PHYSICS 271 **ELECTRICITY AND MAGNETISM FIRST EXAMINATION**

15 October 1999

INSTRUCTIONS: Answer all questions on the answer sheet provided, it will be the only paper that is collected. This is a closed book exam.

- 1. a) A thin glass rod is bent into a semicircle of radius R. A charge +q is uniformly distributed along the upper half and a charge -q is uniformly distributed along the lower half, as shown below. What is the direction of the electric field at P, the center of the semicircle?
- a) E points up

- c) E points to the right
- e) E is zero

b) E points down

d) E points to the left

- 1. b) The magnitude of the electric field at P in problem 1a is:
- a) $\frac{q}{4\pi \varepsilon_0 R^2}$ c) $\frac{q}{2\pi \varepsilon_0 R^2}$ b) $\frac{q}{\pi^2 \varepsilon_0 R^2}$ d) $\frac{q}{2\pi^2 \varepsilon_0 R^2}$

2. a) Suppose a spherically shaped planet with radius R has an excess positive charge O uniformly distributed over its surface. The electric field at radial distances r > R from the center of the planet is:

a)
$$\vec{E} = \frac{Q}{4\pi \varepsilon_0 R^2} \hat{r}$$
 c) $\vec{E} = \frac{Q}{4\pi \varepsilon_0 r^2} \hat{r}$

c)
$$\vec{E} = \frac{Q}{4\pi \varepsilon_0 r^2} \hat{r}$$

e)
$$\vec{E} = 0$$

b)
$$\vec{E} = \frac{-Q}{4\pi \varepsilon_0 R^2} \hat{r}$$
 d) $\vec{E} = \frac{-Q}{4\pi \varepsilon_0 r^2} \hat{r}$

$$d) \vec{E} = \frac{-Q}{4\pi \varepsilon_0 r^2} \hat{r}$$

2. b) What is the electric field inside the planet?

a)
$$\vec{E} = \frac{Q}{4\pi \varepsilon_0 R^2} \hat{r}$$
 c) $\vec{E} = \frac{Q}{4\pi \varepsilon_0 r^2} \hat{r}$

c)
$$\vec{E} = \frac{Q}{4\pi \, \varepsilon_0 \, r^2} \hat{r}$$

e)
$$\vec{E} = 0$$

$$\mathbf{b})\vec{E} = \frac{-Q}{4\pi \,\varepsilon_0 \,R^2} \hat{r}$$

$$d) \vec{E} = \frac{-Q}{4\pi \varepsilon_0 r^2} \hat{r}$$

2. c) In addition, the planet is surrounded by a positively charged dust cloud containing total charge q and extending from the surface of the planet out to a radius R_D . The cloud has a spherically symmetric charge distribution with volume charge density given by

 $\rho(r) = \frac{q}{4\pi (R_D - R)r^2}$ for $R \le r \le R_D$, and zero otherwise. What is the electric field at radial distances $r > R_D$?

a)
$$\vec{E} = \frac{Q+q}{4\pi \varepsilon_0 R_D^2} \hat{r}$$
 c) $\vec{E} = \frac{Q+q}{4\pi \varepsilon_0 r^2} \hat{r}$

c)
$$\vec{E} = \frac{Q+q}{4\pi \varepsilon_0 r^2} \hat{r}$$

e)
$$\vec{E} = 0$$

b)
$$\vec{E} = \frac{-Q - q}{4\pi \varepsilon_0 R_D^2} \hat{r}$$
 d) $\vec{E} = \frac{q}{4\pi \varepsilon_0 r^2} \hat{r}$

$$d) \vec{E} = \frac{q}{4\pi \varepsilon_0 r^2} \hat{r}$$

2. d) What is the electric field at radial distances $R \le r \le R_D$?

a)
$$\vec{E} = \frac{Q+q}{4\pi \varepsilon_0 r^2} \hat{r}$$

c)
$$\vec{E} = \frac{Q+q}{4\pi \, \varepsilon_0 \, r^2} \hat{r} - \frac{q}{4\pi \, \varepsilon_0 \, r^2} \frac{(R_D - r)}{(R_D - R)} \hat{r}$$

b)
$$\vec{E} = \frac{Q+q}{4\pi \varepsilon_0 R^2} \hat{r}$$

d)
$$\vec{E} = \frac{q}{4\pi \varepsilon_0 r^2} \frac{(r-R)}{(R_D-R)} \hat{r}$$
 e) $\vec{E} = 0$

e)
$$\vec{E} = 0$$

3. a) Two conducting spheres are far apart. The smaller sphere carries a total charge of q. The larger sphere has a radius that is twice that of the smaller and is neutral. After the two spheres are connected by a conducting wire, the charges on the smaller and larger spheres, respectively, are:

- a) $\frac{2}{3}q$ and $\frac{1}{3}q$ c) -q and +2q e) $\frac{1}{2}q$ and $\frac{1}{2}q$.
- b) $\frac{1}{3}q$ and $\frac{2}{3}q$ d) q and 0
- 3. b) A hollow metal sphere is charged to a potential V. The potential at its center is:
- a) V
- c) -V
- e) πV

- b) 0
- d) 2V
- 4. A potential difference V_0 is applied to a parallel plate capacitor with plate area A and plate separation d. The battery is disconnected and then a dielectric slab of thickness band dielectric constant κ_e is centrally inserted between the plates as shown below.

4. a) What is the magnitude of the electric field E_0 in the gaps between the plates and the dielectric slab?

a)
$$E_0 = \frac{q}{\varepsilon_0 A}$$

a)
$$E_0 = \frac{q}{\varepsilon_0 A}$$
 c) $E_0 = \frac{q}{\varepsilon_0 \kappa_s A}$

$$b)E_0 = \frac{V_0}{d}$$

b)
$$E_0 = \frac{V_0}{d}$$
 d) $E_0 = \frac{V_0}{\kappa_e d}$

4. b) What is the magnitude of the electric field E in the dielectric slab?

a)
$$E = E_0$$

c)
$$E = \frac{V_0}{d}$$

$$b)E = \kappa_{\bullet} E_{0}$$

$$d) E = \frac{1}{\kappa} E_0$$

4. c) What is the potential difference V between the plates after the slab has been inserted?

a)
$$V = V_0$$

$$c)V = V_0 \left[1 - \frac{b}{d} \left(\frac{\kappa_{\bullet} - 1}{\kappa_{\bullet}} \right) \right]$$

$$b)V = \frac{V_0}{\kappa}$$

$$b)V = \frac{V_0}{\kappa} \qquad \qquad d) V = E_0(d-b)$$

4. d) What is the capacitance with the slab in place?

a)
$$C = \frac{\varepsilon_0 A}{\left[d - b + \frac{b}{\kappa_e}\right]}$$
 c) $C = \frac{q}{V}$

c)
$$C = \frac{q}{V}$$

b)
$$C = \kappa_e \frac{\varepsilon_0 A}{d}$$

d)
$$C = \frac{\varepsilon_0 \kappa_e A}{\left[\kappa_e (d-b) + b\right]}$$

4. e) Find the ratio of the stored energy before to that after the slab is inserted.

a)
$$\frac{U_0}{U} = 1$$
, energy is conserved c) $\frac{U_0}{U} = \frac{d}{\kappa (d-h) + h}$

$$c)\frac{U_0}{U} = \frac{d}{\kappa_{\bullet}(d-b) + b}$$

$$b)\frac{U_0}{U} = \kappa_e$$

d)
$$\frac{U_0}{U} = \frac{\kappa_e d}{\kappa_e (d-b) + b}$$

4. f) How much work is done on the slab as it is inserted?

a)
$$W = 0$$
, energy is conserved

c)
$$W = \frac{1}{2}CV_0^2 - \frac{1}{2}C_0V_0^2$$

b)
$$W = \frac{1}{2}CV_0^2$$

d)
$$W = \frac{1}{2}C_0V_0^2 - \frac{1}{2}CV^2$$

Physics 271 Electricity and Magnetism Examination 1: Equation Sheet

$$\vec{F_q} = q\vec{E} \tag{1}$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \left\{ \sum_{i=1}^{N} \frac{\vec{r} - \vec{r_i}}{|\vec{r} - \vec{r_i}|^3} q_i + \int_{V} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^3} \rho(\vec{r'}) dV' + \int_{S} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^3} \sigma(\vec{r'}) dA' + \int_{C} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^3} \lambda(\vec{r'}) ds' \right\}$$
(2)

$$\vec{p} = qd\hat{k}$$
 ; $\vec{\tau} = \vec{p} \times \vec{E}$; $U = -\vec{p} \cdot \vec{E}$ (3)

$$\epsilon_0 \oint_S \vec{E} \cdot d\vec{A} = Q_{\text{enclosed}}$$
 (4)

$$W_{ab} = \int_a^b \vec{F} \cdot d\vec{s}$$
 ; $\Delta U = U_b - U_a = -q \int_a^b \vec{E} \cdot d\vec{s}$ (5)

$$U = \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r_1} - \vec{r_2}|} \tag{6}$$

$$U = \frac{1}{2} \sum_{i=1}^{N} q_i V(\vec{r_i}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1 \neq i}^{N} \frac{q_i q_j}{4\pi \epsilon_0 |\vec{r_i} - \vec{r_j}|}$$
(7)

$$\Delta V = V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{s} \qquad ; \qquad \Delta U = q \Delta V \tag{8}$$

$$\vec{E} = -\vec{\nabla}V$$
 ; $V(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{1}{r}$; $V = \frac{\vec{p} \cdot \vec{r}}{4\pi\epsilon_0 r^3}$ (9)

$$q = CV$$
 ; $U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{q^2}{C}$; $u = \frac{1}{2}\epsilon_0|\vec{E}|^2$ (10)

$$\kappa_e \equiv \frac{C}{C_0} \quad ; \quad \kappa_e = \epsilon/\epsilon_0 = 1 + \chi_E$$
(11)

$$\sigma_P \Delta A = \vec{P} \cdot \Delta \vec{A} \tag{12}$$

$$\vec{P} = \chi_E \epsilon_0 \vec{E} = (\kappa_e - 1)\epsilon_0 \vec{E}$$
 ; $\vec{D} \equiv \epsilon_0 \vec{E} + \vec{P} = \kappa_e \epsilon_0 \vec{E}$ (13)

$$\oint_{S} \vec{D} \cdot d\vec{A} = q = \epsilon_{0} \oint_{S} \kappa_{e} \vec{E} \cdot d\vec{A}$$
 (14)

$$u = \frac{1}{2}\vec{D} \cdot \vec{E} \qquad ; \qquad U = \frac{1}{2} \int_{V} \vec{D} \cdot \vec{E} dV \tag{15}$$