
2 Conservation Theorems 

First consider conserv,ztion theorems for single particle mot ion and then for 

systems of particles. 

1) The first. conservation law follows immediately from the 2nd law 

if a particle is free, i-e. experiences no net force, then 

+ 

The linear rnomentum is said to be conserved. Altcrnat jvrly if F . C = 0 

for some constant vector .s', then f i  - Z = 0 and p' i' = const,ant: The linear. 

moment urn is conserved in t hc direction s' in which the force vanishes. 

2) For a single part irle uTe can define its angular moment urn with 

respect to the origin of our coordinate system by 

where r' is the posit ion vector of the particle and fl is the lineitr rriomentum 

of the particle. 

The torque with respect to the same origin is dcfined as 

by N 2nd law. Hence 

but 



4 - -., 
Hence, if there are no torques on a particle, N = 0, thcn L = 0 + L = const. 

The angular momentum of a particle subject to no net torque is conserved. 

3) Consider the power that is wark/ti~ne provided by the force F acting 

on the aarticle 

for constant mass 

The work done by the force in the time interval between t and t + dt appears 

as a change in KE of the particle 

+ 1 
dW = F . v'dt = d(-mfi 2 ,  = dT 

2 

with T I $ma 2.  Between t l  and t 2  we find 

where is the vel~cit~y of the particle at tirrle t,. 

Further note that v'dt = ddr', the displacernerlt, along the particles tra- 

jectmorv. so if the force is given as a funr:tion of positiorl at times along the 
4 

traject,orq- F ( K  t )  we find t,hat, the K E  change is given by the line integral of 

the work 

T2 - Tl = d i  

+ -+ 

with r', the position of the particle at tirne ti (note: F = F(r',tt(7?)) here i.c. 

we irltegratc along the trajectory.) 

In irlarly cases the line integral of the force around a closed patch vanishes 



(at a fixed time t ,  that is r' and t considered independent here). Then the 

force is irrotational and the linc integral 

at fixed time is independent of the path of integration, it is only a function 

of the end points F, FO. (Since these integrals are evaluated at a given time, 

they say nothing about what happens in the case of the actual displacement 

of a particle over the path, unless = F ( T ~  only) So 

with U ( 6 ,  t )  just a constant of integration. Differentiating with respect to  

R, t constant, yields (i.e. let i= io + d i ,  then Fo + 4 

Since this holds for arbitrary df' we have 

as we know since 

U is the potential energy of the particle is the forcc field F. Notc that 

U + Uo (note: Uo is a constant) yields the same force 



The potential energy ha.s no absolute meaning; only differences in potentid 

energy are physically meaningful i .e. In 

we are free to choose on reference point 6 fur defining pot.entia1 energies 

at will. Usually 161 t oo and U (6, t )  4 0, but it  depends on the problem 

under considerat ion. 

Similarly the KE has no ahsohite meaning sirice we can choose any inertial 

frame and C is relative to it with T = kn~C' which changes from frame to 

frame. Hence T has no  absolute meaning, it  is frame dependent. 

The sum of KE + PE is called t.he total energy E 

So the t.otal t,ime derivative is 

If thc force is conservative (irrotational and time indepcndent) , = F(,'1, 
that is time independent, then so is U ;  = 0. The total energy then is 

conserved E = constant. + Conservation of Energy: TI + Ul = T2 + lJ2. 

Tcj sutri~narize, we have 3 important conservatioxi theorems: 

1) Linear mornenturn is conserved if the particlc experiences no net force: 

F = o .  
+ 6 = constant (2.22) 



2)  Angular momentum is conserved if the particle experiences no net torque: 
+ 

N = 0. 
-., 

=+ L = constant. (2.23) 

3) Total energy is conserved if the Force is conservative: 

E = constant (2.24 1 

Although we derived these conservat.ion theorctns for a single particle we 

can proceed similarly for a system of 72 particles lochsel y ~ggregated or fc~rnling 

a rigid body. 

The total mass of the system of n particles is denoted by Jl 

i l l  = x m, (2.25) 

where the subscript a labels the individual particles with mwscs m,. 

Let the position of t,he oth particle from the origin of out. inertial coor- 

dinate system be denoted by 6. Then the posit,ion, dcr~oted by 8, of the 

center-of-mass of our systerrl is defined to  be 

Then the position of the oth particle with respect to the GM is 



Taking the n-particles as our system, we havc 2 t.ypes of forces acting or1 

the particles within the system: 

1) The resultant of all forces of external origin to our syst,em: 

+ 
F?) = external force on ath part.jcle (2.28) 

2) The resultant of all forces on particlc a arising from the interaction with 

the (72 - 1) other particles: 

f ' - .  th , - laternal force an  a particle (2.29) 

Further 

whvre .fliB i d t h e  internal forcc on the aLh particle due to the pth particle. 

The t,ot a1 force tictirlg on the fit" particle is 

F* = kid" +L 
For internal forces oheyirlg Kewton's 3rd law (weak form) we have that 

- 
(LVe will also make the stronger assumption that fad is a central force 

(st.rong form) 
M 

fPp = (Fa - T f p ) g ~ p  (2.33) 

It will be indicated when this stronger form of K3 is used.) 

First N2 + (assuming m, = constant) 



Next we can sum over all iu 

where is the sum of all external forces on system, = ELl Ff). The 

laqt tern1 is zero since 

- 
where the last line is zero by the weak form of t.hc 3rd law fop = -fd,. Hence 

we have that, 

M Z = $  (2.37) 

The center nf mass of a system moves as if it were a single of mass 

equal to the total mass of the system, acted upon by t.he t,otal external force, 

and independent of the nature of the internal forces (as long as they obcy 

N3). The total linear momentum of the system is 

and from above 



I) The total linear rnoment,uln of the system is conserved if there is no net 

external force 
4 - 

F = O 3 P = constant (2.41) 

2 )  The total linear morrlentuin uf the system is the same as if a single particle 

of Inass M were located at the position of the Chl and movir~g as the 

CM moves. 

The angular mc~mentum of the ath particle with respect, t,o t.he origin is 

Hence t.he t.otal angular mornenturn of the systcm about the  origin is given 

by 

I o w  thc position of t,he Ch,l in the CM coordinate system is 

Similarly 



Thus we secure 

where 

i.e. 

Thus we find: (the total angular mo~nentum about origin) = (angidar 

nlarnentum of CM about origin) 2 x P + (angular mornenturn of syste~rl 
+ 

about CM) Cz=, Fm x p,. 

Taking the time derivative of the total angular ~nornenturrl we find 

Once again 

by weak ~ 3 = - f &  
A 



Now we impose the strong form of N3 which states that the interparticle 

force is alsc~ central 

Hence 

But the external torque on the aLh particle is N?) 

= N?) = $') = the total external torque (2.56) 

I I t. he net resultant external torques about a given axis vanish, then the total 
4 

anguliir r~~omentum of the syst,em about that axis is constant in time (if Lfl 
obeys strong N3). 

Finally we will consider the energy conservation theorem fur a system of 

particles. The total K E  of the system is defined as the sum of the individual 

particle's KE: 
n 

1 
T = C T* = C -ma iy  

a=l n=l  
2 

+ 
Shoe  = Fm + R each velocity squared becornes 
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where as before Go = F ,  and V = R. So 

where the lase term is zero as it is the location of Ch.1 in t,he CM coordinate 
+ 

system: C:=, m,G = 0. So finally 

The total K E = ( K E  of a single particle of mass M moving with tmhe velocity 

of the CM) + (KE of rrlotion of the individual part,icles relative to the CM). 

The total work done by the total force Fa = F$) + A on eacli particle 

in going from a configuration 1 of the system to a configuration 2 is just t.he 

sum of the individual work integrals: 

As before if the forces arc functions of posit ions ancl time t,  we have, using 

that the change in total K E  in going from configuration 1 t,o cr)nfig~iration 



d f a  

(where again the line integrals are evaluated along each of t.he particles tra- 

jectories so that if the forces depend upon time, t,he;l; axe evaluatd at the 

time t = t (r',) along the trajectory and position F,, = FL3(t. (l;',)), for example). 

Further if the forces are irrotational 

and weak N3 is assumed 

so t8he potential depends on the distance between the particles 

with v, = the gradient operator with respect t,o 6. Hence the total potential 

energy of the system is just the sum of the pc)t,ential energy of each pruticle 

in the external force field plus the potential erlergy due tc) the irlterparticle 

forces. Since z8 is the farce on a due to 3 and by thc wcak form of N3 
--* + 

fpo  = - f n p ,  the force on 3 due to a; we only count tho interparticle 

potential energy once Uap(a < 3) in the total PE sum. That is thc work in 

assembling our system from a reference point of zero PE (say Fu = m) to our 

final particle configur;~tiun can be found by bringing in each particle Fron~ 6 
to its final pasition r',; one at a time: (recall the work is path independent 

since the forces are irrotational). (Brought in instantncnusly with t fixed.) 



1) Bring in a = 1: The work to do this is just against the external force on 

-+ 

2 )  Bring in a = 2: The work is just against pJe) and also fZ1 since a = 1 is 

already in place. 

(Note this is the integral along t,he path particle 2 takes with F; fixed 

in place, we could use dF21 = d 6 . )  

3) Bring in a = 3 

and so on until a = n is brought in to its final position Fn. Hence the 

total potential energy U is 

where recall 
.. - r, - lr -it) . dFo = VOW, + dr', = Urn(%, t )  - /Dm(%, t )  (2.73) - 

=dU,at fixed t 

whcrc our reference potential is taken to vanish U, (6, t )  = 0. Similarly 

- h:' - V , U , ~  + dGP = UOp (2.74) 



- 

Since u , ~  = Up& we may write U as 

The tot,al energy of the system is 

hence the tot,al derivative with respect to tirrle is 

As earlier 

- + 
Using fmp = - fp ,  the last term can be writt.cn ,as 

-(el - -(el In  addition suppose F, - F, (6, t )  so that U, = Ua(r',, t )  while the inter- 
f + 

particle forces fnp  = fap(r', - Fp, t )  so that ump = UBp(r', - Cb, t ) ;  then we 

find 

=w, - dr, 



which yields 

Putting all this together 

If all the forces me conservative = 0 then E = co~lsta~lt.  Ttleri the  

total cnergy of the system is conserved TI + Ul = Tz + U2. 

To summaize the 3 conservation laws for a system of particles 



I) The total linear momentum of the system is conserved if there is no  nct 

total external force acting on the system, = 0, 

and if 
n 

F = C F t )  = o B = constant. 

2) The total angular momenturn of the syst.enl is conserved if the net total 
f 

ext.erna1 torque acting on the system vanishes, N = 0. 

and if 

3) If all forces (internal and externalj are conscr~xtive (time independent 

and irrot,at.ional) then the total energy is conserved 

E = T + U = constant (2.90) 

With 

cr=l  a=l # = I  + B>P 
est. PE '-.-# 

int .PB 

Aside: Suppose the force is cornpriscd of conservative plus no11-conserv a. t ,ive ' 

t.erms (assume single particle mechanics here) 



dW - 
-- 

d 1 
L F - ; = -(-mS 2, 

dt. dt 2 
dr' = -v,TJ.-+I".v' 
d t  

- - - (du.dr7 + p , o  
dt 

- - 
dU -- + ~ 4 .  (2.94) 
dt  

which implies 

Let's go back to the definition of potential energy and discuss more carr- 

fully its definition and the work to go from one configuration to another. Now 

to be more precise the i~iternal forces onlj' depend on the relative coordinat~ 

between the two particles so 

-4 - - - 

from the weak form of N-3 fp, = - fnB =+ Ump = Ups) SO when we integrate 

along the path in this build up of our system from the, say, infixiitely separated 

reference configurations, to the final configuration we arc bringing in the 

particles one at a tirne with the previous particles fixed in plare so 

and hence i r l  general (all at fixed time t) 

So to be more precise we have 



Now recall 
- - - 

F?' = ~f)(r', , t )  = -V,U, 

(for fixed t ;  pa). So 

dU, = U,(r',, t )  - U,(f'nn, t.) (2.103) 

So letting U,(r',o, t )  = 0 + 

(All at time t.) 
4 

Now suppose the internal forces are funct.ions of the relative vector = 
+ 

fca,(Fm - 7';: f )  t.hen 
4 f 

fmj? = -VaUap(?o - Fgr t )  (2.105) 

(We,& iV3 + C T ~ ~ ~  = URn) SO a11 at time t ( d t  = 0) 



Hence 

So the total potential enerm of the system is 

(all a.t, time t). Note the potential energy u , ~  is between 2 particles hence 

So we can write 
n , n  n 

To see this further, suppose we bring the particles in fro111 the zero of 

potential energy in the opposite order 

and so on until 



yielding 

U 

So we have the two expressions for U 

Note n = 4 

Add 1/2 of each expression (all at titne t )  



Now when going from corlfiguration 1 t.o configuration 2 this takes time 

( t l  - tz) .  The work done is thc  difference in K E :  T2 - TI. If the forces are 

conservative, then we can relate this to the difference in potcntial energies 

where coilfiguration 1 is at time t = t l  and configuraticl~l 2 is at time t = t 2 ,  

all the pa.rticles movc dong their respective paths as t he  time evolves from 

If xha is independent of time 

Likewise for 

if is i n d e p ~ n d ~ ~ l t  of time. So 



the total energy. So the tot a1 energy is conserved if all forces are conservative. 

Now suppose pf) and Lo depend on time then 

4 aLro - sum 
d = 'F,xlrJt> - dG + -tit = - F(') 4 drt, + -dt 

d t  (1 at - - - c)Ch/3 dt 
d ~ , ~ ( r ' , p ,  t )  = Trrljrrd + dTa + V p ~ o o  4 dF9 + - 

4 - 

dt 
~ U " B  dt (weak N3 +) = 'TmiJn3 dFnB + - 
- at - suns 

= -flip - dFop + - at 
dt .  

This implies 

So with the total energy defincd as E = T + U, this yields 

or differentially 


