ISOPERIMETRIC PROBLEMS
AND
LAGRANGE MULTIPLIERS
This is a class of problems where it is given to extremize one quantity subject to the constraint that another quantity remain fixed. For example: A farmer with a fixed amount of fence material wants to enclose the maximum possible area for his horse to graze.

Formulation: We are given to extremize the integral I

\[I = \int_{x_1}^{x_2} dx \ f(x, y, y') \quad y(x_1) = y_1, \quad y(x_2) = y_2 \quad (1) \]

Subject to the constraint that some other integral J remains fixed:

\[J = \int_{x_1}^{x_2} dx \ g(x, y, y') = \text{constant} \quad (2) \]

The solution to this problem requires Lagrange Multipliers which we review now.

Review of Lagrange Multipliers: [ARFKEN]

Consider the function \(f(x, y, z) \) and evaluate

\[df = \left(\frac{\partial f}{\partial x} \right) dx + \left(\frac{\partial f}{\partial y} \right) dy + \left(\frac{\partial f}{\partial z} \right) dz \quad (3) \]

To find an extremum of \(f \) we set \(df = 0 \). Since the variations \(dx, dy, \) and \(dz \) are arbitrary, the only way that \(df = 0 \) can hold is if

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0 \quad (4) \]

Suppose now that we find that there is a constraint in the problem which can be expressed by some equation of the form

\[g(x, y, z) = 0 \quad (5) \]
Because of this constraint, the variations dx, dy, dz are no longer independent, which was the assumption needed to derive the condition in (4). Specifically

$$q(x, y, z) = 0 \Rightarrow 0 = (\frac{\partial q}{\partial x})dx + (\frac{\partial q}{\partial y})dy + (\frac{\partial q}{\partial z})dz \quad (6)$$

Since $\frac{\partial q}{\partial x}, \frac{\partial q}{\partial y},$ and $\frac{\partial q}{\partial z}$ are known, one can solve (6) explicitly for dz, for example, in terms of dx and dy:

$$dz = -\left(\frac{\partial q}{\partial dz}\right)^{-1} \left[(\frac{\partial q}{\partial x})dx + (\frac{\partial q}{\partial y})dy \right] \quad (7)$$

Because of this equation, dz is dependent on dx and dy and the previous arguments to find the extremum are not valid.

One can of course eliminate dz simply by using (7) to replace dz everywhere. This can be done but is tedious.

There is another way to eliminate dz using Lagrange multipliers: Using (3) & (6) form the function $f(x, y, z) + \lambda \cdot q(x, y, z)$. Then the extremum

$$df = 0 \quad (8)$$

can be rewritten as $df + \lambda dq = 0$, since $q(x, y, z) = 0 \Rightarrow dq = 0$.

This gives the following equation:

$$df(x, y, z) + \lambda dq(x, y, z) = 0 = \left(\frac{2f}{2x} + \lambda \frac{2g}{2x} \right)dx + \left(\frac{2f}{2y} + \lambda \frac{2g}{2y} \right)dy + \left(\frac{2f}{2z} + \lambda \frac{2g}{2z} \right)dz$$

(9)

Since dz (for example) is not linearly independent it should not appear in (9), and one way of ensuring this is to choose λ to make the coefficient of dz vanish:

$$\frac{2f}{2z} + \lambda \frac{2g}{2z} = 0 \quad (10)$$
Having eliminated \(dz \), the expressions which give the extremum are now:

\[
\frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x} = 0; \quad \frac{\partial f}{\partial y} + \lambda \frac{\partial g}{\partial y} = 0
\]

(11)

When these equations are solved, \(df = 0 \) and \(f(x, y, z) \) is an extremum subject to the constraint \(g(x, y, z) = 0 \).

Summary:

- We want to find the extremum of \(f(x, y, z) \) subject to the constraint \(g(x, y, z) = 0 \). Finding the extremum means finding \(x_0, y_0, z_0 \).

- Once we introduce the Lagrange multiplier \(\lambda \), we then have \(4 \) unknowns to solve for: \(x_0, y_0, z_0, \lambda \).

- These 4 quantities are then determined by the following 4 equations:

\[
\begin{align*}
\frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x} &= 0 \quad \text{Eqs. (11) above} \quad (12a) \\
\frac{\partial f}{\partial y} + \lambda \frac{\partial g}{\partial y} &= 0 \quad (12b) \\
\frac{\partial f}{\partial z} + \lambda \frac{\partial g}{\partial z} &= 0 \quad \text{Eqs. (10)} \quad (12c) \\
g(x, y, z) &= 0 \quad \text{Eqs. (5)} \quad (12d)
\end{align*}
\]
Example: Application of Lagrange Multipliers in QM

Carlson: The ground state energy of a particle in rectangular QM box whose sides are \(a, b, c \) is given by

\[
E = E(a, b, c) = \frac{\hbar^2}{8m} \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right)
\]
(12)

We wish to find the shape of the box (i.e., \(a, b, c \)) such that \(E \) is a minimum for a fixed volume.

\[
V = V(a, b, c) = abc = \text{constant} = k
\]
(14)

Solution: In our previous notation let \(f(a, b, c) = E(a, b, c) \) and

\[
g(a, b, c) = V(a, b, c) - k = 0 = abc - k
\]
(15)

We then solve:

\[
\frac{\partial E}{\partial a} + \lambda \frac{\partial V}{\partial a} = 0; \quad \frac{\partial E}{\partial b} + \lambda \frac{\partial V}{\partial b} = 0; \quad \frac{\partial E}{\partial c} + \lambda \frac{\partial V}{\partial c} = 0
\]
(16)

This may be viewed as eliminating \(da \)

\[
\frac{\partial E}{\partial a} + \lambda \frac{\partial V}{\partial a} = -\frac{\hbar^2}{4ma^3} + \lambda abc = 0
\]
(17a)

Similarly:

\[
\frac{\partial E}{\partial b} + \lambda \frac{\partial V}{\partial b} = 0 = -\frac{\hbar^2}{4mb^3} + \lambda abc = 0
\]
(17b)

\[
\frac{\partial E}{\partial c} + \lambda \frac{\partial V}{\partial c} = 0 = -\frac{\hbar^2}{4mc^3} + \lambda abc = 0
\]
(17c)

Multiply these equations in turn by \(a, b, c \) then gives:

\[
\lambda abc = \frac{\hbar^2}{4ma^2}; \quad \lambda abc = \frac{\hbar^2}{4mb^2}; \quad \lambda abc = \frac{\hbar^2}{4mc^2}
\]
(18)

The solution to these equations is obviously \(a = b = c \)

\Rightarrow \text{Rectangular box} \rightarrow \text{Cube}
Note that we have solved the problem without having to actually determine α. However, if we wish to solve for α to give it a physical interpretation we can write:

\[\lambda_{abc} = \frac{\hbar^2}{4ma^2} \quad a=b=c \rightarrow \lambda a^3 = \frac{\hbar^2}{4ma^2} \rightarrow \lambda = \frac{\hbar^2}{4ma^2} \quad (20) \]

To interpret λ we note from (13) & (16) that

\[E = \frac{\hbar^2}{8m} \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) \rightarrow \frac{3}{8} \frac{\hbar^2}{ma^2} \]

Hence the energy density is given by

\[\frac{E}{V} = \frac{(3/8) \frac{\hbar^2}{ma^2}}{q^3} = \frac{3}{8} \frac{\hbar^2}{ma^2} \]

If we convert this to physical energy units, $E = 4\pi^2 E^*$ etc. then

\[\lambda = \frac{3\pi^2}{2} \frac{E}{V} \quad \text{so} \quad \lambda \text{ is a measure of the energy density} \]
Example 2: text p. 57

Extremize \(f(x, y) = x^2 + 2xy \). Subject to the constraint \(x + y^2 = 4 \).

Solution: In this case the constraint is \(x + y^2 + 4 = 0 \equiv g(x, y) \).

From the preceding example and discussion, we want to extremize (i.e., minimize or maximize) the function \(J = f(x, y) - \lambda g(x, y) \).

[Note: We have previously used \(f + \lambda g \), whereas the text used \(f - \lambda g \). Either choice is purely conventional, since \(\lambda \) can itself be positive or negative.] Hence

\[
J(x, y) = f(x, y) - \lambda g(x, y) = x^2 + 2xy - \lambda(x + y^2 - 4) \tag{1}
\]

Once \(\lambda \) is included, we can now view the variations \(\partial J/\partial x \) and \(\partial J/\partial y \) are independent, so that

\[
\frac{\partial J}{\partial x} = 2x + 2y - 2\lambda x = 0 \quad \frac{\partial J}{\partial y} = 2x - 2\lambda y = 0 \tag{2}
\]

These two equations along with the original constraint equation

\(g = (x^2 + y^2 - 4) = 0 \) solve the problem as follows: From (2)

\[
2x - 2\lambda y = 0 \implies x = \lambda y \quad \text{(3)}
\]

Combining this with the first equation in (2) gives:

\[
0 = 2x + 2y - 2\lambda x = 2\lambda y + 2y - 2\lambda (\lambda y) = 0 \implies \lambda + 1 - \lambda^2 = 0 \implies \lambda (\lambda + 1 - \lambda^2) = 0 \tag{4}
\]

The solution of \(\lambda^2 - \lambda - 1 = 0 \) is \(\lambda = \frac{1 \pm \sqrt{5}}{2} \).
Once we find $\lambda \pm$ we can solve for the value(s) (x_0, y_0) where the extrema are.

Using $x = 2y.$ (λ is either $\lambda_+ \text{ or } \lambda_-,$) and $x^2 + y^2 = 4,$ we get:

$$x^2 = 2^2 y^2 \Rightarrow x^2 + y^2 = 2^2 y^2 + y^2 = 4 \Rightarrow y^2 = \frac{4}{1 + \lambda^2} \Rightarrow y = \pm \frac{2}{\sqrt{1 + \lambda^2}}$$

Lastly, $x = 2y \Rightarrow x = \frac{2\lambda}{\sqrt{1 + \lambda^2}}$ \hspace{1cm} (7)

SIDE COMMENT:

By design or not the solution plays an important role in art;

It is defined by:

![Golden Ratio Diagram](image.png)

The **Golden Ratio** is defined by the equation

$$r = \frac{a}{b} = \frac{a+b}{a} \Rightarrow \frac{a}{b} = 1 + \frac{b}{a} \Rightarrow r = 1 + \frac{1}{r} \Rightarrow r^2 - r - 1 = 0$$

(10)

Eq. (10) is the same as Eq. (5) above for $\lambda.$ The solution λ_+ gives the **Golden Ratio**: Numerically,

$$r = \frac{1 + \sqrt{5}}{2} = 1.618033989...$$

(11)