LC Circuits

- Consider the LC and RC series circuits shown:
- Suppose that at \(t=0 \) the capacitor is charged to a value of \(Q \).

Is there a qualitative difference in the time development of the currents produced in these two cases. Why??

LC Oscillations

Kirchhoff’s loop rule

\[
V_L + V_C = L \frac{dI}{dt} + \frac{Q}{C} = 0
\]

LC Oscillations: Energy Check

- Oscillation frequency \(\omega_o = \frac{1}{\sqrt{LC}} \) has been found from the loop equation.
- The other unknowns \((Q_0, \phi) \) are found from the initial conditions. Eg in our original example we took as given, initial values for the charge \((Q_0) \) and current \((0) \). For these values: \(Q_0 = Q_0, \phi = 0 \).
- Question: Does this solution conserve energy?
Energy Check

Energy in Capacitor

\[U_E(t) = \frac{1}{2} Q_C^2 \cos^2(\omega_0 t + \phi) \]

Energy in Inductor

\[U_B(t) = \frac{1}{2} L \omega_0^2 Q_L^2 \sin^2(\omega_0 t + \phi) \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

\[U_B(t) = \frac{1}{2} Q_L^2 \sin^2(\omega_0 t + \phi) \]

Therefore,

\[U_E(t) + U_B(t) = \frac{Q_C^2}{2C} \]

LC Oscillations with Finite R

- If \(L \) has finite \(R \), then energy will be dissipated in \(R \) and the oscillations will become damped.

\[Q \]

\[t \]

\[R = 0 \]

\[Q \]

\[t \]

\[R \neq 0 \]

Driven Oscillations

- An LC circuit is a natural oscillator.

\[\omega_{\text{resonance}} = \frac{1}{\sqrt{LC}} \text{ in absence of resistive loss} \]

- In a real LC circuit, we must account for the resistance of the inductor. This resistance will damp out the oscillations.

\[R \]

\[L \]

\[Q \]

\[t \]
AC Circuits: Series LCR

- Statement of problem:
 Given $\varepsilon = \varepsilon_m \sin \omega t$, find $I(t)$.
 Everything else will follow.

Phasors: LCR

\[\varepsilon = \varepsilon_m \sin \omega t \]
\[I = I_m (\omega t - \phi) \]
\[Q = -\frac{I_m}{\omega} \cos (\omega t - \phi) \]
\[V_R = R I = R I_m \sin (\omega t - \phi) \]
\[V_C = \frac{Q}{C} = -\frac{1}{\omega C} I_m \cos (\omega t - \phi) \]
\[V_L = L \frac{dI}{dt} = \omega L I_m \cos (\omega t - \phi) \]

- From these equations, we can draw the phasor diagram at the right.

Resonance

- For fixed R, C, L the current I_m will be a maximum at the resonant frequency ω_0, which makes the impedance Z purely resistive.

\[I_m = \frac{\varepsilon_m}{Z} = \frac{\varepsilon_m}{\sqrt{R^2 + (X_L - X_C)^2}} \]

reaches a maximum when:

\[X_L = X_C \]

the frequency at which this condition is obtained is given from:

\[\omega_0 L = \frac{1}{\omega_0 C} \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

- Note that the resonant frequency is identical to the natural frequency of the LC circuit by itself.

- At this frequency, the current and the driving voltage are in phase!

\[\tan \phi = \frac{X_L - X_C}{R} = 0 \]
Power in LCR Circuit

- The power supplied by the emf in a series LCR circuit depends on the frequency ω. The maximum power is supplied at the resonant frequency ω_0.
 - The instantaneous power (for some frequency, ω) delivered at time t is given by:
 $$ P(t) = \epsilon(t) I(t) = (\epsilon_m \sin \omega t)(I_m \sin(\omega t - \phi)) = I^2(t)R $$
 - The most useful quantity to consider here is not the instantaneous power but rather the average power delivered in a cycle.

$$ \langle P(t) \rangle = \epsilon_m I_m \sin \omega t \sin(\omega t - \phi) $$

$$ \langle P(t) \rangle = \frac{1}{2} V_m I_m \cos \phi $$

- This result is often rewritten in terms of rms values:
 $$ \epsilon_{rms} = \frac{1}{\sqrt{2}} \epsilon_m \quad I_{rms} = \frac{1}{\sqrt{2}} I_m \quad \langle P(t) \rangle = \epsilon_{rms} I_{rms} \cos \phi $$

- Power delivered depends on the phase, ϕ, the “power factor”

- Phase depends on the values of L, C, R, and ω and therefore...

$$ \tan \phi = \frac{X_L - X_C}{R} \quad \cos \phi = \frac{R}{Z} $$