent of the path of integration, it is only a function
of the end points 7, 7. (Since these integrals are evaluated at a given time,
they say nothing about what happens in the case of the actual displacement

of a particle over the path, unless F = F(7) only.) So
f F(7 1) - dF = —U(F ) + Ul £) (2.14)

with U(7p,t) just a constant of integration. Differentiating with respect to

R, t constant, yields (i.e. let 7 = 7 + dr, then 7y — 7)

Lo AU (7, 1)
F A7 = — .
(F,t) - dr o, dx

= ~VU(F,t)-dF (2.15)

Since this holds for arbitrary dr’ we have
F(7t) = —VU(7,t) (2.16)

as we know since

—

jﬁF‘-df':(}@ﬁxﬁ:oﬁﬁ(m):—VU(«F,z). (2.17)
C

U 1s the potential energy of the particle is the force field F. Note that

U + Uy (note: Uy is a constant) yields the same force

F=-VU=-V{U+U) (2.18)
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The potential energy has no absolute meaning; only differences in potential

energy are physically meaningful i.e. In

+U(F t) — U7, t) = _f F.dF (2.19)

1]

we are free to choose on reference point 75 for defining potential energies
at will. Usually |75| — oo and U(7g, ¢} — 0, but it depends on the problem
under censideration.

Similarly the KE has no absolute meaning since we can choose any inertial
frame and t is relative to it with T = %mﬂ 2 which changes from frame to
frame. Hence T has no absolute meaning, it is frame dependent.

The sum of KE + PE is called the total energy F
E=T+U (2.20)

So the total time derivative is
dE @ dl)

% - ata
__F
L LU SR
= F.iy = il
T &*2% dt
- P Fors
sU ’ _
= = (2.21)

If the force is conservative (irrotational and time independent), F = F{(7),
that is time independent, then so is U, %—i’r = (. The total energy then is
conserved E = constant. = Conservation of Energy: T +U, = T, +Us.

To summarize, we have 3 important conservation theorems:

1) Linear momentum is conserved if the particle experiences no net force:
F=o.
= P = constant, (2.22}
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2} Angular momentum is conserved if the particle experiences no net torque:
N=0.
— I = constant. (2.23)

3) Total energy is conserved if the Force is conservative:

E = constant (2.24)

Although we derived these conservation theorems for a single particle we
can proceed similarly for a system of n particles loosely aggregated or forming
a rigid body.

The total mass of the system of n particles is denoted by A

M= Zma (2.25)
a=1

where the subscript a labels the individual particles with masses m,.
Let the position of the o' particle from the origin of our inertial coor-
dinate system be denoted by 7. Then the position, denoted by R, of the

center-of-mass of our system is defined to be

- Ml o
RE_ cxucx = .
7 DM ( - ) (2.26)

a=1

Then the position of the a** particle with respect to the CM is

Yo = L3
Fo=Tq — R (2.27)
W
. L4
T\':, ,.{W'I,DJ\ 1
N = — r"-_i'
V;L' Y'n{ - Y‘O("'"k

. A
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Taking the n-particles as our system, we have 2 types of forces acting on

the particles within the system:
1) The resultant of all forces of external origin to our system:

Fée) = external force on o®® particle (2.28)

2) The resultant of all forces on particle o arising from the interaction with

the (n — 1) other particles:

fo = internal force on o particle (2.29)
Further .
fa=) " fs (2.30)
fo

where f:;.g is the internal force on the at* particle due to the 3 particle.

The total force acting on the o”

particle is
Fy=F& 4 f (2.31)
For internal forces obeying Newton's 3rd law (weak form) we have that

fop = —fpa (2.32)

(We will also make the stronger assumption that o is a central force

(strong form)
fas = (Fo — 75)gap (2.33)
It will be indicated when this stronger form of N3 is used.)

First N2 = (assuming m, = constant)

D
Po = —atale = FO + ) fos (o) (2:34)
57
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Next we can sum over all o

% i:moﬁ, = Z F 4 z“: Fug (2.35)
a=1 1

a—= o, =1

s e N N |

—=MEA F—" S’

=0

where F' is the sutn of all external forces on system, F = PN F®  The

last term is zero since

Z fag = fio+ fis+ fas+ .

P
+ fa+ fat fat..
= D (fag+ foa) =0, (2.36)
a<3=1
where the last line is zero by the weak form of the 3rd law f;g — — faa. Hence
we have that
MRE=F (2.37)

The center of mass of a system moves as if it were a single particle, of mass
equal to the total mass of the system, acted upon by the total external force,
and independent of the nature of the internal forces (as long as they obey

N3). The total linear momentum of the system is

. n ) d n d _
P= a-‘a:_ a_‘a:_ M :
;m'r dt;mr - (ME) (2.38)
P=MR (2.39)
and from above
P=MR=F (2.40)



1) The total linear momentum of the system is conserved if there is no net
external force

F =0= P = constant (2.41)

2) The total linear momentuin of the system is the same as if a single particle

of mass M were located at the position of the CM and moving as the

CM moves.

The angular momentum of the ot particle with respect to the origin is
g D

—

Lo = 7o X P (2.42)

Hence the total angular momentum of the system about the origin is given
by

n

L = E LO_E Faxﬁazg MaTa \ Ty

a=1 o=1

= Zm&(ﬁ,—i— R) x (7 + F)

= S Ml Fax )+ For Ry + (RxF)+ (BxR)] (249

=1

Note: - .
Zmaﬁ. x B = (Z Mafa) X B (2.44)
a=1 a=l

Now the position of the CM in the CM coordinate system is

Z}ma_zyha )=§}%Q—M§:D (2.45)

=1 a=]

Similarly

Zma(ﬁ X ?‘a = Rx— 2:1':-'1{;.,?"n =0 (2.46)
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Thus we secure

L= ma(faxa) + MEx R (2.47)
a=1
L= faxpa+tRxP (2.48)
a=]1
where
- Mo\ =
5 =, — [ e B 2.49
Po =P ( M) (2.49)
i.e.
P P B= i =f — RB= m = maf —ma kR
i
=P =Pe
= F= P (%) P. (2.50)

Thus we find: (the total angular momentum about origin) L = (angular
momentum of CM about origin} R x 13 + {angular momentum of system
about CM) > _ 7 X Pa.

Taking the time derivative of the total angular momentum we find
L= ZEQ = Z{(’FQ b ;3'&) Mg T X F’a]
a=1

T

= Y Fuax (FO 4+ fap) (2.51)
a=1 O ex

=1

Once again

by weak N3=—f,5

ki3 mn

) - —~=
S raxfis = 53 Faxfusti T

a,8=1 e, =1 o, F=1
ol o#fS a#f
I -
= oY) x f (2.52)
a,d=1
P

a0



Now we impose the strong form of N3 which states that the interparticle

force is alsg central

fog = (Fa—73)9us
= (Fa - FB) X fc:f)' = (’Fa - ﬁ@) x (Fa - Fﬁ)gaﬁ =0 (253)

Hence

n

L= Fux F{ (2.54)

a=]

But the external torque on the at* particle is NS

NE =7, x Fl© (2.55)

[+

Hence

L= Z N = N© = the total external torque (2.56)

a=1
If the net resultant external torques about a given axis vanish, then the total
angular momentum of the system about that axis is constant in time (if f;ﬁ
obeys strong N3).

Finally we will consider the energy conservation theorem for a system of
particles. The total KE of the system is defined as the sum of the individual
particle’s KE:

n "1,
T= {; To = ; 5Mals (2.57)

Since 7, = 7, + R each velocity squared becomes

(Ba) 02 = Farfa=(Fat B)-Fut B)
= (Fa Ta)+2Fa-R)+B-R
= B +20.- R) + V2 (2.58)

ol



where as before v, =71, and V = RE. So

1 1 - ~ .=
T = Ema’fﬁ + ; —mo Vi |~ (gl MaTa)] (2.59)

=0
where the last term is zero as it is the location of CM in the CM coordinate

system: > . n_ MaTs = 0. So finally
T=1mvry i L i 2 (2.60)
2 gt g e

The total KF = (K E of a single particle of mass M moving with the velocity
of the CM) + (K F of motion of the individual particles relative to the CM).

The total work done by the total force F, = Fe 4 f; on each particle
in going from a configuration 1 of the system to a configuration 2 is just the

sum of the individual work integrals:

Wie = zﬂ:fzﬁa-ﬁadt
a=1 1
= Z%mﬁﬁga _Z%maﬁfo

= T —T. (2.61)
As before if the forces are functions of paositions 7, and time ¢, we have, using
Updt = d7,, (2.62)

that the change in total K E in going from configuration 1 to configuration

21is
n 2_‘
Tz—Tl - fFadFQ

52



L) 2 7 2 n

_ Z[ Flo . dr, + Zf > fas)-dra,  (263)
a= 1 a= 1 a=

' : 5;41

(where again the line integrals are evaluated along each of the particles tra-

jectories so that if the forces depend upon time, they are evaluatd at the

time ¢ = £(7,,) along the trajectory and position 75 = 73((7,)), for example).

Further if the forces are irrotational

F}e) = _ﬁach (Ua = Ua(f‘m t)) (264)
fos=-Valag 5  fa=D_ fap (2.65)
=

and weak N3 is assumed
foap = ~fa (2.66)

so the potential depends on the distance between the particles
L_Ta’e - ﬁ“ﬁ((ﬁ* - Fﬁ): t) = {:Iaﬁ = 6{3& (26?)

with V, = the gradient operator with respect to 7. Hence the total potential
energy of the system is just the sum of the potential energy of each particle
in the external force field plus the potential energy due to the interparticle
forces. Since f;g is the force on o due to 7 and by the weak form of N3
f;taa = -—ﬁ,ﬁ, the force on J due to «; we only count the interparticle
potential energy once U,g{a < I} in the total PE sum. That is the work in
assembling our system from a reference point of zero PE (say 7, = oc) to our
final particle configuration can be found by bringing in each particle from 7
to its final position 7,; one at a time: {recall the work is path independent

since the forces are irrotational). (Brought in instantncously with ¢ fixed.)
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1) Bring in a = 1: The work to do this is just against the external force on
a=1

Ul = — / FO . am (2.68)

-

[#]
2) Bring in @ = 2: The work is just against F;(e) and also f;l since o =1 I8

already in place.
F-z N 7_"2 =
ye — _ / F - dry + f — for - dy (2.60)
i To

(Note this is the integral along the path particle 2 takes with 7 fixed

in place, we could use diy) = di.)

3) Bringina =3

r3 . 3 = e
U® — [ —F?fe) - diy — [ (4 fa1 - dFs + fao - drs) (2.70)

o T
and so on until @ = n is brought in to its final position ¥,. Hence the

total potential energy U is

U = UvW4yu@ 4 4y

- f:f —F® -dﬁﬁii/% —fag - dia (2.71)
a=1v70 "o

a=1 g=1
a3
U=> Us+ > U (2.72)
=

where recall

Q—F(e)'d_’(l:/\aﬁﬁUa'd_‘a :Ua _’ﬂrat T Vo _..‘t 273
/ P (7o) — Palio, ) (2.73)

O _dU.at fixed ¢

where our reference potential is taken to vanish U, (7, t) = 0. Similarly

'.F'Q - Faﬂ _ _
f ~ fap - dFa :/ VaUag + dap = Uap (2.74)

T o

o4



Since chﬁ = 5’;30, we may write U as

U= ZU +ZUQ;3_ZU + = ZUQ,E (2.75)

a,B=1 ~ A=l
Bra aFg

The total energy of the system is
E=T+U, (2.76)

hence the total derivative with respect to time is

deE dT'  dU
—. 2.77
dat (2.77)
As earlier
gziﬁaﬁa:iﬁ(”ﬁa'{“ii.{;ﬁﬁa (278)
dt a=1 a=1 i a=1 5=1
BFa
Using f‘;ﬁ = —f;g,, the last term can be written as
Z Z fap - (Vo — ) (2.79)
a=1l g=1
B>o
S0 .
ZF(E) U + Z Z fap - (2.80)
= e

In addition suppose Flo) — ﬁ(e)(Fa, t) so that U, = U,(Fa, t) while the inter-
particle forces fc,g = fo,,@(ﬂr'(,t — 73, t) so that Uc.g = Unp(Fa — 75, %); then we
find

= Ffe
dU U _E T di,
D DAL



=(tp—7a)

———

o AT —Ta)
+D2D Vpllag =0 (2.81)
a=1 =1 —~— dt
G>a =—fga
So
dU U &
-~ - I _ Fle 0.
@ = a2t
a=1
. =—(3a—7)
= ,-_.——/‘-_’—-\
=22 Joa (T =), (2.82)
a=l 9=t \.\’_'-J
Bra=—fag
which vields
dalU ol L.
o~ - I Fle . i
df af ; X t
3N fos - (T — ). (2.83)
a=1 éi;(]}
Putting all this together
dFE ol L AL
E Y NTCR@ g (G T
dt ot ga v ;;fﬁ(v g)
 B>a
+ I ED 4 Y fas e (G — Ta). (2.84)
=1 a=] S;l}
Hence
dE I
@ o (2.85)
If all the forces are conservative %{- = 0 then F = constant. Then the

total energy of the system is conserved T + Uy = Ty + Us.

To summarize the 3 conservation laws for a system of particles
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1) The total linear momentum of the system is conserved if there is no net

total external force acting on the system, F=0.

P=Y main=MR (2.86)
a=1
and if .
F = Z F©) = (0= P = constant. (2.87)
a=1

2) The total angular momentum of the system is conserved if the net total

external torque acting on the system vanishes, N =0.

L=) faxfa=RxP+> 7uxpa (2.88)
a=l a=l
and if
N=NY = Zﬁ, x F©) = 0 = [ = constant. (2.89)

3) If all forces {internal and external) are conscrvative (time independent

and irrotational) then the total energy is conserved
E =T+ U = constant (2.90)

With

1 1. .- 1 .
T = 3 omatl= sMVR 4 o)
a=1

a=1

U = D> Uat>.> Uap (2.91)
=1

a=1 &=1
Ao
ext. PE N, i—"
int. PE

Aside: Suppose the force is comprised of conservative plus non-conservative

terms (assume single particle mechanics here)
F=F.+F=-VU+F (2.92)

e
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Then
dw P
dt dt
— 4+ F§ (2.93)

i

|
<,
L

= 4+ F .7 (2.94)

which implies
d 1

d -
—— 2 = — = tog
5 (5mY +U) (T+U)y=F'-14. (2.95)

dt

Let’s go back to the definition of potential energy and discuss more care-
fully its definition and the work to go from one configuration to another. Now
to be more precise the internal forces only depend on the relative coordinate

between the two particles so

fas = Jos(Fo = T3,1) (2.96)

from the weak form of N-3 f;a = —f;g = Uas = Usa) So when we integrate
along the path in this build up of our system from the, say, infinitely separated
reference configurations, to the final configuration we are bringing in the
particles one at a time with the previous particles fixed in place so

['-ﬁl-dFQ:f — for - dim (2.97)
r Fan

20

and hence in general (all at fixed time t)

Fﬂ
| Foa i =
"To‘l]

So to be more precise we have

Tag
[ —fog - dFng. (2.98)

Y Tap
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a=]""a0 a=l g=1 Y Fa
a3
Now recall
F = FO(Fat) = —Vala
with
{_J’a = {_J'a(i':‘a,t)
So

(for fixed t; Xo). So
Fu Ua (Fa t)
/ —F g, = / AUs = Ua(Far t) — Un(Fao. t)
Tad {jﬂ(;ao?t)
So letting Uy (7o, t) = 0 =
T T T ’?n,ﬂ
U=> Ualart) + Y Z/_ ~ fop - dFog
a=1 a=1 a=1 ¥ Tugd
a3

(All at time £.)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

Now suppose the internal forces are functions of the relative vector f:;ﬁ =

f;g(ﬁ, - 73,t) then
ﬁ,'g = —6a{7c,]3(ﬁ, — ﬁa,t)

(Weak N3 = U, = Us,) So all at time ¢ (df = 0)

d[;raﬁ = o _aﬁ ) d?:'a -+ ﬁﬁ{:}raﬁ : dﬁ@
a _ﬂﬁ ‘ dﬁx - 60[70@ . dﬁg

agaﬁ * d:‘;.aﬁ

It
<li <1 <l

= _faﬁ . d‘?_"aﬁ.
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Hence

Tag . g(?ag,t) _ _ _
/ “faﬁ ~dfap = / = aﬁ(raﬁa t) - Uaﬁ(ﬁ‘efaﬁa t) = Uap(Tas, t)
Fan Q(Frc)'aﬁat)=0
(2.107)
So the total potential energy of the system is

U= Z Un(Foy t) + Z i T (Fog, ) (2.108)
a=l

a=1 g=1
o=

(all at time t). Note the potential energy U,z is between 2 particles hence

S0 we can write

U= Zn: Ua + %i zn: U (2.110)
a=]1

a=1 g=1

To see this further, suppose we bring the particles in from the zero of

potential energy in the opposite order

um = — f T g,
Fn—l . F‘n—-l ~
Lr(n_l) = _f Frge—)l : dﬁ"l—-l - / fn—ln ) dﬁn—l
T?l] ‘Fn
T?n—ﬁ .
g~ [
" 'Fn—2 - .
—f (fr-2n + facia—1) - din—2, (2.111)
o
and so on until
=
Uy = _/ Fl(e) - dF,
"f (fl.n + fl.n—l + ...t f;z) - 7. (2.112)
o
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Thus yielding the result

U = U4 ueD4 v

- Zn:frﬂ—ﬁée)-df'aJrii/% s dF
a=] ¥ a0 g

a=1 g=1 Vol
B>a Fald 7
=.||'Ft_“.30 _foa'dfm'i

So we have the two expressions for U

U = Z}/;—F';ﬂ-df'aJrZZ[:—f‘;ﬁ-dﬁ,ﬁ

a=1 g=1 Y™
a3

n Rl fFes
= S TR Y [ g dig
a=1 ¥ Tao a=1 =1 ¥ el

Fra

Noten =4

[5 Q3>o(

¥ ¥

|

R ol

Add 1/2 of each expression {all at time ¢)

U = i:[&—ﬁf)-dr‘;Jr%Zﬂ:i:/
=1 = P

Tab e=l g=1 YT

p#a

—
F

a3 =
"fcrﬁ ) drcxﬁ
Q
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n

1 kL) n B
= Ua(Fat) + = Uas(Tap, t 2.115
; (Fant) + 5 ZZ 5(Fap, 1) (2.115)
B#a
Now when going from configuration 1 to configuration 2 this takes time
(t; — t2). The work done is the difference in KE: T, — 7. If the forces are

conservative, then we can relate this to the difference in potential energies

T Mo . n ke 2 .
n-ti=Y [0+ [ faan, (2.116)
a=1Y71a a=1 g=1 1
Ba
where configuration | is at time ¢ = ¢; and configuration 2 is at time f = #,,

all the particles move along their respective paths as the time evolves from

t1 to t,. Now

n n 2 n n 2
SN [t = X3 [ 1fundia+ foo- i
a=1 =1 1 a=1 g=1 v!
a<d
non 2
= Z Z_[ fﬁ;j ’ d"r_‘-aﬁ- (2117)
a=1 g1 1
a<f
If f;g is independent of time
== Z Z[{}aﬁ(f‘é(xﬁ) - {:‘Taﬁ(ﬂaﬁ)] (2118)
a=1 g=1
a<d
Likewise for )
2o -
_ / FO L dity = Un(fpe) — Ua(Fio) (2.119)
it X9 is independent of time. So
T,-T\=-U+ 1), (2.120}
or
E] :T1+U1:T2+U2:EQEE (2121)
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the total energy. So the total energy is conserved if all forces are conservative.

Now suppose F and f;g depend on time then

AUa(Fart) = Vol - diy + 0; Ve
_ dUa
AUos (g t) = Valas: die + Valag - dis + —Ldt
(weak N3 =) = Valas - dFap + ago‘ﬁdt
0Uqas
= 5 - AT dt.
— fop - diag + By
This implies
n n to aUa
O JRUARD oY (VB 3 Y
a=1Y% a=1 pg=1 Y11
A>a
So with the total energy defined as F =T + U, this yields
29U, 2 50,
E,_E = b gt
B, z / &
, a<d
29U
Ey,— K = —dt
S y Ot
or differentially
dE _ oU
dt  dt’
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(2.123)

(2.124)

(2.125)



