
1. Introduction
Seismic coda-wave analysis is a well-developed approach for detecting changes in complex media by taking 
advantage of the information in multiply scattered signals as they propagate through a material system. Ac-
tive-source monitoring using coda waves can detect changes in velocity associated with alterations from natural 
and human activities. Active sources have the advantage of generating signals that have repeatable source char-
acteristics when looking for time shifts to extract changes in velocity of a region that can be linked to time-de-
pendent alterations. For example, a recent study showed that active-source monitoring of coda waves can be used 
to track the location of a CO2 plume as it was injected over a 74 hr period into the subsurface (Zhu et al., 2019). 
Coda wave data were acquired using a continuous active source with known and repeatable source characteristics 
that identified changes in velocity as small as 0.2%–2% from different components of the waveform.

Alternatively, passive-source monitoring using coda waves from earthquakes or acoustic emissions can also be 
used to detect such changes. Natural earthquakes and induced seismicity from subsurface activities (such as 
mining and geothermal energy exploitation) generate elastic waves that have been used to identify changes in the 
Earth’s subsurface located between the source of the seismicity and the receiver location (e.g., Boue et al., 2014; 
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Plain Language Summary Earthquakes and human activities in the Earth's subsurface generate 
internal seismic waves that travel from wave sources to receivers. Along their paths, the waves interact with 
fractures that scatter the waves and cause them to partially interfere, producing complicated signals that carry 
information on the geometry and the physical conditions of the fractures. Extracting this information could 
give important insight into environmental safety of underground engineering projects affected by fracture sets. 
In this work, we use the unique properties of a twin neural network (TNN) to disentangle fracture information 
buried in complicated signals. The TNN is a dimensionality reduction technique and multiclass classifier that 
decides whether a fracture system is fully saturated with water or partially saturated, or whether a change in 
saturation has occurred in different fractures in the system. These results show that information about physical 
and chemical processes in fractures can be extracted from complex wave fields.
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Olivier et al., 2015; Peng & Ben-Zion, 2006). However, a challenge in such passive-source monitoring is the 
lack of repeatability of the source characteristics because of variability in the triggering mechanisms (e.g., fluid 
pressures, stress distributions, tectonic settings, creep, loading rate, etc.), as well as source location and rupture 
mechanisms (shear vs. tensile, multiple slip events, etc.). Depending on the mechanism of the source of seismic-
ity, sequential events may not have wave form similarity (Uchida & Burgmann, 2019) with consistent frequency 
content and phase components. In addition, Geller & Mueller (Geller & Mueller, 1980) showed that deviation by 
as little as a quarter-wavelength in path length reduces waveform similarity which could occur while inducing a 
fracture. These aspects create a challenge for passive monitoring of the material between the source and receiver 
when working with non-repeatable or uncontrolled sources that may repeat randomly in time and with varying 
characteristics (e.g., amplitude, spectral content, and phases).

The challenge of such passive monitoring is made even more difficult when working in fractured media where the 
strength of coda signals produced from sets of parallel fractures depends on the conditions of the fractures in the 
sets. Laboratory experiments with controlled ultrasonic sources and numerical simulations have demonstrated that 
coda patterns can be used to monitor cracking and to identify the orientation of fracture sets, fracture spacing and 
fracture density (e.g., de Figueiredo et al., 2012; Hadziioannou et al., 2009; Nakagawa et al., 2000b, 2003, 2004; 
Sang et al., 2020; Sneider et al., 2013; Willis et al., 2006]). However, the presence of reverberations and their 
amplitudes depend not only on the fracture spacing but also on fluid saturation and fracture specific stiffness.

Fracture specific stiffness is an effective parameter that captures the deformed morphology of a fracture and is 
intimately related to the contact area and the aperture distribution (Petrovitch et al., 2013, 2014; Pyrak-Nolte & 
Nolte, 2016). The amount of energy partitioned into transmitted and reflected components, body-mode conver-
sion, and guided waves, as well as the time delays of different scattered components, depend on fracture specific 
stiffness (Shao & Pyrak-Nolte, 2016; Shao et al., 2015; Xian et al., 2001a). As a fracture is partially closed under 
stress, the increase in contact area and decrease in fracture aperture increases the fracture specific stiffness (Hop-
kins, 1990; Hopkins et al., 1990; Pyrak-Nolte, 2019) and in turn increases wave transmission with a decrease 
in reflections, a decrease in arrival time, the transmission of higher frequency components and a decrease in 
compressional (P) to shear (S) wave conversions and guided modes (Choi et al., 2014; Lubbe et al., 2008; Lubbe 
& Worthington, 2006; Nakagawa et al., 2004; Pyrak-Nolte et al., 1990; Schoenberg, 1980; Xian et al., 2001b). 
Fluid saturation also suppresses the ringing coda-wave tail because saturation decreases the reflections from the 
fracture (Pyrak-Nolte, 2007; Xian et al., 2001b). In addition, the time delay produced by a fracture depends on 
the frequency of the signal, on the number of fractures, on fracture spacing and on the fracture specific stiffness 
of each fracture. Other research (Hildyard & Young, 2002), has shown that non-uniform loading on a set of frac-
tures leads to gradients in stress along and among fractures which in turn creates gradients of stiffness that affect 
wave scattering.

Gradients in fracture stiffness or differences in fluid saturation among fractures results in complex and noisy 
signals that evolve over time as stresses and fluid saturations change (e.g.,Oliger et al., 2003; Pyrak-Nolte, 2007). 
If the originating probe signal has unknown source characteristics, the complexity of the problem increases. 
Indeed, the limited frequency content and the temporally scattered nature of these signals make their analysis 
with standard signal processing techniques difficult. All of the aforementioned factors control or influence coda 
wave generation from fracture systems and present a challenge when trying to determine fracture conditions when 
using passive monitoring methods.

Therefore, the ability to interpret fracture system evolution from passive monitoring techniques requires a meth-
od to identify the key scattered components related to the evolution in physical properties in a waveform in-
dependently of the source properties. Here, we begin to unravel the contributions that affect interpretation of 
fracture condition from coda waves by using laboratory test-bed experiments and machine learning. We focus 
specifically on two aspects of passive monitoring for a set of parallel fractures: (a) the use of stationary and 
moving uncontrolled sources, and (b) changing saturation in subsets of the fractures. The machine learning ap-
proach we take uses twin-neural-networks (TNN) that create low-dimensional representations among similar and 
dissimilar classes of seismic behavior.
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2. Materials and Methods
2.1. Fracture Set Test Bed

A fracture test bed that contained six synthetic fractures was fabricated from acrylic blocks (Figures 1a & 1b). 
The dimensions of each block are listed in Table 1. The blocks were separated by 3D printed spacers with spatial 
relief to create partially open fractures. Silicone rubber was used to attach the spacers and thin acrylic plates to 
the bottom of the sample to create water-sealed fractures that were only open on the top of the sample from where 
fluids could be pipetted into or out of a fracture plane. The sample was clamped for 24–48 hr to enable the sili-
cone rubber to solidify. The apertures of each fracture are given in Table 2.

Printed 3D plates (Figure 2) were used in fractures F3 and F5 (Figure 1) to 
simulate partially closed fractures. The plates were printed with a polymethyl 
methacrylate (PMMA) resin on a FormLabs 2 printer with a minimum layer 
thickness of 25 μm. The surfaces of the plates contained cylindrical protru-
sions (Figure 2c) arrayed in a hexagonal packing geometry with a center-to-
center spacing of 8.8 mm (Figure 2b) and a height of 0.5 mm (Figure 2d). 
During desaturation of a fracture, contact was maintained between the plate 
protrusions and the fracture walls through water menisci. A syringe was used 
to remove 45–48 cc of water to lower the position of the air-water interface 
(e.g., Figure 2e) in a fracture. The approximate position of the air-water inter-
face was z = −46 mm ± 2 mm below the top surface of the sample.

Four sample saturation conditions were used in the experiments (Table 3) 
and are referred to as: (a) “Sat” — when all fractures are fully saturated; (b) 

Figure 1. Fracture test bed and representative signals. (a) Sketch of the fracture test bed with the individual matrix blocks labeled A-G (yellow circles) and fractures 
F0-F5 (numbered yellow rectangles). Dimensions of the individual blocks and fracture apertures are listed in Tables 1 and 2. The x-y-z coordinate system is centered on 
the top of the sample at the center of F2. (b) Digital image of sample. (c) Acoustic emissions from a stationary source recorded for the saturated condition. The color-
coded dashed lines represent the arrival times of internal reflections caused by an emission in F2 in the fracture set shown in (a). (d) Sketch of some of the possible 
dominant reflected-modes for acoustic emissions from a source in F2 for waves with an initial +kx wave component received on Side 2. The reflected modes are color-
coded to the arrival times in (c).

Block Width -x (mm) Length (mm) Height z (mm)

A 75.32 147 150

B 11.88 147 150

C 12.31 147 150

D 12.39 147 150

E 12.25 147 150

F 12.20 147 −56.38

G 77.095 147 150

Table 1 
Dimensions of acrylic blocks shown in Figure 1a
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“S3” — when fracture F3 is partially saturated with all other fractures fully 
saturated; (c) “S5” — when fracture F5 is partially saturated with all other 
fractures fully saturated; and (d) “S3S5” — when fractures F3 & F5 are par-
tially saturated with all other fractures fully saturated.

2.2. Sources

2.2.1. Internal Transportable Sources

Acoustic emissions were produced using chattering dust that are su-
crose-based grains that each contain hundreds to thousands of small com-
pressed CO2 bubbles (Pyrak-Nolte et al., 2020). When the dust is placed in a 
water-saturated fracture, it dissolves, causing multiple delayed explosive re-
leases of compressed gas from individual bubbles. Pyrak-Nolte et al. (2020) 

showed that a single grain can produce 100–1000s of emissions in a 3–6 min period with a frequency content 
that ranged between 50 kHz and 500 kHz. The distribution of signal amplitude was correlated to the distribution 
of the size of the compressed gas bubbles. 3D X-ray tomography of the grains observed that the gas bubbles 
ranged in size from 4.5 to 250 μm (Pyrak-Nolte et al., 2020). A single grain as it dissolves provides a multitude of 
“uncontrollable sources” as opposed to using piezoelectric transducers with known source characteristics. These 
uncontrolled sources were used to mimic signals more representative of those observed in nature and with the 
advantage that some location information of the dust is known in this case because the dust was always released 
in fracture F2 (Figure 1).

The dust was used to simulate: (a) a stationary uncontrolled source, and (b) a moving uncontrolled source. 
An uncontrolled stationary source mimics repeating sources that can occur in nature, for example, repeating 
earthquakes within a region (e.g., Abercromnie et al., 2020; Holtzman et al., 2018; Marone et al., 1995; Nadeau 
et al., 1995; Schaff & Beroza, 2004). The stationary source was achieve by placing a wire at a fixed depth of 
30 mm in fracture F2 (Figure 2e). After a dust grain is released into a saturated fracture, the dust grain initially 
descends and then comes to rest on the wire. For the stationary source, only one grain was used per test and a 
minimum of 10 tests were performed for each fracture saturation condition. Examples of signals from the dust 

Fracture Aperture (mm)

F0 2.03

F1 2.07

F2 2.07

F3 2.05

F4 2.06

F5 2.04

Table 2 
Apertures of fractures shown in Figure 1a

Figure 2. Mechanical drawings of (a) an entire plate, (b) a sub region of a plate, (c) 3D view and (d) side view of a plate used to create contact between fracture 
surfaces in F3 and F5. The units are in millimeters. (e) Digital photograph showing a plate in fracture F3 for a partially water-saturated condition, the wire ledge in 
fracture for the stationary source location (blue wire), and transducers 1–4 on side 1.
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released in the fracture test bed with fully saturated fractures are shown in 
Figure 3a to demonstrate the variability of the received signal amplitudes, 
frequency components and phases.

Conversely, a moving source was used to simulate induced seismicity along 
a fracture plane which may occur during hydraulic fracturing or geothermal 
stimulation (Eaton et al., 2018; Fehler et al., 2001; Holtzman et al., 2018; 
Lopez-Comino et  al.,  2021; Rodriguez-Pradilla & Eaton,  2020; Rowe 
et al., 2002). For the case of the moving source, a dust grain was released in 
F2 and fell through the fracture under gravity. For each test, 4–5 grains were 
released sequentially separated in time by 3–4 min to enable the emissions 

from a previous grain to subside. Again, a minimum of 10 tests were performed per fracture condition. An exam-
ple of the location of events from a moving source released in fracture F2 is shown in Figures 3b and 3c when all 
of the fractures were fully saturated (Information on event location and error in location is given in the Supporting 
Information S1, section S3). Event location as a function of depth is shown for the y-direction (Figure 3c) and 
x-direction (Figure 3b). As the dust descends, the path of the dust is confined in the x-direction by the aperture of 
the fracture but is free to drift in the y-direction parallel to the fracture plane. Furthermore, the explosive emission 
of trapped gas causes the dust grain to make small sudden jumps (up to 1 mm displacement) in the unconstrained 
y-z plane.

2.2.2. Acoustic Emission Measurements

Acoustic emissions from chattering dust sources were recorded using eight broadband piezoelectric compression-
al wave sensors (Olympus V103 with central frequency of 1 MHz) attached to side 1 and side 2 of the sample 
(Figure 1a) using hot glue. The sensors remained in place for all experiments. The locations of the sensors on 
the sample are listed in Table 4 for the coordinate system shown in Figure 1a. The piezolectric sensors were 
connected to an AE measurement system (8-Channel Mistra Express) through preamplifiers (Mistra 1220–5054, 
20/40/60 dB single-ended powered preamplifier) to record signals using Mistra AEWin software. The threshold 
amplitude for detection was set at 40 dB (with a 60 dB preamplifier with 20 kHz–1200 khz window) which was 

Condition F3 F5

Sat saturated saturated

S3 partially drained saturated

S5 saturated partially drained

S3S5 partially drained partially drained

Table 3 
Saturation conditions for fractures F3 and F5

Figure 3. (a) Examples of signals from a fully saturated fracture sample with a stationary source. Locations of acoustic emissions from a moving source in a fully 
saturated fracture sample for (b) z-x and (c) z-y views (see Figure 1 for coordinate system). The locations are based on arrival times of events recorded by 5–8 sensors.
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determined to be sufficient to eliminate ambient noise for this experimental 
set-up. The AE system records time to within 0.1 µs. The AEWin software 
determined the time and amplitude of every hit and saved the information to a 
summary line file. In addition, the full waveforms were recorded (10 MSPS, 
100 µs pre-trigger) and saved to a hard drive. Information on source location 
methods and errors in location is given in the Supporting Information S1, 
section S3.

2.2.3. Sample Characterization With Controlled Source

Controlled-source transmitted signals were recorded for each of the four sam-
ple conditions (Figure 4) with a controlled source to compare with the uncon-
trolled sources. Transducers for CH1, CH2, CH3, and Ch4 on side 1 of the 
sample (Figure 1a) were used as sources and excited in the AST (auto-sens-
ing testing) mode of the Mistra AE system. The pulses were transmitted 
through the sample and recorded by the transducers on side 2 of the sample 
(CH5, CH6, CH7, and CH8). For transducer pairs, CH3-CH8 and CH4-CH7, 

the conditions of the fractures were always the same (i.e., fully saturated) because both transducers were located 
(Table 3) below the air-water interface even for the partially saturated conditions. These signals exhibit the same 
amplitudes, phases and arrival times (Figures 4c & 4d). For the transducer pairs that are located within the par-
tially saturated region of the fracture system, CH1-CH6 & CH2-CH5, the signal amplitude is largest for the fully 
saturated condition (Figures 4a & 4b) and smallest when the signal is transmitted through both partially saturated 
fractures, F3 and F5 (S3S5 condition). Similar amplitudes and arrival times are observed when either F3 or F5 are 
partially saturated. Signal amplitude alone is sufficient to distinguish the fully saturated case from the partially 
saturated cases of S3, S5, and S3S5. In addition, amplitude information from the 1st wave packet (119–130 micro-
seconds) is not sufficient to distinguish differences in the signal when only a single fracture is partially saturated 
(either condition S3 or S5). The information that indicates whether it is fracture F3 or fracture F5 that is partially 
saturated is contained in the subtle changes in the waveforms that arises from the coda wave. Depending on 
whether F3 or F5 is the partially saturated fracture changes where the internal reflections occur from the parallel 
set of fractures and changes their amplitudes (Figure 1d). These changes tend to be subtle differences in the data 

AE Sensor x (mm) y (mm) z (mm)

CH1 −78.1 −29.19 −28.25

CH2 −78.1 20.21 −55.1

CH3 −78.1 −13.17 −85.74

CH4 −78.1 33.29 −112.64

CH5 146.6 19.9 −28.37

CH6 146.6 −25.79 −56.38

CH7 146.6 22.21 −87.1

CH8 146.6 −25.52 −110.26

Table 4 
Positions of AE sensors for the coordinate system shown in Figure 1a. Side 1 
of sample: CH1-CH4; Side 2 of sample CH5-CH8.

Figure 4. Recorded transmitted signals using controlled, repeatable sources for transducer pairs (a) CH1–CH6, (b) CH2–CH5, (c) CH3–CH8 and (d) CH4–CH7 for 4 
samples conditions. The change in saturation is detectable in the CH1–CH6 and CH2–CH5 transducer pairs.
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generated even with an active controlled source, hence an extra challenge is faced to distinguish such changes 
when the source parameters are unknown or unrepeatable when using the chattering dust as the seismic source.

2.3. Twin Neural Network

The challenge posed by uncontrolled chattering dust sources is the loss of three key information elements used 
by active monitoring: arrival time, amplitude and frequency content. These are the most information-rich as-
pects of seismic wave analysis of fracture systems in rocks (Nakagawa et al., 2000a, 2002; Pyrak-Nolte & No-
lte, 1992, 1995; Pyrak-Nolte et al., 1990). When a chattering dust grain launches an acoustic wave, the event time 
is unknown, and the subsequent analysis aligns the arrival times of all the signals. In addition, the amplitudes and 
frequency contents of individual events vary (within a range, see (Pyrak-Nolte et al., 2020)), preventing direct 
assessment of fracture properties from individual signals. On the other hand, when the system under study is com-
posed of multiple fractures, a rich coda-wave signal is produced from each event which contains information on 
the fracture geometry as well as the state of saturation. While well-separated codas can be analyzed directly, the 
codas are unresolved when the fracture spacing is small relative to the length of the event wave packet, creating 
complex waveforms that are difficult to analyze. For example, Figure 1c shows the waveforms of late-arriving 
multiple reflections. The reflections can occur from one or more slabs which can result in interference, or the 
reflections can have multiple alternative paths sharing the same travel time, illustrated in Figure 1d, but the am-
plitudes of the various overlapping alternatives depend on the fracture stiffness or saturation. This information is 
buried among the multiple overlapping waveforms, creating a challenge to extract fracture saturation or stiffness 
information from the signals.

In addition, the uncontrolled sources have high variability. For each of the saturation states, stacks of 1,400 sig-
nals are shown in Figure 5. The signals have all been aligned to have the same first arrival times, and they have 
been normalized by the square-root of the energy (as described in the Supporting Information S1, section S2.2). 
The signals under the different saturation conditions share general features that make it difficult to distinguish 
one saturation case from another. The averages are shown as the red curves, but the signals within each class vary 
by nearly 100%. In the absence of arrival time and amplitude information (which have been compensated and 
normalized), matched filter approaches fail to accurately classify single events, and alternative analysis methods 
must be used.

Neural networks are well-suited to analyzing complex data with many channels of information with high co-
variance among the channels and conditional associations that pose challenges to linear filtering approaches 
(Murphy, 2012). Deep learning in the past decade has moved beyond multi-layer perceptrons (MLP) to apply 
fully connected layers of high numbers of nodes to generate internal representations of data. When the internal 
representations capture the complex character of the data in a few degrees of freedom, it is much easier to visual-
ize data relationships in lower dimensions (3D and lower), and classifiers are easier to train. Stacked autoencoders 
(Marsland, 2015) are one method used in dimensionality reduction, identifying common signal features within 
highly varying background. However, autoencoders can lose subtle differences among multiple classes, finding 
the common features rather than the differences.

A recent deep network architecture that solves this problem is the TNN (also known as a Siamese neural net-
work) (He et al., 2018; Zheng et al., 2016). A TNN is a deep neural net, shown in Figure 6a that uses two iden-
tical deep networks with identical weights that are exposed to a pair of data inputs that are known to be from the 
same or from dissimilar classes. This network has an advantage in that distinct class labels are not needed for 
training: only whether the members of the pair are from the same class or different classes. Furthermore, any 
number of different classes are allowed. The outputs from a pair of data sets is used to calculate a contrastive 
loss function that is minimized, thereby training the network to recognize when the two inputs are from sim-
ilar or dissimilar classes. For data analysis problems with small signals in the presence of high backgrounds, 
this twin network can learn to disregard the background and to recognize subtle signal differences (Berlemont 
et al., 2018). A TNN performs dimensionality reduction through successive bipartite (fully connected) layers 
and ReLU layers. A large number of input channels, for instance from a time-series seismic signal, are sent 
through multiple layers, and in this case, the output dimensionality is three-dimensional (the maximum for 
conventional data visualization).
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The contrastive loss function Lcontr is defined as

𝐿𝐿contr =
1

2
𝑦𝑦𝑦𝑦2 +

1

2
(1 − 𝑦𝑦)|max(m0 − 𝑦𝑦𝑑 0)|

2 (1)

where y is the class-agreement label (y = 1 for similar and y = 0 for dissimilar), and d is the Euclidean distance 
between the two output features of the two subnetworks

𝑑𝑑 = ‖𝐹𝐹1 − 𝐹𝐹2‖2 (2)

The margin parameter m0 is used as a constraint: if two images in a pair are dissimilar, then their distance should 
be at least equal to the margin, or a loss will be incurred. Only one term of the loss function is active for a given 
pair. If they are similar (y = 1) then the algorithm minimizes their distance d. If they are dissimilar, then the al-
gorithm maximizes their distance to be at least a distance m0 away from each other.

An additional function can be added to the TNN as a tool to identify which parts of the waveforms carry the most 
significant information. This is accomplished by adding a regularization term to the loss function to minimize the 
input weights from channels that carry little distinguishing information. The regularization loss function Lreg is

Figure 5. Stacks of all training signals (energy normalized) for the four saturation conditions at constant depth. Each set has 1,400 signals that have been shifted to the 
same arrival time and normalized by received energy. The signal-to-signal variability caused by the uncontrolled sources within each class is around 100%.
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𝐿𝐿reg = 𝜆𝜆‖𝑤𝑤𝑎𝑎

1
‖1 (3)

where the norm is L1, 𝐴𝐴 𝐴𝐴𝑎𝑎

1
 is the matrix of input weights into the first hidden layer, and the hyperparameter λ is 

tuned so that the regularization loss is approximately a third of the total loss value at the end of training. Optimi-
zation of the total loss function with the L1 regularization loss causes the weights of unimportant channels to be 
down-weighted during training after being initialized with random weight values. By analyzing the input weights 
in the trained network, it is possible to identify the most information-rich parts of the waveform.

The deep twin network used for this analysis had three fully connected (dense) layers with 128 nodes in the first 
layer, 64 nodes in the second layer and 3 nodes in the final layer. The decreasing dimensionality was chosen to en-
courage the system to funnel information from the high-dimensional input to the low-dimensional output. Choos-
ing a smaller number of nodes in the second layer below this value causes the data to form a one-dimensional 
manifold in the three-dimensional output space with poor classification performance. Therefore, the middle layer 
was the controlling factor in the selection of the number of nodes in the multiple layers. The activation function 
for the first two layers is ReLU, while the final-layer neurons perform a simple sum with bias and linear output. 
The margin in the contrastive loss function is set comparable to the variabilities caused by the uncontrolled 
sources, balancing intra-class variance against inter-class separations. The hyperparameters for the TNN were 
tuned for speed of analysis and accuracy of classification. The training was performed using the Matlab version 

Figure 6. The “twin” network for dimensionality reduction consists of identical twin networks with shared weights. (a) In 
training, data structures are applied in pairs, then the contrastive loss is used to update the shared parameters. The network in 
this figure has two layers of fully connected ReLUs that are connected to the three output neurons. (b) A single signal is input 
into the trained twin neural network (TNN), and the 3-dimensional feature output is the input to a multi-class classifier that is 
trained separately. The three-dimensional latent space can be visualized independently.
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R2019b Deep Learning toolbox with the adamupdate optimizer. The minibatch size was 128 with a learning rate 
of 1 × 10−4. The number of training steps was 1,500, which allowed convergence to a stable trained network while 
preventing overfitting. The data in the output space is used as the input to the standard Matlab error-correcting 
output code (ECOC) for multiclass analysis. The ECOC is trained separately after dimensionality reduction. It 
is a standard Matlab toolbox multiclass support vector machine classifier based on multiple one-versus-other 
maximum-margin classifiers.

3. Classification of Fracture States From a Deep Twin Network
The goal of the TNN is to identify the saturation states of multiple fractures when probed by stationary or falling 
sources. The network is trained on acoustic signals passing through sections of the fractures that are either saturat-
ed or have been partially drained. In the drained condition there remains a water meniscus around the protrusions 
in contact with the acrylic blocks. The meniscus properties and the saturation vary with depth, providing an 
additional test of the sensitivity of the trained network to partial saturation.

3.1. Stationary Source Probing Fracture Saturations

A first series of experiments held the chattering dust sources at a constant depth in the launching fracture (to mim-
ic a stationary source) to probe two fractures under the four saturation conditions described in Section 2.1 and 
listed in Table 3. The set of 6,600 waveforms is shown in Figure 7a from which 70% (4,620) and 30% (1,980) are 
used for training and validation, respectively. Additional information on the partitioning of the data into training, 
validation and testing sets is given in the Supporting Information S1, section S2.3. The TNN was trained on the 
training set to generate five models each with random initialization of the neural weights. The best model of the 
five was selected based on the performance of the validation set. This model was then applied to the test set. The 
test set (1,192 events) is shown in Figure 7b. In the figure, the color represents the amplitude of the signal and the 
time base is 0.4 microseconds per channel. The training and validation set predictions at the end of training are 
shown in Figure 7c, and the predictions for the test set are shown in Figure 7d. A key aspect of this approach is 
to acquire and analyze each event separately without averaging. Because the source is uncontrolled, amplitudes 
and frequency content can vary from one event to another, and averaging can wash out significant information 
contained in the wave form.

The confusion matrix for the test set is shown in Figure 8a. The classes 1–4 correspond to the four saturation 
conditions: Sat, S3, S5, and S3S5. The diagonal terms (0.91, 0.88, 0.88, and 0.84 for classes 1 through 4, re-
spectively) are much larger than the off-diagonal (largest value of 0.11 for class 4 misidentified as class 2) for all 
conditions. By testing a large number of events under a given condition (see Supporting Information S1, Table S5 
for the number of signals for each condition), the classification of the fracture-set condition is taken from major-
ity rule (mode-pooling) for the most likely classification within the data. Majority rule (as seen in the confusion 
matrix) provides perfect classification of the four saturation conditions.

The reduced-dimension feature space for all of the test events is shown in Figure 8b color-coded on the fracture 
saturation condition. The TNN dimensionality-reduction down to three features has separated the events among 
the four conditions. There is some overlap among events in the different classes, but the majority of the points 
have large Euclidean distances among the separate point clouds. The saturated events (red) are well separated 
from the others. The two single-fracture-syringed cases do have some overlap, as would be expected because the 
direct waves would be similar, but there is still good separation in the classification because of differences in 
the codas. This is a key finding of this paper, because it demonstrates that the coda is sensitive to the difference 
between syringing water from fracture F3 versus fracture F5 because of the change in the reflection conditions 
of the acoustic waves from the fractures. The double-syringed condition has some overlap with each of the sin-
gle-syringed conditions, which also may be expected because the condition S3S5 involves the same fractures as 
the conditions S3 and S5. Nonetheless, the majority-rule correctly classifies each saturation conditions.

One of the challenges of deep learning is the physical interpretation of the internal weights and states of the net-
work. Deep neural networks suffer from the “black box” problem in which an extremely large number of latent 
variables form an internal representation that is an encrypted form of the external information input into the 
network. As an example, all of the input weights for the first layer of the TNN are shown in Figure 9a for the 128 
first-layer neurons and 130 input channels. There is no recognizable pattern in the matrix of neural weights, al-
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though the L1 regularization has down-weighted the least informative channels. However, creating the cross-cor-
relation matrix among the neural weights and clustering on similarity produces the square correlation matrix in 
Figure 9b that shows clear groupings in the neural weights. In this case the correlation matrix is approximately 
block diagonal with three similar groups of neural weights. This demonstrates that there is a large amount of 
covariance among the weights with only a few orthogonal behaviors. This is expected because of the determinis-
tic time series behavior of the input signals. The oscillatory character of the acoustic time-series induces strong 
co-dependencies along the time axis which is reflected in the clustering of the input weights. This can also be 
seen in the correlation matrix among the input channels without clustering in Figure 9c. The correlation matrix 
has roughly a checker-board pattern that reflects the oscillatory character of the input signals. These correlations 
in the time-series signal might also be extracted using the properties of convolutional neural networks, but this 
will be explored in a later study. In addition to the internal weights, it is also possible to extract the internal states 
of the hidden neurons as shown in the bottom row of Figure 9 that show the internal states for the training events 
sorted by class number. Clear class divisions are observable in the internal states for all three hidden layers.

Figure 7. Training, validation and test signals. (a) Training and validation set under four conditions. (b) Independent test set under the four conditions. (c) Training and 
validation classifications. (d) Test set classifications. The test set is composed of 20% of the acquired signals that were not used for training and validation.
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By interrogating the input weights to the first hidden neuron layer it is possible to identify which input channels 
carry the dominant information. This is made especially clear when L1 regularization is constructed to depend 
only on the input weights and is added to the loss function for optimization. The L1 regularization suppresses 
weights from channels that do not provide significant information for the low-dimensional clustering. The results 
of this analysis are shown in Figure 10 that identifies the channels that had the highest input weights. It is clear 
that the portions of the waveforms where there are distinct differences among the four conditions contribute the 
most weight to the twin network inputs. In addition to the peak of the first arrival, there is considerable weight 
from the region of the second coda around 36 microseconds. The third coda also contributes weights on the 
input, but the first coda contributes little. The signal packet of an unscattered source wave has about one and a 
half cycles, causing all of the codas to overlap. In this analysis, the deep twin network is not only convenient for 
identifying and classifying different fracture saturations, it is also a tool to identify the most information-rich 
portions of the waveform.

Another challenge for neural networks is their ability to generalize trained behavior to be able to predict the 
properties of never-before-seen data. During training, the upper bound to the accuracy of the predictive model is 
established by the validation set. However, validation data sets are subsets of the original data. To test the predic-
tive power of a neural network model, it is necessary to have independent data that are acquired separately from 
the training and validation data sets. We performed a repeat of the constant-depth data acquisition (Section 3.1) 
using the same synthetic fracture network but under an additional cycle of saturation and drainage. Approxi-
mately 8,268 events (see Table S5 in Supporting Information S1) were acquired for each saturation condition 
(saturated, S3, S5, and S3S5) that were split 70% and 30% (5,787 and 2,481) for the training and validation sets, 
respectively (see Supporting Information S1, section S2.3). The system saturation was physically cycled through 
the four saturation conditions and an additional 7,559 test data events were captured for each condition. The TNN 
was trained on the training set to generate five models each with random initialization of the neural weights. The 
best model of the five was selected based on the performance of the validation set. This model was then applied 
to the test set. The resulting confusion matrix of the test set is shown in Figure 11. The four saturation conditions 
for the independent test set are predicted with accuracies ranging from 67% to 85% (compared to random predic-
tion that would yield 25% accuracy for each condition under four-class classification and compared to Figure 8 
for the non-prospective test set that had accuracies ranging from 82% to 92%). The maximum confusion values 
(off-diagonal) are 26% of the double pipetted case S3S5 confused with two single saturations S3 and S5. This 
first may be anticipated because the first coda is strongly affected by the F3 reflection for both of these cases. The 
next may be anticipated because of the similarity of the transmitted signal for these two single-fracture saturation 
conditions. The accuracies for the predictions are on a per-event basis, meaning that the probability of correctly 

Figure 8. Stationary-source classification results for the test set with four saturation conditions. (a) Confusion matrix of predicted class against target class. (b) Feature 
space of the events of the four conditions for the test set.
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classifying a single event is approximately three times higher than at random. In applications, characterizing the 
saturation of a fracture uses multiple events of multiple chattering dust grains to characterize a single condition. 
Therefore, this approach achieves perfect accuracy for assessing fracture saturation based on mode-pooling the 
predictions of the individual events.

3.2. Moving Source Probing Different Saturations

One of the valuable assets of the chattering dust is the ability for the dust grains to move through a fracture 
system while being tracked and located by the receivers. The changing position of a dust grain as it falls under 
gravity, or as it is transported by internal fluid currents, allows it to probe spatial variations in system properties. 
For instance, in our experiments that alter fracture saturation, the saturation is a function of depth because of the 
residual meniscus held by capillary forces around the protrusions of the fracture inserts. As a dust grain falls, the 
wave path probes different portions of the fractures.

Figure 9. Internal weights and states of the twin neural network. (a) The input weights between 130 input channels and 128 first-layer neurons. (b) Correlation matrix 
of the input weights correlated across the data channels and clustered showing a small number of similarities among the input weights. (c) Correlation matrix of the 
input channels correlated across the input weights. The checkerboard pattern reflects the oscillations in the input signals. (d) Output states of the first neuron layer 
sorted by class. (e) Output states of the second neuron layer. (f) Output states of the the third and last neuron layer.
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Figure 10. (top) Channel weights from L1 regularization. (bottom) Average signals for the four saturation conditions. The 
locations of the first arrival and codas are shown.

Figure 11. Three representations of the confusion matrix for prospective 4-class data at constant depth. Approximately 8,000 events were used for training with an 
additional prospective set (after saturation cycling) of 8,000 signals for prediction.
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A series of experiments were performed under the same experimental conditions as in the previous section, 
except that the dust grains fall under gravity after being released at the top of the fracture F2. A similar data set 
was acquired but with the position of the dust grain tracked by triangulating the signals received at the multiple 
acoustic receivers. The TNN was trained on the new data with a 20% (170 test events) reserved for testing rel-
ative to 691 training events and 297 validation events. The TNN was trained on the training set to generate five 
models each with random initialization of the neural weights. The best model of the five was selected based on 
the performance of the validation set. This model was then applied to the test set. The classifications of the test 
events are shown in Figure 12a that can be compared to the depth of the dust grain at the moment of emission 
in Figure 12b. The first set of signals in Figure 12 are for the fully saturated condition. Even as the dust grain 
falls under gravity there is little mis-classification. The second condition S3 has fracture F3 partially saturated. 
In this case the predictions are seen to be distributed across all three possible partial-saturation conditions with 
accuracies of 90%, 65%, 73%, and 62% for conditions Sat, S3, S5, and S3S5, respectively. The changing depths of 
the falling grains produces depth-dependent changes in the waveforms that make the distinction among the con-
ditions more difficult to distinguish. The confusion matrix, shown in Figures 12c and 12d has large on-diagonal 
values. The maximum confusion is 31% for class S3S5 mistaken for S3. This may be anticipated because of the 
similar coda structure for the S3 and S3S5 saturation conditions. Despite the misclassification of some individual 
events, the majority rule (mode-pooling) gives accurate classification in this case with the transporting internal 
seismic source.

3.3. Probing Saturation With Depth

When the water level is drained (pipetted) from a fracture containing the artificial asperities, capillary forces trap 
a meniscus around each of the protrusions of the 3D printed fracture inserts. Therefore, the saturation is a function 
of height, transitioning from fully saturated at low values of height to unsaturated at high values of height. This 
z-dependent saturation can be probed by a series of falling dust grains. The TNN in this case was trained on a two-
class system for either a fully saturated sample or a partially saturated F5. The TNN was trained on 9,100 events 
and validated on 3,900 events to select the best model that was then applied to 2,600 test events. The classification 
of the test events are shown in Figure 13a with excellent accuracy identifying the saturated case. However, it is 

Figure 12. Network performance on falling dust grains. (a) Class predictions for the four saturation conditions. (b) The location of the grain at the moment of emission. 
(c and d) Confusion matrix for four-class classification.
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important to note that the partially saturated case is only accurately identified for high z values of the emitting 
dust grains. When the dust has a high z, the direct raypath through the sample passes through the dry portion 
of fracture F5. As the z becomes more negative, more of the wave samples more of the water meniscus closer 
to the water level. Therefore for lower values of z (i.e., increasing depth) for the partially saturated condition, 
the classification shifts back to the saturated class. By averaging the classifications using a windowed average, 
a pseudo-saturation graph can be obtained, shown in Figure 13c. The saturation is high for the first class, shifts 
to low saturation initially for the second class, but then increases again for deeper emission depths as the wave 
probes more of the water meniscus. This demonstrates the potential use of the TNN to map out the saturation of 
a partially saturated fracture.

Figure 13. Two class classification on saturated versus partially saturated conditions. (a) Classification from the twin neural network. (b) Depth of the emission event. 
(c) Average saturation based on the percent classified correctly.
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4. Discussion and Conclusions
Networks of fractures in the subsurface are inaccessible to direct interrogation, unless accessed destructively 
through boreholes or mining. Therefore, studies of fracture networks have relied either on remote detection using 
active seismic sources, or on passive internal sources such as induced seismicity, acoustic emission or ambient 
noise. A goal of the current study is to establish a middle ground between active probing and passive sensing 
in which transportable sources infiltrate fractures to illuminate fracture networks acoustically from the inside. 
A principle question is whether such sources of acoustic emission internal to a set of fractures can be used to 
characterize the conditions of other fractures within the set. The challenges to this approach are two-fold: (a) in-
ternal sources are uncontrolled (in terms of the wave attributes such as frequency and amplitude), and (b) internal 
reflection modes that sample the fractures within the set often overlap with portions of the direct wave and with 
other combinations of reflections, complicating wave analysis. In the work presented here, by using a laborato-
ry-based fracture test bed, the expected arrival times of different reflected modes (Figure 1d) were known. By 
examining the signals (Figure 1e), these reflection modes (codas) were confirmed to occur within the first few 
cycles of the wave, obscuring identification of the specific reflected modes that contain information from the 
waves interacting with the fractures in the set. In addition, the acoustic emissions from the internal sources varied 
in magnitude, leading to differences in amplitude and arrivals amongst thousands of recorded signals (Figure 5).

To handle the large amount of signal information with large signal-to-signal variations, we employed a machine 
learning approach known as the TNN that uses supervised learning on a training set to analyze the waves to 
classify the saturation conditions of the fractures within the set. The approach used the normalized time-series 
data (i.e., signals) without relying on arrival times, amplitudes or spectral content. Despite this elimination of 
the primary information content (that is a fundamental part of active sensing), the signal from the fully saturated 
condition was shown to be distinctly different from signals from the partially saturated conditions as observed 
in the controlled source data (Figure 4) and the uncontrolled source data (Figures 7a & 7b). The differences 
among the S3, S5, and S3S5 conditions were more subtle but still recognizable by the neural network. Based 
on a mode-pooling decision rule, the classifications of individual events within a cohort of events led to perfect 
classification among the four saturation conditions.

A 4-class prospective study demonstrated the robustness of the method by training on data acquired under an 
initial set of saturation conditions, then physically cycling the saturation and testing data collected at a later time. 
This again achieved perfect classification using the mode-pooling rule. This indicates that information on the 
conditions of fractures can be extracted from coda wave signals that are not strongly separated in time from direct 
arrivals or other modes. On the other hand, all of the TNN studies reported here used a training set that is needed 
to capture the subtle differences among the saturation conditions. Practical extension of this work to the field, or 
even to other laboratory studies, is currently limited to situations in which fracture conditions are cycled so that 
conditions can be recognized from known training cases. A future extension of this study would use unsupervised 
training to find clusters of behavior that would seek to identify several different saturation conditions. The TNN 
requires class-similarity labels for training and so may not be suited to unsupervised learning. On the other hand, 
the TNN would be amenable to iterative semi-supervised learning in which class-similarity labels are initialized 
randomly and then updated according to the separations observed within the latent representation. However, such 
a semi-supervised approach is beyond the scope of this current study.

An important extension of the use of the multi-class TNN classifier was demonstrated to provide probabilities 
that can be continuous valued. While the class labels from the TNN are discrete, the latent representation is used 
in a direct multiclass classifier on an event-by-event basis. In the 2-class study, the low-dimensional representa-
tion from the TNN enabled estimation of changes in saturation with increasing depth (Figure 13) using signals 
from an internal moving source based simply on the ratio of class-1 to class-2 classifications on the events. 
The increasing saturation with depth was reflected by an increasing proportion of class-1 predictions relative to 
class-2. This continuous-valued ratio becomes a surrogate for changing saturation with depth.

The void geometry of a fracture, defined both by the spatial distribution of apertures as well as the distribution 
of aperture sizes, affects the fracture specific stiffness, κ, and affects the partitioning of energy into reflected and 
transmitted modes. There are two limiting cases in which stiffness goes to infinity or to zero. For the first limit, 
a fracture behaves as a welded contact and no coda waves are generated. Based on the displacement disconti-
nuity theory, welded contact behavior occurs for κ > 30 ωZ, where ω is the frequency of the signal and Z is the 



Journal of Geophysical Research: Solid Earth

NOLTE AND PYRAK-NOLTE

10.1029/2021JB023005

18 of 20

seismic impedance (density × phase velocity). Therefore, for a given ω, the fracture can still be open but most 
of the energy is transmitted, and reflections are not significant. For the second case, a fracture will behave as a 
free surface when κ < 0.03 ωZ and all of the energy is reflected from the fracture. However, when the frequency 
of the source enables optimal detection, that is, for 0.03 < κ < 30ωZ (Pyrak-Nolte, 2019), then the ability of the 
fracture set to generate interfering coda waves from reflections between different fractures within a fracture set 
will depend on how the energy is partitioned into reflected and transmitted modes at each fracture. In an extreme 
case for which the aperture is uniform and large, that is, similar to parallel plates, additional reverberations might 
arise from internal reflections within a single fracture, acting as an additional source of tightly spaced codas if 
the fractures were saturated with water. However, if this parallel-plate fracture were unsaturated, then no energy 
would be transmitted.

Another question is how the results presented here can scale to field applications where varying signal-to-noise 
ratios can occur as a fracture evolves, or distances of the fracture from the sensors change, or the signal quality 
can vary from location to location. The advantage of our technique for potential field applications is three-fold. 
First, only data from one sensor was needed to classify the signal, eliminating the need to consider sensor-to-sen-
sor variation. Second, the additional sensors were only used to locate the position of the source to enable the an-
alyst to know whether to consider a stationary versus a moving source. If it is a moving source, then the location 
of the source and comparison of signals from different source locations can be included to predict the expected 
codas from a fracture network. Third, as long as a fracture set or fracture network produces codas, changes in 
the condition of fracture system can be identified with this technique. The relative fracture spacings control the 
timing of the coda signals caused by reverberations among a fracture set, and changing saturation does not affect 
the spacings, only relative coda amplitudes.

Challenges that may be faced while developing the technique for the field could depend on whether multiple as-
pects of the system between the source and sensors are changing. For example, both the matrix and fractures may 
exhibit changes in saturation that affect wave scattering. Furthermore, the optimal detection frequency range may 
limit the range of fracture stiffnesses that can be detected for any given frequency, that is, fractures are present, 
but the source frequency content is not optimal for scattering or partitioning into multiple internal reflections. 
Numerical modeling would be needed to simulate coda wave generation from fracture sets and fracture networks 
to compare codas for a system when only the fracture saturation is changing, when only the matrix saturation is 
changing and when both are undergoing changes in saturation. The simulations would help identify how the coda 
in the received signals would vary for these saturation conditions and could also simulate how signals from a 
stationary versus moving source would affect the coda wave interpretation. These simulations could help develop 
further training sets.

The approach investigated here using the TNN could be applicable in the future to hydraulic fracturing sites. 
The induced seismicity from one induced fracture can be used to monitor the state of other previously induced 
fractures. As a hydraulic fracture propagates, the induced-seismicity is emitted from the propagating front as well 
as from other regions of the fracture. The uncontrolled nature of these sources could be managed using the TNN 
approach demonstrated here to analyze the properties of fracture networks. In addition, by increasing the strength 
of the chattering dust emissions, transportable acoustic sources may in the future be able to illuminate fractures 
from inside a subsurface fracture network.
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