Chapter 25

- Current
- Resistivity as a property of materials
- Temperature dependence of resistivity
- Emf
- Power

Electrostatics versus Electric Current

- Notice that flow of positive charge in one direction,
 - Becomes more negative
 - Becomes more positive
- It’s completely equivalent to negative charge in the opposite direction.
 - Becomes more negative
 - Becomes more positive

Note: Current arrow is drawn in direction in which positive charge carriers would move, even if the actual charges are negative & move in the opposite direction.
Drift Velocity

Microscopic View of an Electron in Motion

Drift Speed, Total Charge & Current

Relationship between Current and Drift Speed

Find v_d for 14-gauge copper wire carrying a current of 1 A. Assume there is 1 free electron/atom.

\[n = n_{\text{atoms}} = \frac{\rho N}{M} \]

\[v_d = \frac{I}{qnA} \]
Electric Current

one \(q \) in \(\rightarrow \) one \(q \) out

Resistance

Resistance is a property of the object, i.e., it depends on the shape and material.

Resistance & Ohm's Law

ohmic (a) \hspace{1cm} (b) Non-ohmic

Resistivity

Resistivity is a property of the material.
Resistivity & Temperature Coefficients

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ρ (Ωm)</th>
<th>Temp. coeff. α (K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>1.6×10^{-8}</td>
<td>3.8×10^{-3}</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7×10^{-8}</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>W</td>
<td>5.5×10^{-8}</td>
<td>4.5×10^{-3}</td>
</tr>
<tr>
<td>Si</td>
<td>640</td>
<td>-7.5×10^{-2}</td>
</tr>
<tr>
<td>Si, n-type</td>
<td>8.7×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Si, p-type</td>
<td>2.8×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>glass</td>
<td>10^{10} – 10^{14}</td>
<td></td>
</tr>
</tbody>
</table>

See TM Table 25-1 for more.

Temperature Dependence of Resistances

\[
\rho - \rho_o = \rho_o \alpha (T - T_o) \quad \Rightarrow \quad \rho = \rho_o (1 + \alpha (T - T_o))
\]

\[
R = \rho \frac{L}{A} \quad \Rightarrow \quad R = R_o (1 + \alpha (T - T_o))
\]

Heated Tungsten Light Bulb filament at 3000 K: \(\alpha = 4.5 \times 10^{-3} / K\)

Temperature Dependence

\(\rho\) for copper (Cu) as a function of temperature

Notice: Resistivity increases as temperature increases.

This curve does not deviate greatly from a straight line.

DEMO: Temperature Dependence

Lower Cu initially at room temperature (~300ºK) into liquid N$_2$.

liquid nitrogen \(~77ºK\)

vacuum bottle
DEMO: Temperature Dependence

Heat the Ge with a candle.

Temperature Stable Resistor

A temperature-stable resistor is to be made by connecting a resistor made of silicon in series with one made of nichrome. If the required total resistance is 1300 \(\Omega \) in a wide temperature range around 20ºC, what should be the resistances of the two resistors?

\[
R_{\text{total}} = R_N + R_{\text{Si}} = 1300 \Omega
\]

In general:

\[
R = R_N (1 + \alpha_N (T - T_o)) + R_{\text{Si}} (1 + \alpha_{\text{Si}} (T - T_o)) = 1300 \Omega
\]

\[
(R_{\text{Si}} R_N + R_{\text{Si}} \alpha_N (T - T_o)) + (R_{\text{Si}} \alpha_{\text{Si}} R_N) (T - T_o) = 0
\]

\[
(R_{\text{Si}} \alpha_N + R_{\text{Si}} \alpha_{\text{Si}}) (T - T_o) = 0
\]

\[
(1300 \Omega - R_{\text{Si}}) \alpha_N + R_{\text{Si}} \alpha_{\text{Si}} = 0
\]

Power in Electric Circuits

- Power associated with transfer: \(P=IV \)
- Power associated with dissipation of \(U \) into thermal energy in the resistor: \(P=I^2R = \frac{V^2}{R} \)

Units of Power:
- Volts Ampere=Joule/second=Watt

Take a 100 W light bulb powered by 110 Volts (RMS AC). What is the resistance of the (hot) filament? We know \(P \) and \(V \), don’t know \(I \) or \(R \), are asked for \(R \). So we choose the last form below, and solve for \(R \):

\[
R = \frac{V^2}{P} = \frac{110 \times 110}{100} = 121 \Omega
\]

Note that the cold filament will have ~13 times less resistance, and therefore there will be a big surge in current as the bulb is turned on. Often, used lightbulbs burn out at this instant.
Real Battery

In an ideal battery:
\[r = 0 \]
\[V_a - V_b = \varepsilon \]
\[I = \frac{\varepsilon}{R + r} \]

Over the battery:
\[V_a - V_b = \varepsilon - Ir \]

Note: \(\varepsilon \) arrows always points from negative to positive.

Examine potential as we start from point b and end at a:
\[\varepsilon - Ir - IR = 0 \]
\[I = \frac{\varepsilon}{R + r} \]

Effect of Internal Resistance

In an ideal battery:
\[r = 0 \]
\[V_a - V_b = \varepsilon \]
\[I = \frac{\varepsilon}{R} \]

In a real battery:

Impedance Matching

\[P \]

\[1 \ 2 \ 3 \ \frac{R}{r} \]