Chapter 24 Capacitance

- **Capacitor** is a device that stores electrostatic potential energy.
- A capacitor consists of 2 spatially separated conductors which can be charged to \(+Q \) and \(-Q \).
- The **capacitance** is defined as the ratio of the charge on one conductor of the capacitor to the potential difference between the conductors.

Comments on Circuit Diagrams:

1. Wires have no electrical resistance.
2. Components are ideal
3. PHYS241 only deals with:
 - (a) Resistors, \(R \)
 - (b) Capacitors, \(C \)
 - (c) Inductors, \(L \)
 - (d) Batteries, Generators, switches & wires

Equivalent Capacitors
Capacitors in Parallel

Capacitors connected in parallel can be replaced with an equivalent capacitor that has the same total charge, \(Q \) and the same applied potential \(V \).

\[\begin{array}{c}
\text{a} \\
V \\
\text{b}
\end{array}\]

\[\begin{array}{c}
\begin{array}{c}
Q_1 \\
C_j \\
C_2 \\
C_j
\end{array}
\end{array}\]

\[\begin{array}{c}
Q_2 \\
Q_3
\end{array}\]

Capacitors in Series

Capacitors are in series when a potential difference that is applied across their combination is the sum of the resulting potential differences across each capacitor.

\[\begin{array}{c}
\text{a} \\
+Q \\
+Q \\
+Q
\end{array}\]

\[\begin{array}{c}
\text{b} \\
-Q \\
-Q \\
-Q
\end{array}\]

Capacitors in Series

Capacitors that are connected in series can be replaced with an equivalent capacitor that has the same charge \(Q \) and the same total potential difference \(V \) as the actual series capacitors.

\[\begin{array}{c}
\text{a} \\
+Q \\
+Q \\
+Q
\end{array}\]

\[\begin{array}{c}
\text{b} \\
-Q \\
-Q \\
-Q
\end{array}\]

Dielectrics

- **Empirical observation:** Inserting a non-conducting material between the plates of a capacitor changes the VALUE of the capacitance.
- **Definition:** The dielectric constant of a material is the ratio of the capacitance when filled with the dielectric to that without it.
Dielectric Strength

*The maximum value of the electric field that a dielectric material can tolerate before breaking down.

* It limits the voltage that can be applied to a capacitor. The maximum voltage is called the breakdown potential.

Dielectric Properties

<table>
<thead>
<tr>
<th>material</th>
<th>k</th>
<th>dielectric strength (kV/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>air (1 atm)</td>
<td>1.00054</td>
<td>3</td>
</tr>
<tr>
<td>paraffin</td>
<td>2.1–2.5</td>
<td>10</td>
</tr>
<tr>
<td>glass (Pyrex)</td>
<td>5.6</td>
<td>14</td>
</tr>
<tr>
<td>mica</td>
<td>5.4</td>
<td>10–100</td>
</tr>
<tr>
<td>polystyrene</td>
<td>2.55</td>
<td>24</td>
</tr>
<tr>
<td>H₂O (20°C)</td>
<td>80</td>
<td>?</td>
</tr>
<tr>
<td>titania ceramic</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>strontium titanate</td>
<td>310</td>
<td>8</td>
</tr>
</tbody>
</table>

Demo: Dielectrics & Capacitance

Effect of Dielectrics on the Electric Field
Dielectric Combinations

Summary

• Capacitors in parallel and in series

• Electric response of dielectric materials
 – atomistic view polarized atoms
 – dielectric constant