TAYLOR SERIES
Suppose that we know the value of a function $f(x)$ at some point x, but we would like to be able to compute the value at a nearby point $(x+a)$. This can be done via a Taylor series which can be written in a number of equivalent ways.

A formula (useful in Quantum Mechanics — see below!!) is

$$f(x+a) = e^{a \frac{d}{dx}} f(x) = \left[1 + a \frac{d}{dx} + \frac{a^2}{2!} \frac{d^2}{dx^2} + \ldots \right] f(x)$$ \hspace{1cm} (1)

Equivalently by interchanging $x \leftrightarrow a$,

$$f(a+x) = e^{x \frac{d}{da}} f(a) = \left[1 + \frac{x}{1!} \frac{d}{da} + \frac{x^2}{2!} \frac{d^2}{da^2} + \ldots \right] f(a)$$ \hspace{1cm} (2)

If we now shift x by replacing $x \rightarrow x-a$ then (2) \Rightarrow

$$f(a+x-a) = f(x) = \left[1 + (x-a) \frac{d}{da} + \frac{(x-a)^2}{2!} \frac{d^2}{da^2} + \ldots \right] f(a)$$ \hspace{1cm} (3)

$$\therefore \ f(x) = f(a) + \frac{(x-a)}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \ldots$$ \hspace{1cm} (4)

Both of these forms are useful in different contexts.

Connection to Quantum Mechanics: ($\hbar = $ Planck's constant)

In (1) write $a \frac{d}{dx} = \frac{i \hbar}{\hbar} a \frac{d}{da} = \frac{iaP}{\hbar}$

$$p = \frac{\hbar}{i} \frac{d}{dx}$$ \hspace{1cm} (5)

Hence (1) $\&$ (5) \Rightarrow

$$e^{iap/\hbar} f(x) = f(x+a)$$ \hspace{1cm} (6)

The momentum operator induces spatial translations.
The fact that the momentum operator "moved" (translates) the function \(f(x) \to f(x+a) \) is intimately associated with the **Heisenberg Uncertainty Principle**.

\[
\Delta p \Delta x \geq \hbar
\]

(7)

The close connection between momentum conservation and spatial translations is part of **Noether's Theorem**.

Applications of Taylor Series:

\[f(x) = \frac{1}{1-x} = \frac{1}{2} \]

(8)

\[
f(x) = f(a) + \frac{(x-a)}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \ldots
\]

(9)

\[
f'(a) = \frac{df}{du} \left| \frac{du}{dx} \right| = \frac{-\frac{1}{u^2}}{x=0} = \frac{1}{(1-x)^2} \bigg|_{x=0} = +1
\]

(10)

\[
f''(a) = \frac{d^2f}{du^2} \left| \frac{du}{dx} \right| = \frac{-2}{(1-x)^3} \bigg|_{x=0} = +2
\]

(11)

\[
f(x) = \frac{1}{1-x} = f(0) + \frac{(x-0)}{1!} \cdot 1 + \frac{(x-0)^2}{2!} \cdot 2 + \ldots + x + x^2 + \ldots
\]

(12)

We will show later that for \(|x| < 1\) this series converges.

Hence for \(|x| < 1\) we can write:

\[
\frac{1}{1-x} = 1 + x + x^2 + \ldots = \sum_{n=0}^{\infty} x^n \quad |x| < 1
\]

(13)

Also

\[
\frac{1}{1+x} = 1 - x + x^2 - x^3 + \ldots = \sum_{n=0}^{\infty} (-1)^n x^n \quad |x| < 1
\]
\[f(x) = \ln x \]

\[f(x) = f(a) + \frac{(x-a)}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \ldots \]

(14)

Again the Taylor series starts by knowing a value \(a \) at which we know the function. Here we can choose \(x=1 \Rightarrow \ln 1 = 0 \).

Also from our previous results, for any value \(a \)

\[D^n \ln a = \frac{(-1)^{n+1}}{a^n} (n-1)! \quad a=1 \Rightarrow (-1)^{n+1} (n-1)! \rightarrow 0! = 1 \]

(15)

Hence the first few terms in the series expansion of \(\ln x \) are

\[\ln x = \ln 1 + (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \ldots \]

(16)

This series converges for \(|x-1| < 1 \Rightarrow 0 < x < 2 \). Another useful form for the expansion of \(\ln x \) follows from the replacement

\[y = x-1 \Rightarrow x = 1 + y. \]

Then (16) \(\Rightarrow \)

\[\ln (1+y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + \ldots \]

(17)

This formula is used in our derivation of the Rule of 72: \(\ln(1+y) \approx \frac{y}{2} \)

Typical applications are for small \(x \) near 1 so we expand about \(f(a)=1 \), which corresponds to \(x=a=1 \).

Then

\[f(x) = f(a) + \frac{(x-a)}{1!} f'(x=a) + \frac{(x-a)^2}{2!} f''(x=a) + \ldots \]

(18)

Note that (as a notation check) \(f(x=a) = f(a) + 0 + 0 + 0 \ldots \)

which is as expected.
\[
\frac{df}{du} = \frac{df}{dx} \quad \text{and} \quad u = 1 + x \quad \Rightarrow \quad \frac{du}{dx} = 1 \quad (19)
\]

\[
f'(x) = nu^{n-1} \cdot 1 = n(1+x)^{n-1} \quad \Rightarrow \quad f'(x=a=0) = n \quad (20)
\]

\[
f''(x) = n(n-1)u^{n-2} \cdot 4 \quad \Rightarrow \quad f''(x=a=0) = n(n-4) \ldots \quad (21)
\]

Hence \((1+x)^n = 1 + \frac{nx-0}{1!} + \frac{(x-0)^2}{2!} n(n-1) + \ldots \quad (22)
\]

To leading order, \((1+x)^n \approx 1 + nx \quad (23)\]

More generally, \((1\pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{1!} + \frac{n(n-1)(n-2)x^3}{2!} + \ldots \quad (24)\]

This series converges for \(x^2 < 1\).

CHECK:
For \(n = -1\), \((1\pm x)^{-1} = \frac{1}{1\pm x} = 1 \mp x + x^2 \mp x^3 \quad (25)\]

This agrees with the previous results in (13).

The preceding results also hold if \(n\) is replaced by a rational power \(p\), such as \(p = \frac{1}{2}\). This is useful, for example in the theory of relativity where we often encounter the expressions \(\sqrt{1-v^2/c^2}\) and \(\frac{1}{\sqrt{1-v^2/c^2}}\). Let \(x = v^2/c^2\), then

\[
\sqrt{1-v^2/c^2} \Rightarrow (1\mp x)^{1/2} = 1 \mp \frac{1}{2} x - \frac{1}{8} x^2 + \frac{1}{16} x^3 \ldots \quad (26)
\]

\[
\therefore (1\mp x)^{1/2} = 1 \mp \frac{1}{2} x - \frac{1}{8} x^2 + \frac{1}{16} x^3 \ldots \quad (27)
\]

Also:

\[
(1\mp x)^{-1/2} = \frac{1}{\sqrt{1\mp x}} = 1 \mp \frac{1}{2} x + \frac{3}{8} x^2 \pm \frac{5}{16} x^3 \ldots \quad (28)
\]

Hence \(\frac{\sqrt{\text{Mc}^2}}{\sqrt{1-v^2/c^2}} \approx \text{Mc}^2 (1 \pm \frac{v^2}{c^2}) \leq \text{Mc}^2 + \frac{1}{2} \text{mv}^2 \quad (29)\)
Comparison of the Two Forms of the Taylor Series

Increment Form

\[f(x) = \text{known then} \]

\[f(x + a) = e^{\frac{a}{dx}} f(x) = \left(1 + \frac{a}{1!} \frac{df}{dx} + \frac{a^2}{2!} \frac{d^2 f}{dx^2} + \ldots\right) f(x) \] \hspace{1cm} (1)

\[f(x + a) = f(x) + \frac{a}{1!} f'(x) + \frac{a^2}{2!} f''(x) + \ldots \] \hspace{1cm} (2)

In this form we assume that we know the function \(f(x) \) at some point \(x \), and this allows us to evaluate the l.h.s. exactly. Then if we know \(f(x) \) we can compute \(f(x + a) \).

\[\text{any} \ x \rightarrow \text{a specific value} \ (x = a) \]

Taylor Series Form

\[f(x) = f(a) + \frac{(x-a)}{1!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \ldots \] \hspace{1cm} (3)

In this form we again assume that we know the function \(f(x) \), which now appears on the l.h.s. of (3). Here the main objective is to construct a series expansion of \(f(x) \) in terms of the (presumably small) quantities \((x-a), \ (x-a)^2, \ldots \)

A very useful compendium of formulas for series is:

I. S. Gradshteyn & I. M. Ryzhik

"**Table of Integrals, Series and Products**"

(Academic Press, 1980)