Four long, straight parallel wires each carry a current I. Each wire is at the corner of a square, and the direction of each current is shown in the figure.

Determine the direction of the magnetic field at the center.

(A) $+\hat{i}$
(B) $-\hat{i}$
(C) $+\hat{j}$
(D) $-\hat{j}$
Review of Biot-Savart Law

\[\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \, d\vec{\ell} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} \int \frac{I \, d\vec{\ell} \times \hat{r}}{r^3} \]

\[|\vec{B}| = \frac{\mu_0 \, 2I}{4\pi \, R} \]

\[|\vec{B}| = \frac{\mu_0}{2} \frac{IR^2}{(R^2 + z^2)^{3/2}} \]

\[|\vec{B}| = \mu_0 n \, I \]

Outline for Today

• Force between Current Carrying Wires

• Gauss’ Law for Magnetism

• Ampere’s Law

• Magnetism in Matter
Forces on Parallel Wires

Forces on Current-Carrying Wires

• Two wires carrying currents I_1 and I_2 will exert forces on each other:
 - Magnetic field from I_1 is $\vec{B} = \frac{\mu_0}{4\pi} \int \frac{l_1 \cdot \vec{d} \times \vec{r}}{r^2}$
 - Force on I_2 is $d\vec{F}_{12} = I_2 \ d\vec{l}_2 \times \vec{B}$

• Conversely
 - Magnetic field from I_2 is $\vec{B} = \frac{\mu_0}{4\pi} \int \frac{l_2 \cdot \vec{d} \times \vec{r}}{r^2}$
 - Force on I_1 is $d\vec{F}_{21} = I_1 \ d\vec{l}_1 \times \vec{B}$
Force Between two Parallel Current Carrying Wires

*Parallel currents attract
*Anti-parallel currents repel

i-Clicker Question #1
Upon turning on the current I in this ‘tangle’ of wire, what reaction will we observe?

(A) The wire loop will expand.
(B) The wire loop will collapse.
(C) The wire loop will spin about a horizontal axis.
(D) There will be no effect at all.
Remember Gauss’s Law for Electric Fields?

- Electric field:
 \[\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{\hat{r}}{r^2} dQ \]

- Gauss’s Law:
 \[\oint_S \hat{n} \cdot \vec{E} \, dA = \frac{Q_{\text{inside}}}{\varepsilon_0} \]

- If \(\vec{E} \) is constant over the surface then we can bring it outside the integral
 - The integral is just the surface area
 - This works only when there is sufficient symmetry

Gauss’s Law Applied Magnetism

- In magnetism we can have dipoles or currents but no magnetic charges, or monopoles
- Gauss’s law:
 \[\oint_S \hat{n} \cdot \vec{B} \, dA = \frac{Q_{\text{inside}}}{\varepsilon_0} = 0 \]
 Always zero!

- One of Maxwell’s Equations:
 \[\nabla \cdot \vec{B} = 0 \]

Since all lines of \(\vec{B} \) are closed loops, any \(\vec{B} \) line leaving a closed surface MUST re-enter it somewhere. TRUE IN GENERAL, not just for this “dipole” example
Ampere’s Law

• But can we do something similar to calculate the magnetic field in cases with lots of symmetry?
 • Yes:
 \[\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_C \]
 \(I_C \) is the current passing through the contour \(C \).

Example

• What is the magnetic field around a long, straight wire?
 • From symmetry, we expect that the magnetic field is always azimuthal: \(\vec{B} = B\hat{\phi} \)
 • We choose a circular path centered on the wire.
 • The path length element is also azimuthal: \(d\vec{l} = d\ell \hat{\phi} \)
 \[
 \oint_C \vec{B} \cdot d\vec{l} = B \oint_C d\ell = \mu_0 I_C \\
 B \cdot 2\pi r = \mu_0 I_C \quad \Rightarrow \quad B = \frac{\mu_0 I_C}{2\pi r}
 \]
Magnetic Field Inside a Long Straight Wire

\[I_C = I \frac{r^2}{R^2} \]

\[B(r) = \frac{\mu_0 I_C}{2\pi r} \]

\[B = \frac{\mu_0 I r}{2\pi R^2} \quad \text{(Inside)} \]

\[B = \frac{\mu_0 I}{2\pi r} \quad \text{(Outside)} \]

Magnetic Field Inside a Solenoid

- Symmetry principles:
 - The magnetic field always points along the axis of the solenoid: \(\vec{B} = B\hat{k} \)
 - It is independent of \(z \), except at the ends.
- Outside the solenoid, we expect \(\vec{B} \rightarrow 0 \) as \(r \rightarrow \infty \)
- Inside the solenoid, does \(\vec{B} \) depend on \(r \)?
Magnetic Field Inside a Solenoid

- Enclosed current: \(I_C = n I h \)

\[
\oint_C \vec{B} \cdot d\vec{l} = B h = \mu_0 I_C
\]

\[
B = \mu_0 n I
\]

\(n \) is the number of turns per unit length.

Make the path \(cd \) very far away, where \(\vec{B} \approx 0 \).

i-Clicker Question #2

Now apply Ampere’s Law on the red contour.

\[
\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_C
\]

Consider the current \(I_C \) passing through the red contour. What does this tell us about the magnetic field \(\vec{B} \) inside the solenoid?

(A) \(|\vec{B}| = 0 \) inside the solenoid.

(B) \(|\vec{B}| \) gets larger close to the axis.

(C) \(|\vec{B}| \) is uniform inside the solenoid.
Force between a Solenoid & a Current Carrying Wire (DEMO)

\[\vec{F} = i \vec{L} \times \vec{B} \]

\(\vec{i} \)

\(\vec{B} \)

\(\vec{F} \) is into the page\(\imes \) and tangential to the surface of solenoid.
When the current is reversed, \(\vec{F} \) is out of the page. 😊

Magnetic Field Inside a Toroid
When Ampere’s Law doesn’t Help

- B can’t be factored out of the integral.
- Insufficient symmetry
- Finite length current segment is (unphysical)
- Current is not continuous (time dependent)

Dipole Moments in Applied Fields

- Electric dipole: \vec{E} decreases at center
- Magnetic dipole: \vec{B} increases at center
- External fields tend to align dipoles.
Magnetic Properties of Materials

- Atoms in many materials act like magnetic dipoles.
- Magnetization is the net dipole moment per unit volume:
 \[\vec{M} = \frac{d\vec{\mu}}{dV} \]
- In the presence of an external magnetic field, these dipoles can start to line up with the field:

Net current inside the material is zero. We are left with an effective surface current and therefore a magnetic moment.

Magnetization and “Bound Current”

Magnetic dipole for a current loop: \(\vec{\mu} = A I \hat{n} \)

Magnetic moment per unit length:
\[d\mu = A \, di \]

Magnetization:
\[M = \frac{d\mu}{dV} = \frac{d\mu}{A \, dl} = \frac{di}{dl} \]

This is the “effective surface current,” with units [A/m]. Magnetic field due to the surface current is the same as in a solenoid:
\[B = \mu_0 n I = \mu_0 M \]

current per unit length
Magnetization and Magnetic Susceptibility

• How well do the microscopic magnetic dipoles align with an external applied magnetic field?
• Simplest model: linear dependence on \vec{B}_{app}
 – Magnetization: $\vec{M} \propto \vec{B}_{app}$
 – Magnetic field due to surface current:
 $$\vec{B}_{m} = \mu_0 \vec{M} \equiv \chi_m \vec{B}_{app}$$
 – Magnetic susceptibility: χ_m
• Total magnetic field:
 $$\vec{B} = \vec{B}_{app} + \vec{B}_{m} = (1 + \chi_m) \vec{B}_{app} \equiv K_m \vec{B}_{app}$$
 – Relative permeability: K_m

Magnetic Susceptibility

• Different materials react differently to external magnetic fields:

$\chi_m < 0$, small $	\chi_m	$	Diamagnetic	bismuth, copper, silver
$\chi_m > 0$, small χ_m	Paramagnetic	aluminum, tungsten		
$\chi_m > 0$, large χ_m	Ferromagnetic	iron, cobalt, nickel		

• Dipoles in diamagnetic materials align opposite \vec{B}_{app}
• Dipoles in paramagnetic materials align with \vec{B}_{app}
• Ferromagnetic materials align strongly even in weak \vec{B}_{app}
Magnetic Susceptibility

<table>
<thead>
<tr>
<th>Material</th>
<th>χ_m</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>-1.66×10^{-5}</td>
<td>diamagnetic</td>
</tr>
<tr>
<td>Ag</td>
<td>-2.6×10^{-5}</td>
<td>diamagnetic</td>
</tr>
<tr>
<td>Al</td>
<td>2.3×10^{-5}</td>
<td>paramagnetic</td>
</tr>
<tr>
<td>Fe (annealed)</td>
<td>5,500</td>
<td>ferromagnetic</td>
</tr>
<tr>
<td>Permalloy</td>
<td>25,000</td>
<td>ferromagnetic</td>
</tr>
<tr>
<td>Mu-metal</td>
<td>100,000</td>
<td>ferromagnetic</td>
</tr>
<tr>
<td>Superconductor</td>
<td>-1</td>
<td>diamagnetic (perfect)</td>
</tr>
</tbody>
</table>