PHYSICS 271 ELECTRICITY AND MAGNETISM SECOND EXAMINATION

19 November 1999

INSTRUCTIONS: Answer all questions on the answer sheet provided, it will be the only paper that is collected. This is a closed book exam.

(25 pts) 1.) For the circuit drawn below:

1.a.) What does the junction rule yield?

$$\mathbf{a)} \quad \mathcal{E}_1 + 2 \, \mathcal{E}_2 = 0$$

c)
$$i_1 + i_2 = i_3$$

b)
$$i_1 + i_2 + i_3 = 0$$

 $2i_1R_1 + i_2R_2 = \mathcal{E}_1 + \mathcal{E}_2$
 $i_2R_2 + 2i_3R_1 = 0$

d)
$$i_1 + i_2 = i_3$$

 $-2i_1R_1 + i_2R_2 = \mathcal{E}_1 - \mathcal{E}_2$
 $i_2R_2 + 2i_3R_1 = 0$

1.b.) What does the loop rule yield?

a)
$$i_1 + i_2 = i_3$$

c)
$$-2i_1R_1 + i_2R_2 = \mathcal{E}_1 - \mathcal{E}_2$$

 $i_2R_2 + 2i_3R_1 = 0$

b)
$$i_1 + i_2 + i_3 = 0$$

 $2i_1R_1 + i_2R_2 = \mathcal{E}_1 + \mathcal{E}_2$
 $i_2R_2 + 2i_3R_1 = 0$

d)
$$2i_{1}R_{1} + i_{2}R_{2} = \mathcal{E}_{1} + \mathcal{E}_{2}$$

 $i_{2}R_{2} + 2i_{3}R_{1} = 0$

1.c.) What is the current through the source of emf in the left branch?

a)
$$i_1 = \frac{(2R_1 + R_2)(\mathcal{E}_2 - \mathcal{E}_1)}{4R_1(R_1 + R_2)}$$
 c) $i_1 = \frac{(2R_1 + R_2)(\mathcal{E}_1 - \mathcal{E}_2)}{4R_1(R_1 + R_2)}$

c)
$$i_1 = \frac{(2R_1 + R_2)(\mathcal{E}_1 - \mathcal{E}_2)}{4R_1(R_1 + R_2)}$$

b)
$$i_1 = \frac{(\mathcal{E}_2 - \mathcal{E}_1)}{2(R_1 + R_2)}$$

d)
$$i_1 = \frac{(2R_1 + R_2)(\mathcal{E}_1 + \mathcal{E}_2)}{4R_1(R_1 + R_2)}$$

1.d.) What is the current through the source of emf in the right branch?

a)
$$i_3 = \frac{R_2(\mathcal{E}_1 - \mathcal{E}_2)}{4R_1(R_1 + R_2)}$$

c)
$$i_3 = \frac{(2R_1 + R_2)(\mathcal{E}_1 - \mathcal{E}_2)}{4R_1(R_1 + R_2)}$$

b)
$$i_3 = \frac{(\mathcal{E}_1 - \mathcal{E}_2)}{2(R_1 + R_2)}$$

d)
$$i_3 = \frac{R_2(\mathcal{E}_2 - \mathcal{E}_1)}{4R_1(R_1 + R_2)}$$

1.e.) What is the current through the source of emf in the center branch?

a)
$$i_2 = \frac{(2R_1 + R_2)(\mathcal{E}_2 - \mathcal{E}_1)}{4R_1(R_1 + R_2)}$$
 c) $i_2 = \frac{(\mathcal{E}_1 - \mathcal{E}_2)}{2(R_1 + R_2)}$

$$c) i_2 = \frac{\left(\mathcal{E}_1 - \mathcal{E}_2\right)}{2\left(R_1 + R_2\right)}$$

$$\mathbf{b)} \quad i_2 = \frac{\left(\mathcal{E}_2 - \mathcal{E}_1\right)}{2\left(R_1 + R_2\right)}$$

d)
$$i_2 = \frac{(2R_1 + R_2)(\mathcal{E}_1 + \mathcal{E}_2)}{4R_1(R_1 + R_2)}$$

1.f.) The potential difference V_a - V_b is equal to

$$a) V_a - V_b = iR_{eq}$$

c)
$$V_a - V_b = \frac{(2R_1 + R_2) \mathcal{E}_2 + R_2 \mathcal{E}_1}{2(R_1 + R_2)}$$

b)
$$V_a - V_b = \frac{\mathcal{E}_2}{2(R_1 + R_2)}$$

b)
$$V_a - V_b = \frac{\mathcal{E}_2}{2(R_1 + R_2)}$$
 d) $V_a - V_b = \frac{-\mathcal{E}_2}{2(R_1 + R_2)}$

2.) Consider the circuit drawn below. The curved segments are arcs of circles of radii a (25 pts) and b. The straight segments are along the radii. Assume current i flows in the circuit.

- **2.a.)** The direction of the magnetic field at P is
- a) B points up
- c) B points to the right
- e) B points into the page

- **b) B** points down
- d) B points to the left
- f) B points out of the page

g)
$$B = 0$$

- **2.b.)** The magnitude of the magnetic field at P is
- **a)** $B = \frac{\mu_0}{4\pi} i \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$
- c) B = 0, since P is outside the loop
- **b)** $B = \frac{\mu_0}{4\pi} i\theta \left(\frac{1}{h} \frac{1}{a}\right)$
- $\mathbf{d)} \ B = \frac{\mu_0 i}{\left[(a-b) + \theta (a+b) \right]}$
- **2.c.**) The magnetic dipole moment μ of the above current loop is
- a) $i\pi(a^2-b^2)$, into the page
- c) $\mu = 0$, since P is outside the loop
- **b)** $\frac{\mu_0}{4\pi}i\left(a^2-b^2\right)$, into the page **d)** $i\theta\frac{1}{2}(a^2-b^2)$, into the page
- 3.) Below is drawn a cross section of a hollow cylindrical conductor of radii a and b, (25 pts) carrying a uniformly distributed current i flowing out of the page.

3.a.) Determine the magnetic field for radius r>b.

- a) $B = \frac{\mu_0 i}{4\pi r}$, tangent to circles in CCW direction
- **b)** $B = \frac{\mu_0 i}{4\pi r}$, out of the page
- c) $B = \frac{\mu_0 i}{2\pi r}$, tangent to circles in the CCW direction
- **d)** $B = \frac{\mu_0 i}{2\pi r}$, out of the page

3.b.) Determine the magnetic field for radius r < a.

- a) $B = \frac{\mu_0 i}{4\pi a}$, tangent to circles in CCW direction
- **b)** B = 0
- c) $B = \frac{\mu_0 i}{4\pi r}$, tangent to circles in the CCW direction
- **d)** $B = \frac{\mu_0 i}{4\pi r}$, out of the page

3.c.) Determine the magnetic field for radius a < r < b.

- a) $B = \frac{\mu_0 i}{2\pi r} \frac{(r^2 a^2)}{(b^2 a^2)}$, tangent to circles in CCW direction
- **b)** $B = \frac{\mu_0 i}{2\pi r} \frac{(r^2 a^2)}{(b^2 a^2)}$, out of the page
- c) $B = \frac{\mu_0 i}{4\pi r} \frac{(r^2 a^2)}{(b^2 a^2)}$, tangent to circles in the CCW direction
- **d)** $B = \frac{\mu_0 i}{4\pi r} \frac{(r^2 a^2)}{(b^2 a^2)}$, out of the page

(25 pts) 4.) A rod lies across frictionless rails in a uniform magnetic field B, as shown. The rod moves to the left with constant speed v and at t=0 its position is $x(t=0)=x_0$.

4.a.) In order for the emf around the circuit to be zero, the magnitude of the magnetic field should

a) not change

- d) increase quadratically with time
- b) increase linearly with time
- e) decrease quadratically with time
- c) decrease inversely with time

4.b.) A rod with resistance R lies across frictionless conducting rails in a constant uniform magnetic field B, as drawn above. Assume the rails have negligible resistance. The force that must be applied by a person to pull the rod to the left at constant speed v is

a) 0

 $\mathbf{d)} \; \frac{B^2 L^2 v}{R}$

b) *BLv*

 $e) \frac{B^2 L x v}{R}$

c) $\frac{BLv}{R}$

Physics 271 Electricity and Magnetism Examination 2: Equation Sheet

$$i=rac{dq}{dt} \hspace{0.5cm} ; \hspace{0.5cm} ec{j}=Nqec{v_d} \hspace{0.5cm} ; \hspace{0.5cm} i=\int_{S}ec{j}\cdot dec{A} \hspace{0.5cm} (1)$$

$$\int_{V} \frac{\partial \rho}{\partial t} dV + \oint_{S} \vec{j} \cdot d\vec{A} = 0$$
 (2)

$$ec{j}=\sigmaec{E}$$
 ; $V=iR$; $R=rac{
ho L}{A}$ (3)

$$P = iV ; P = i^2 R = \frac{V^2}{R} (4)$$

Kirchhoff's First Rule: At any junction, the sum of the currents leaving the junction equals the sum of the currents entering the junction.

Kirchhoff's Second Rule: The algebraic sum of the changes in potential encountered in a complete traversal of any closed circuit is zero.

Parallel Resistors: $\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{\vec{R}_i}$ Series Resistors: $R_{eq} = \sum_{i=1}^{N} R_i$ $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \quad ; \qquad \oint_{\vec{G}} \vec{B} \cdot d\vec{A} = 0$ (5)

$$d\vec{F} = id\vec{s} \times \vec{B}$$
 ; $\vec{F} = i\vec{L} \times \vec{B}$ (6)

$$\vec{\mu} = NiA\hat{n}$$
 ; $\vec{\tau} = \vec{\mu} \times \vec{B}$; $U = -\vec{\mu} \cdot \vec{B}$ (7)

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{id\vec{s} \times \vec{r}}{r^3} \qquad ; \qquad \qquad \vec{B} = \frac{\mu_0}{4\pi} \int_C \frac{id\vec{s} \times \vec{r}}{r^3} \tag{8}$$

$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 i_{\text{enclosed}} \qquad ; \qquad \qquad \mathcal{E} = -\frac{d\Phi_B}{dt} \tag{9}$$

$$\Phi_B = \int_S \vec{B} \cdot d\vec{A} \qquad ; \qquad \qquad \mathcal{E} = \oint_C \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{A}$$
 (10)