
1.  Introduction
The measurement and analysis of acoustic emissions is a non-destructive, passive-monitoring technique that 
is used to determine changes in the physical and chemical conditions of a rock. An acoustic emission (AE) is 
defined as a transient elastic wave generated by the rapid release of energy within a material (Lockner, 1993; 
Scruby, 1987). After energy release, AE emanates from the location, or zone, of abrupt and localized mechanical 
and interfacial energy that triggered the generation of the elastic waves (Scruby, 1987). In geophysics, acoustic 
emissions methods have been used to monitor crack initiation, coalescence, and propagation (Lockner, 1993), 
shearing behavior along fractures (Bolton et al., 2020; Rouet-Leduc et al., 2018), and the evolution of drying 
fronts (Moebius et al., 2012). More recently, acoustic emissions from transportable sources have been used to 
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track flow paths through fractures (Pyrak-Nolte et al., 2020) and changes in saturation in a set of parallel frac-
tures (Nolte & Pyrak-Nolte, 2022). AE can also be emitted during the movement of a drying (drainage) front in a 
porous medium (Moebius et al., 2012). In clay-rich rock, movement of a drying front also enables the formation 
of cracks if the mineral components that compose a rock exhibit differential volumetric shrinkage from the loss 
or gain of fluids as shown by Andreani et al. (2008) and Espinoza and Santamarina (2011). The ubiquity and 
diversity of AEs motivates our development of data-driven machine-learning algorithms that can characterize the 
rich time-series dynamics associated with transient elastic waves generation in various porous materials.

Acoustic emission signals carry information (energy, frequency, amplitude, coda wave patterns, source locations) 
that can be used to quantitatively evaluate and distinguish discontinuities and damage mechanisms in space and 
time. AE monitoring has been applied to gain insights into intrinsic phenomena and spatiotemporal variations in 
rock properties relevant to failure or damage occurring in rocks (e.g., Lei et al. (2000); Wang et al. (2013); Bunger 
et al. (2015); Moradian et al. (2016); Rück et al. (2017)) and pre-existing discontinuities (e.g., Labuz et al. (2001); 
Selvadurai and Glaser (2012); Johnson et al. (2013); Shi et al. (2019); Trugman et al. (2020)). It has been applied 
in studies to provide information and track crack paths in experiments related to hydraulic fracturing (Bunger 
et al., 2014; Ishida, 2001; Li et al., 2018), activities in mining (Sellers et al., 2003; Li et al., 2019), and geothermal 
applications (Kong et al., 2018; Wang, Bian, et al., 2021). This convenient and effective non-destructive technique 
has also been used to investigate the underlying physics of earthquake phenomena (McLaskey & Lockner, 2014).

With the many applications mentioned above, there are naturally an array of processes that lead to the internal 
rapid release of accumulated energy. In partially saturated porous media, e.g., particularly during moisture loss, 
many AE generating mechanism exist. As fluid front displacement occurs, Moebius et al. (2012) showed several 
potential mechanisms that generate acoustic emissions which included (a) rapid interfacial invasion into pores 
(Haines jumps or rheons), (b) air entrainment and oscillating bubbles, (c) liquid bridge rupture, (d) inter-facial 
snap-off, and (e) capillary-induced grain rearrangement and collisions. Probable AE generating mechanism 
influenced by the unique properties of clay minerals (such as ion-substitution and the ability to shrink or swell 
in response to changes in water content and/chemistry), may occur during moisture loss in partially-saturated 
clay-rich porous media. The local state of stress in clay-bearing porous media during drying can cause cracks 
to be induced because micro-scale processes in expandable clay minerals can induce macroscopically observed 
volumetric variations (Ilgen et al., 2017). This damage includes but is not limited to the formation, propagation, 
and coalescence of micro- and macro-cracks, and the emergence of shearing planes and other modes of rapid 
macroscopic failure. Such grain scale mechanical interactions generate high frequency (kHz) elastic waves that 
typically occur in geologic granular media (Michlmayr et al., 2012).

A key goal that drives the vast application of the non-destructive acoustic emission (AE) monitoring technique, 
is the assumption that AE signals are related to spatio-temporal responses and variations in the properties of the 
microstructure of materials, and contain features that can be used to identify the underlying generating mech-
anism(s). The ability to identify an infiltrating or escaping fluid front from damage mechanisms or zones of 
weakness using AE waveforms has significant advantages especially for predictive modeling and the recognition 
of unanticipated behaviors of a system. In consideration of these benefits of AE, machine learning (ML) tech-
niques play a vital role in the acquisition of additional information from the data. ML techniques, particularly 
data-driven methods, interpret data based on the features and intrinsic patterns which are learned from the history 
of the system or applied processes. Application of supervised or unsupervised ML methods can greatly enhance 
the scientific discovery process by rapidly sifting through massive data sets to identify similarities and differ-
ences among signals (Bergen et al., 2019). The application of ML methods to differentiate AE waveforms is an 
invaluable tool for analysis and interpretation of data, owing to the ability to separate large datasets into smaller 
classes that are reflective of the intrinsic dynamics or physics that generate the emissions. For many experiments 
where AE data are recorded, ML techniques may help unravel the initiating source mechanism(s) especially if 
multiple sources exists. This would be particularly advantageous in systems where AE is generated from crack 
nucleation, fracture propagation, interfacial debonding, delamination, fracture coalescence, creep, cavitation, or 
advancing fluid fronts. Exploiting the intrinsic feature recognition ability of many supervised or unsupervised 
ML techniques can enhance event association, linking the whole or distinct characteristics of an AE waveform to 
a particular generating mechanism.

Several ML techniques have been explored to improve the accuracy of data analysis methods fundamental to 
earthquake science, microseismic and acoustic emission studies. Methods that have been expressly used to 
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improve the accuracy of AE event location include artificial neural networks (ANN) and support vector machines 
(SVM) (Zhao & Glaser, 2020), SVM classifier coupled with probabilistic output (Ince et al., 2010), Gaussian 
process regression with radial basis function (RBF) Kernel (Hensman et al., 2010) and cascaded region-based 
convolutional neural networks (CNN) (Wu et  al.,  2018). Several studies have tested ML techniques such as 
CNN (Guo et al., 2021), CNN coupled with K-means clustering (Chen et al., 2019), time delay neural network 
(King et al., 2021), and deep recurrent neural networks using long short-term memory architecture (Zheng, Lu, 
et al., 2018) to improve arrival time picking algorithms (auto-selection of the P- and S-wave arrival times). A 
random forest (RF) regression (supervised learning) has been employed to extract features of creep (Biswas 
et  al.,  2020) and to predict the onset of laboratory earthquakes (Rouet-Leduc et  al., 2017) using information 
from continuously recorded acoustic emissions. A decision tree ensemble method, gradient boosted trees (the 
XGBoost Implementation) has been used to estimate fault friction from the instantaneous statistical charac-
teristics of the AE signals, Rouet-Leduc et al.  (2018) and Hulbert et al.  (2019). ML models like multivariate 
Gaussian distribution (Wang, Hou, et al., 2021), wavelet transform coupled with ANNs (Liu et al., 2015), CNN 
(Huang et al., 2021), CNN with an antinoise architecture (Chen et al., 2019), twin neural networks (Nolte & 
Pyrak-Nolte,  2022) and RF compared with SVM (Lee et  al.,  2021), have been used to explore and unravel, 
features and patterns in recorded acoustic emissions, and classify and cluster them based on the mechanism 
that generated the release of energy (e.g., fracturing, infiltration of a drying/fluid front or evolving damage). 
Many of the ML models mentioned above involve some permutation of neural networks. Neural networks offer 
several advantages that include the ease of use and implementation with minimal statistical training, ability 
to implicitly detect complex nonlinear relationships between dependent and independent variables, ability to 
detect all possible interactions between predictor variables, and the availability of multiple training algorithms 
(Tu, 1996). Neural networks are however essentially a black box, present a great computational burden, are prone 
to over-fitting of the data, accuracy is dependent on the skills of the implementer, and the model development is 
characteristically empirical (Tu, 1996).

Emerging dimensionality reduction techniques, such as the dynamic mode decomposition (DMD), have garnered 
much attention since these methods simultaneously (a) reveal low-rank spatio-temporal patterns of activity 
(DMD modes), (b) discover dynamics in this low-rank subspace, and (c) provide approximations in terms of 
linear dynamical systems, which are amenable to simple analysis techniques (Brunton & Kutz, 2020). The model 
applied here, dynamic mode decomposition with control (DMDc), has theoretical connections to Koopman 
theory (Brunton & Kutz, 2020), and incorporates control theory through the addition of external input signals 
(Proctor et al., 2016). A recent extension of this DMDc method has relaxed the need for known input (supervised 
learning), instead allowing unsupervised learning of controls signals from the data (Fieseler et al., 2020).

In this paper we present the application of the novel unsupervised data-driven method of DMDc to AE signals 
recorded over 6 days during the drying of 3 types of saturated analogue rocks. DMDc is used to characterize the 
AE waveforms based on the initiating mechanism(s) and to examine the reconstructed patterns of recorded elastic 
waves. With DMDc, the intrinsic dynamics embedded in the AE waveforms are captured and the meaningful 
features of the signal data are efficiently reconstructed. DMDc groups the signals by the levels of complexity (i.e., 
linear vs. nonlinear data) and according to its relevance to probable AE generating mechanism and spatiotemporal 
interactions in the system. In the absence of detailed ground truth knowledge of the initiating mechanism of each 
acoustic emission, DMDc provides a valuable method to identify the different type of sample structures from 
recorded AE.

2.  Experimental Methods
2.1.  Experimental Sample Preparation

Analogue rock samples were fabricated to study the signatures of acoustic emission mechanisms from rock 
undergoing dehydration. These synthetic rocks minimize the complexities that can be encountered when evaluat-
ing data obtained from complex natural materials where sample-to-sample heterogeneity may prevent repeatable 
testing of hypotheses. Samples were fabricated with different internal structures with external dimensions of 
38.1 mm ± 0.5 mm in diameter by 76.2 mm ± 1 mm in length. The synthetic samples were composed of ordinary 
Type II Portland cement (OPC from LaFargeHolcim:North-America:Inc, 2018), Ottawa sand (maximum parti-
cle size of 250 μm (U.S.-Silica, 2019), and montmorillonite K10 clay (product number: 69866 Sigma Aldrich). 
The montmorillonite used in this study is a commercially available clay with a reported surface area range of 
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220–270 m 2/g (Sigma-Aldrich, 2019). The three types of samples were: (a) 
clay-free reference samples composed only of mortar (i.e., mixture of OPC 
and Ottawa sand) and referred to as ”Mortar”; (b) a mortar samples with local-
ized spherical assemblages of clay particles and referred to as ”Localized”; 
and (c) a mortar sample with clay particles randomly distributed throughout 
the mortar matrix and referred to as ”Distributed.” The fabricated synthetic 
rocks are rich in CaCO3 and SiO2. Due to this composition the distribution 
of clay into such a matrix results in a rock analogue that bears a similarity 
to argillaceous rocks such as marls which are clay-bearing carbonate rich 
media. Marlstones are calcium carbonate or lime-rich mudstones with varia-
ble amounts of clays and silt (Pettijohn et al., 2012).

The reference matrix of the samples was made with a mixture ratio of 1:2.5 
cement to sand, and an average water to cement ratio of 0.87. The high water/
cement ratio for the matrix is used to obtain the same water/cement ratio 
used for the clay-containing samples. To fabricate a Mortar sample, the dry 
ingredients were first mixed together using a kitchen grade food processor 

for 3–5 min. Using a kitchen grade stand mixer [5-Qt KitchenAid stand mixer], deionized water was added to 
the combined dry ingredients and mixed at speeds between 2 (95 revolutions per minute (rpm)) and 4 (135 rpm) 
for no more than 5  min. A small square dental lab vibrator model oscillator with voltage outputs of 110  V 
(60 Hz) ± 10% and 230 V (50 Hz) ± 10%, and 3,000–3,600 cycles per minute was used to compact the wet 
blended mixture into the cylindrical molds and stimulate the removal of larger pockets of air. After vibration, 
each mold was covered with a plastic cylinder to minimize water loss during hardening and setting, and were 
stored within a covered chamber for 24 hr. The durability and strength of the fabricated samples depend on the 
hydration of cement, which is affected by the temperature and availability of moisture. After 24 hr the samples 
were de-molded, and placed into zip-locked plastic bags filled with deionized water, and each sample type was 
placed in a sample specific curing tank. All samples were then subjected to submerged curing in a plastic tank 
at a temperature of 30°C ± 1°C for a period of 7 days. Upon completion of curing, the samples were removed 
from the water bath for analysis. For the samples with clay material, the clay powders were pre-soaked for at least 
48 hr prior to fabrication to ensure that the clay particles were fully saturated before adding the clay slurry to the 
OPC mortar mixture. This step facilitates good cement hydration by minimizing the amount of water the clay 
may divert from the matrix during the process of cement hydration. To fabricate the localized clay sample, the 
spherical assemblage of clay particles was formed by freezing a portion of the pre-soaked clay slurry for 24 hr 
prior to fabrication at approximately 5°C. Immediately post curing the uniaxial compressive strength (UCS) of a 
minimum of 3 representative saturated samples for each synthetic rock type was obtained using an Instron loading 
system where the load was applied in the axial direction at a rate of 0.08 mm per minute. The UCS is estimated 
using the maximum load recorded prior to failure and the cross-sectional area of the sample (mm 2). The UCS 
range for the clay-free rock analogue was 9.5–12.2 and 6 Mpa for the localized clay sample. A range of UCS 
values, 3.5–5.5 Mpa, was measured for the distributed clay synthetic rock; and in comparison, water saturated 
UCS values for Upper and Middle Miocene marlstones as noted by Erguler and Ulusay (2009) were 4.5 and 3.7 
Mpa respectively. To prepare the sample for AE monitoring, before affixing transducers to the surface of a rock, 
each sample was allowed to sit for 10–15 min to minimize surface water which could hinder the secure coupling 
of the acoustic emission transducers.

2.2.  AE Data Acquisition Setup

Drying experiments were performed on the unconfined samples under ambient temperatures and relative humid-
ity for six (6) days. Six (6) Mistras Group - Physical Acoustics Corporation Micro 30 transducers were affixed to 
each sample using hot gorilla glue as a couplant (see Figure 1) to monitor the behavior of the unbounded clay-free 
and clay-rich analogue rocks during moisture loss. These μ30 sensors have a flat frequency response over the 
range of 100–600 kHz, and a resonant frequency at 125 kHz. In all experiments the sensors were attached to a 
Mistras Express 24 Channel AE System through a single-ended differential pre-amplifier set to a gain of 60 dB. 
Ambient noise was filtered using a threshold of 25  dB. Acoustic emissions were recorded with the Mistras 
AEWin Windows based software (Physical-Acoustics:Mistras-Group, 2018) when the signal amplitude exceeded 
this prescribed threshold. The threshold was fixed on the low end to accommodate AE with lower amplitudes that 

Figure 1.  Acoustic emissions Monitoring transducer placement on Mortar 
only sample.
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were affected by the expected attenuation of waveforms which is observed 
as porous mediums become more damaged with fractures. Appropriate 
AE acquisition parameters to be used for monitoring and capturing events 
across  all samples were established with preliminary AE monitoring test. 
These parameters were defined in the AEWin software as the peak definition 
time which was set to 200 μS, the hit definition time set to 800 μS, the hit lock 
out time set at 1,000 μS and the maximum duration which was 1,000 μS. AE 
data were recorded throughout the drying experiment at a sampling frequency 
of 4 MHz for a record length with 2,048 points. Continuous recording was 
not performed to minimize recording noise in the data. Hundreds of acous-
tic emissions were produced resulting in a combined catalog of events that 
contained 36,793 AE waveforms, representing a potential array of generating 
mechanisms caused by interfacial processes (e.g., evaporation, imbibition, 
drainage or bubble collapse) and chemo-mechanical microscopic processes 
in expandable clay (e.g., volumetric changes that cause interfacial debonding, 
crack nucleation, etc.). Data are provide in Table 1 for the AE recorded per 
channel per sample type. There are notable differences in the number of AE 
recorded per transducer. This is attributed to the placement of the transducer 
relative to the event (which affects the collection angle), the coupling of the 
transducer to the sample, and environmental conditions. Some transducers 
will have difficulty recording a potential event if for example, the arrival 
amplitude is below the prescribed threshold of 25 dB. An AE occurring near 
one transducer then traversing the sample propagating through pre-existing 

cracks may be more difficult to record at transducers located farther away from the source or closer to a highly 
damaged zone.

2.3.  AE Sensor Calibration

Calibration experiments were performed utilizing the methods described in McLaskey and Glaser  (2010); 
McLaskey and Glaser (2012); McLaskey et al. (2015) and Wu and McLaskey (2018) for a ball impact source. We 
leave it up to the reader to extract the intricacies of this transducer calibration process which is outlined in the 
above mentioned references. For the calibration setup shown in Figure 2a, the sensors were coupled to the alumi-
num plate with hot glue. Several sources of different materials and diameters were tested, but data are only shown 
for a titanium ball source 0.8 mm in diameter with a corner frequency of 648 kHz. The ball source was vertically 
dropped three times from a drop height (DH) of 914 and 305 mm inside a transparent polycarbonate tube, onto 
a 102 mm thick (3-direction) Aluminum plate that was 610 mm in length and width (1 and 2 directions). The 
propagation speed of the longitudinal and shear waves in the Aluminum plate were 6,355 m/s and 3,805 m/s 
respectively. The calibration of the transducers were performed to compute the instrument response I(ω) which is 
obtained by deconvolving the theoretical displacement from the recorded signal (see Wu and McLaskey (2018)). 
Since DMDc is performed on data in the time domain, the calculated I(ω) is converted from the frequency domain 
to the time domain using the inverse Fourier transform, and the DMDc method is applied to these signals. The 
reconstruction accuracy for all transducer locations per DH for a titanium source of 0.8 mm diameter is shown in 
Figure 2b with inset for the transducer located at x4, a representative waveform of I(ω) is shown in Figure 2c and 
the waveform reconstructed from the learned control signal in d for the transducer located at x4.

2.4.  Data Acquisition for Damage Characterization

At the end of the experimental drying and AE monitoring period, 3D X-ray tomographic reconstructions of 
the state of the internal structure of each fabricated rock analogue were obtained with a 3D X-ray microscope 
(Zeiss Xradia 510 Versa) with a 0.4X objective, with varied exposure times and voltages (see Table 2), power 
10 W, Zeiss proprietary filters, and voxel edge length resolution of approximately 40 μm. The parameters used 
in scanning recipes designed for the 3D X-ray Microscope are chosen to gain the most optimal data with compa-
rable grayscale X-ray intensity histograms which are used to perform thresholding segmentation. To improve the 
signal-to-noise ratio all 3D X-ray microscopy is performed at bin 2 which is a process that combines the charges 

Specimen type Distributed Localized Mortar

Acoustic Emission Data

  Sensor 1 [Top] 10,045 147 39

  Sensor 2 [Base] 2,615 0 498

  Sensor 3 [TL] 5,956 140 64

  Sensor 4 [BL] 3,006 207 17

  Sensor 5 [TR] 8,200 905 153

  Sensor 6 [BR] 4,405 380 21

X-ray Microscopy Data

  Clay volume (%) 20 7 0

  Damage volume (%) 95 7 0

  Segmented void volume (%) 10 9 3

Table 1 
Number of Acoustic Emissions Recorded per Specimen Type and for Each 
Sensor Instrumented on the Each Synthetic Rock, and Image Analysis 
Results Regarding Clay Volume, Damage to the Microstructure, and Total 
Porosity (Void Volume), Where TL = Top Left, BL = Bottom Left, TR = Top 
Right, and Br = Bottom (See Figure 1 Right)
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from adjacent pixels to form a super-pixel. At bin 2 four (4) native pixels of 
the charge-coupled device are summed.

2.5.  Image Data Analysis for Damage Characterization

All image processing which includes segmentation, data analysis, and visu-
alization were performed using Object Research Systems (ORS) Dragon-
fly image processing software (ORS-Inc, 2020) and results are provided in 
Table 1. From the detailed 3D image data sets of the rock analogs, observa-
tions of the state of the microstructure and physical mechanisms responsible 
for macroscopic damage evolution and the generation of AE are examined 
which is crucial for the interpretation of the recorded AE data. The pore and 
fracture networks are quantified using segmentation procedures that rely on 

Figure 2.  (a)Experimental setup for acoustic emissions Physical Acoustics Corporation (PAC) Micro-30 transducer calibration, (b) reconstruction accuracies for I(ω), 
(c) a representative waveform calculated for a drop height of 914 mm, and (d) the reconstruction of the data using the learned control signal.

Sample type
Pixel 

resolution μm
Voltage 

(kV)
Power 
(W)

Exposure 
(secs) Filter

Mortar 40.14 160 10 2 HE2

Localized Clay 39.81 120 10 2 HE1

Distributed Clay 39.43 140 10 1.1 HE1

Table 2 
Zeiss Xradia 510 Versa X-Ray Microscope Settings for Imaging the Mortar, 
Localized and Distributed Synthetic Rock Samples at the 0.4X Objective and 
Bin 2



Journal of Geophysical Research: Solid Earth

FIESELER ET AL.

10.1029/2022JB024144

7 of 20

the measured continuous grayscale which is a function of the material properties. All pixels are composed of a 
gray shade that varies from black (0) to white (255) and the value of each pixel carries information regarding the 
x-ray intensities which relate to the bulk density (relative density if no calibration is performed) of the material at 
that particular location. Darker areas are locations representative of material with lower bulk density, black areas 
signify voids, and brighter intensities (brighter greys or white) identity locations of higher bulk density. Features 
falling within similar gray bandwidths of the data measured intensity histogram, are apportioned into discrete 
groups which are defined as the undisturbed synthetic rock material, unconnected pores (e.g., round pores), or 
connected voids spaces (e.g., cracks). During refinement of each segmentation group, only features greater than 
5-voxels are considered. The percent volume of voids per sample (Table 1) which is a measure of the effective 
total porosity was calculated using the total bulk volume of the sample and the segmented regions of interest 
(ROI) that represented the total void volume (connected and unconnected voids). The percent volume of mate-
rial damaged during the advancement of the drying front also reported in Table 1, is estimated using an ROI of 
segmented rock that contain fractures and the bulk volume of the synthetic rock.

3.  Machine Learning Model
3.1.  Data Driven Dynamic Mode Decomposition With Control (DMDC)

The data-driven strategy presented in this paper is based on dynamic mode decomposition (DMD). DMD provides 
a linear model for the dynamics of the state space xj = x(tj). It specifically finds the best fit linear model:

𝐗𝐗
′
= 𝐀𝐀𝐀𝐀� (1)

where 𝐴𝐴 𝐗𝐗 = [𝐱𝐱1 𝐱𝐱2 … 𝐱𝐱𝑚𝑚−1] and 𝐴𝐴 𝐗𝐗
′
= [𝐱𝐱2 𝐱𝐱3 … 𝐱𝐱𝑚𝑚] are temporal snapshots of the system that are offset by one 

time step.  There are a number of variants for computing A (Kutz et  al.,  2016), with the exact DMD simply 
positing A = X′X † where † denotes the Moore-Penrose pseudo-inverse. However, the optimized-DMD (Askham 
& Kutz, 2018) (opt-DMD) and bagging-optimized DMD (Sashidhar & Kutz, 2021) (BOP-DMD) provide algo-
rithms that provide substantial performance gains when considering noisy data. However, such improved algo-
rithms have yet to be incorporated with control architetures.

Dynamic mode decomposition with control (DMDc) (Proctor et al., 2016), capitalizes on all of the advantages 
of DMD and provides the additional innovation of being able to disambiguate between the underlying dynamics 
and actuation signal uj = u(tj). For a matrix of input signals 𝐴𝐴 𝐔𝐔 = [𝐮𝐮1 𝐮𝐮2 … 𝐮𝐮𝑚𝑚−1] , DMDc will regress instead to 
the linear control system

𝐗𝐗
′
= 𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁.� (2)

DMDc only utilizes snapshots in time of the state space and control input, making it compelling for systems 
whose governing equations are unknown. The governing matrices (A and B) along with the control signal (U) 
produce a predictive model, such that the state of the system far in the future can be predicted. For instance, the 
third time step can be estimated from the first via:

�3 = �(��1 + ��1) + ��2� (3)

DMDc can also be improved by enriching the observations of the dynamics in order to produce a more accurate 
Koopman (linear) operator (Proctor et al., 2018).

3.2.  Learning Control Signals via Sparse Optimization

DMDc (eq.2) can be thought of as an error minimization problem over the dynamics and actuation matrices, 
A and B. If the control signal is unknown, the minimization must be extended to the control signal U itself. 
However, there is now a trivial solution where the control signal dominates the model: X2 = BU with A = 0. For 
this reason, an assumption must be made about the control signals. In this case, the statement that these signals 
are sparse is directly interpretable, and means that initiating events should be rare. This “sparsity constraint” can 
be expressed in a mathematically precise way using the ℓ0 norm:

min
𝐀𝐀,𝐁𝐁,𝐔𝐔

[
||𝐀𝐀𝐀𝐀1 + 𝐁𝐁𝐁𝐁 − 𝐗𝐗2||2 + 𝜆𝜆 ||𝐔𝐔||

0

]
� (4)
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Directly solving this optimization problem is extremely difficult, although there are efficient algorithms in 
certain cases (Jewell & Witten,  2018). More recently, a convex relaxation of the ℓ0 to an ℓ1 norm is often 
solved (Donoho,  2006), though this has been recently shown to lead to errors in its selection pathway (Su 
et al., 2017). We use a different approximation, the sequential least squares thresholding algorithm as described 
in (Brunton et al., 2016a), which has been shown to converge to the minima of the original ℓ0 problem (Zhang 
& Schaeffer, 2018; Zheng, Askham, et al., 2018). The code uses a modified form of Akaike Information Criteria 
(AIC) (Akaike, 1973; Sakamoto et al., 1986) to choose the best iteration of the algorithm. This modification 
reduces the importance of each element of the matrix U, because each entry is not a ”global parameter” as in 
the original derivation of AIC; more information and derivation is given in the supplement. The matrix U in this 
algorithm is additionally constrained to be positive, for better interpretability as ”on” transition signals. Note that 
the elements of B can be negative, and thus the action of control signals may be positive or negative.

3.3.  Data Preparation for DMDc

Application of DMDc to acoustic emission data is advantageous because it is an unsupervised learning method 
that requires no training data and can be applied to the raw acoustic emission full waveforms. Although there 
are some theoretical studies on noise in the original DMD algorithm (Dawson et al., 2016), these have not been 
extended to the control setting and it is not trivial to do so. In addition, because this method is initialized using 
the residual as calculated by setting U = 0 in Equation 4, the results are sensitive to filtering. In particular, the 
assumption that U is sparse in Equation 4 is equivalent to sharp discontinuities in the original time series, which 
should not be filtered away.

DMD requires multiple dimensions in order to produce oscillatory dynamics, and will otherwise produce only 
exponential decay or grow. However, time-delay embedding can be used in the single-dimensional case to increase 
the dimensionality, as in related works (Brunton et al., 2017; Champion et al., 2019). This procedure involves 
stacking the data, such that the new data matrix contains vectors that are offset by one time step:

𝐗𝐗 =

[
𝑥𝑥1 𝑥𝑥2 … ⃗𝑥𝑥𝑚𝑚−1

]
� (5)

where X is the final matrix “embedded” with dimension m, and with final shape (n − m)xm. 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is the original time 
series of shape nx1 with index starting at 1 and ending at n − m. The embedding dimension m is a free parameter.

No other normalization or amplitude modulation was applied to the data.

3.4.  Quantification of Reconstruction Accuracy

Reconstruction accuracy (variance explained) (shown in Figures 7 and 9) is quantified via the following equation:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 −
|𝐗𝐗 − 𝐗𝐗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟|2

|𝐗𝐗|2
� (6)

Where X is the recorded data, Xreconstructed is the reconstructed data obtained using Equation 3. If the residual is 
greater than the norm of the original data, that is, if the reconstruction of the model is worse than a flat line at 0, 
then the value of the accuracy will be <0.

4.  Results
4.1.  Characterization of Damage in Fabricated Rock Analogs

The drying experiments on the analogue rock samples were designed to measure AE signals from samples where 
the AE are generated only from mechanisms that occur during fluid movement (Mortar) and from samples 
(Localized & Distributed) where additional AE generating mechanisms exist in addition to those emanating from 
the advancing drying front, namely cracking from volumetric changes in the clay during dehydration. Significant 
differences are observed in the internal structure of the different sample from X-ray images taken at the end of the 
experimental drying period. Figures 3a–3c provide a comparison of 2D images taken from 3D X-ray tomographic 
reconstructions of the 3 sample types after 6 days of drying. No cracks are visible in the Mortar sample at a reso-
lution of 40 μm (Figure 3c). The Mortar sample was composed of OPC and Ottawa sand only (Figure 3c), and 
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the internal structure is mainly dominated by pores, fairly spherical voids, with a pore volume of 3%. The round 
pores are the result of remnants of air entrainment that occurs during mixing, setting and vibration compaction. 
All sample types contain these pores to some degree.

The crack distribution in the Localized and Distributed samples differs. In the Localized sample, cracks are 
observed internal to (Figure 3b) and around the perimeter (Figures 4d–4f) of the clay structure but not within 
the matrix. In Figures 4d and 4e, the body of clay and the discontinuities are represented in brown (clay) and 
red (fractures), respectively. The damage in the localized sample formed because of interfacial debonding at the 
clay-cement interface that occurred from shrinkage of the clay in response to moisture loss, and are confined 
to regions where the swelling clay material was located. These discontinuities evolved as the localized clay 
assemblage shrank (Figure 3b), and the fractures are only observable within or surrounding the zones of swelling 
clay (Figures 4d, 4e, 4f, and 3b). However, in the Distributed sample, an extensive crack network is observed 
(Figures 3a and 4a–4c). The segmented fracture volume is approximately 10% (percent ratio of the volume of 
voids to the volume of solid material), and the volume of the damaged zone 95% (Table 1.) In Figures 4a and 4b, 
the cracks are highlighted in red. A key question is whether the AE signals differ in terms of frequency content, 
phases, and decay given the different distribution of induced cracks from clay shrinkage and the fact that the 
Mortar sample contained no cracks.

4.2.  Conventional Analysis of Acoustic Emission Data

All sample types generated acoustic emissions during moisture loss, with the highest number of acoustic emis-
sions occurring in the distributed clay sample (34,227 AE). The number of acoustic emissions recorded per 
specimen type and sensor location are given in Table 1, and the approximate sensor locations are marked with red 
dots in Figure 3. The low count number for Sensor 2 on the Localized sample is attributed to sensor decoupling 
from the sample surface. The distribution of events count (number of hits per every 2 hours) over the duration 
of the monitoring period for the Mortar and Localized samples are very similar and quite different from the 
event distribution from the Distributed sample Figure 5. Acoustic emissions were generated immediately from 
the onset of drying. During the initial 2 hr of drying, 0.12%, 28.08% and 35.53% of the total number of events 
were measured on the Distributed, Localized and Mortar, respectively. Within the first 10-hr, the Mortar sample 

Figure 3.  2D image slices from the center of the (a) distributed clay, (b) localized clay, and (c) clay-free (mortar) samples 
with approximate sensor placement, marked by red dots to guide the eye.
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Figure 4.  3D visualizations of the interior of the Distributed (a)-(c) and Localized (d)-(f) specimens showing fracture damage (a and d), the full crack network (b and 
e), and the volume thickness of the segmented crack network within the distributed sample (c) and within and surrounding the body of clay (f). The volume thickness 
is a color-coded map generated from segmented regions of interest (ROI) that provide referential values of the local thickness between boundary points. The volume 
percent of clay, damage, and discontinuities (voids) are reported in Table 1.
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emitted 92.81% (271 AE hits) of the total number of events recorded for this 
specimen. The Localized sample emitted 44.08% (815), while the Distrib-
uted sample generated <1% (247) of its total AE count. A steep decline in 
the number of AE is observed for the Mortar and Localized specimens, and 
the event distribution is log-normal. For the Distributed sample, 11% (3,982 
hits) of the total number of AE for this specimen was recorded after 20-hr of 
drying. This sample continued to generate AE at an average rate of 550 hits/
hour for the next 20 hours. The Mortar specimen generated no events after 
20 hr (Figure 5), while the Localized sample generated <1% of its total AE 
hits every 2 hours.

The traditional characteristics (amplitude, frequencies, etc.) of the acoustic 
emission signals were evaluated. In Figure  6, the distribution of the peak 
frequency (kHZ) is plotted against the event count (Figures 6a–6b) and ampli-
tude (Figure 6c) for the 3 sample types. These plots are used to explore the 
data space and are an analysis tool that can indicate if the frequency distri-
butions are similar across the samples, thereby illuminating if one particular 
synthetic rock type is dominated by a higher quantity of low peak frequency 
or low amplitude events (which may relate to the occurrence of damage), and/
or if the majority of AE for a sample occur within a distinct frequency range. 
Such is observed in the AE data recorded for the Mortar sample where the 
peak frequency of the AE occurred only in the 225–235 kHz band (Figures 6b 
and 8a). However, the data from the Distributed and Localized samples fell 
into three different frequency bands (55–75, 100–150 and 210–265  kHz) 
(Figure  6a). The broadness of the amplitude-peak frequency distribution 
for the Distributed sample which had the most complicated crack network 
(Figure 4a) shows the complexity of the signal characteristics from samples 

with both fluid movement and induced-cracking, and potentially from signal interactions with multiple cracks 
along the propagation path.

4.3.  Learning Dynamical Models With DMDc to Differentiate Data

Here we use sparse regression to discover control (onset) signals, and then apply DMDc to determine if the AE 
signals from the 3 types of samples exhibit similar or different dynamic responses by reconstructing the signals. 
The acoustic emission waveforms recorded in the Mortar samples are robustly reconstructed by the linear dynam-
ics and control input (Equation 4). As shown in Figure 3c this sample type sustained no visible damage within its 
microstructure. These data when reconstructed with DMDc are characterized by higher reconstruction accuracy 
(RA) (Figure 7a). This demonstrates that the dynamical system corresponding to an AE (linear dynamics) can 
correspond to the underlying physical process (drying mechanism).

As mentioned in the experimental results this sample is uniquely confined to a small distinct frequency band 
Figure 8a clay-free, when compared to the other sample structures defined by increasing complexity, that is, 
Figure 8a-localized and -distributed clay specimens. Examining representative waveforms at different levels of 
accuracy highlight an existing similarity in the underlying intrinsic dynamics across all sample structures. In 
Figure 7b Level I, the representative waveforms shown are similar for all three sample structures, and on Level 
two for the clay-free and localized clay structures in particular. As the reconstruction accuracy drops below 0.3, 
the representative AE waveforms are no longer efficiently reconstructed and cannot be sufficiently described 
as a linear dynamical system (Figure 7b Level III and IV). Essentially, Figure 7 is an example of the simplest 
dynamical system model to be obtained from acoustic responses that occur in the synthetic rocks, and with linear 
dynamics as presented in Equation 1, a subset of signatures in the AE waveforms can be explained. The values of 
each level (I - IV) are not classification boundaries, but rather show example time series with different qualitative 
behavior.

Figure 7 additionally shows that the initiating spontaneous events can be discovered directly from data. Repre-
sentative acoustic emission waveforms are plotted at levels of peak frequencies from high (level I) to low (level 

Figure 5.  Stacked histogram of the total number of acoustic emissions 
recorded per hour over the duration of 160 hr of drying under ambient 
conditions for all samples, distributed clay, localized clay, and clay-free. Each 
bar represents 2-hr of drying time.
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Figure 6.  (a) Peak frequency (kHz) versus event count for all specimen types and (b) for Localized clay and clay-free samples, along with the peak frequencies (kHz) 
versus amplitudes (dB) which are displayed in (c) for all sample types the distributed clay, localized clay, and clay-free samples.
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IV which is dependent on the sample structure) in Figure 8b, here it is quickly observed that AE recorded for 
the different sample structures do not have a clear signature in the frequency space. Moreover, peak frequency 
clusters do not clearly correspond to a distinct difference in underlying physical processes.

4.4.  Differentiating Acoustic Emission Type With Reconstruction Accuracy (RA) and Peak Frequency

Clustering the AE obtained from monitoring the experimental rocks using the peak frequency only (Figure 9) is 
not a sufficient method to appropriately distinguish the different sample structures and phenomena that produce 
AE. Examining the reconstruction accuracy obtained from DMDc (Figure 7) results in an explicit differentiation 
between the different synthetic rock structures, their respective level of complexity and acoustic emission wave-
forms. Additionally, comparing the RA against the peak frequency, as presented in Figure 9a, provides some 
insight regarding the AE generating mechanisms. As the contours overlap, relationships between the analogue 
rocks and the AE generated by them are exposed. A fraction of the AE data obtained for the clay-bearing struc-
tures occur at lower RA and experience no overlap with the AE obtained for the clay-free structure. Interrelated 
AE are observed for all samples within the confines of the contours representative of reconstructed data learned 
from data recorded for the clay-free sample.

5.  Discussion
Porous materials attract and hold water molecules in quantities that depend directly on the ambient relative 
humidity (Kallel et al., 1993). Upon drying, especially in clay-bearing porous media many individual or coupled 
mechanisms occur that result in the release of energy. An important unsolved problem is classifying the acous-
tic emission according to the generating mechanism using only AE monitoring techniques that non-invasively 
investigate the internal dynamics of materials. Here two non-destructive methods, X-ray microscopy and acoustic 
emission monitoring, are used to analyze the materials and mechanism occurring during drying. To fully exploit 
the acoustic emission data, an unsupervised ML algorithm, an extension of DMDc, is applied as a modeling 
tool for analyzing the spatial-temporal spread, reconstructing relevant aspects of the waveforms, and providing a 
means to partially cluster the AE according to underlying physical generating mechanism.

Analysis of post-drying 3D reconstructed tomographic data (2D Figure 3 and 3D Figure 4) reveal clear differ-
ences among the analogue rocks. Alterations in the state of the porous media (from high moisture content to low 
moisture content) and changes within the matrix of the internal stress state are expected to generate acoustic emis-
sions. Since the clay-free (Figure 3c) sample experiences no observable damage in the form of discontinuities it 

Figure 7.  A subset of waveforms displaying linear dynamics. (a) Distribution of the variance in reconstruction accuracy per 
sample type, where distinct clusters are observed, and (b) representative time-series, reconstructed data (red) and, control 
signals for each sample type at the respective variance line. The values of each level (I – IV) are not classification boundaries, 
but rather show example time series with different qualitative behavior.
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is simply the transformation from a wet porous structure to a dry porous medium that effectuated the recorded 
acoustic emissions (Figure 5). These events were therefore attributed to the mechanisms induced by the infiltra-
tion of the drying front as air intrudes the sample structure, such as those linked with interfacial processes induced 
by evaporation, imbibition, and drainage. Waveforms from these AE events are comparatively simple and can be 
reconstructed and described using a linear dynamical system (Figure 7b). Thusly, all waveforms of similar nature 
and high DMDc reconstruction accuracy are attributed to the removal of moisture and infiltration of air. Impor-
tantly, reconstruction accuracy is not a trivial function of simpler properties of the time series, like dominant 
(peak) frequency, making it a novel way to reveal underlying mechanistic information.

In this study, we additionally consider internally evolving stress states of the more complex localized and distrib-
uted clay samples. Damage within these structures is observed in the 3D X-ray microscopy data (Figures 3 and 4). 
In the background reference matrix of the localized clay sample no damage is observed (Figure 3b), instead all 
damage are localized and only exist in and around the assemblage of clay. Much of the observed fracturing is 

Figure 8.  (a) Peak frequency (kHz) distribution per specimen type and, (b) Representative time-series for each analogue rock 
type at approximately corresponding levels frequency where possible.

Figure 9.  Peak frequency clusters. (a) Contour plot of the distribution of reconstruction accuracy versus peak frequency 
(kHz) per sample type and, (b) example traces extracted at the different reconstruction accuracy levels where the Mortar 
(square), Distributed (circle), and Localized (triangle) occur.
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related to the unique properties of the swelling clay material that allow them to swell or shrink depending on the 
presence and chemistry of the in-situ fluid, and the conditions of the local environment. Besides being related 
to the mechanisms that occur as the drying front infiltrates the sample, the acoustic emissions generated here 
are also the result of macroscopic processes such as interfacial debonding, crack nucleation, propagation, and 
coalescence which are influenced by the microscopic chemo-mechanics of the shrinking clay particles. This 
also applies to the distributed clay sample, extensive fracturing was observed within the matrix, where fractures 
extended from the exterior all the way to the center of the sample (Figures 3a, 4a, 4b, and 4c). Multiple dominant 
frequencies are also present in these synthetic rocks (Figure 6c). Although the grouping of frequencies observed 
in Figures 6c and 8a and event counts (Figure 6b) seemingly cluster the data, dissimilarities in the waveforms in 
these respective groups are readily apparent (Figure 8b) thus indicating that the AE in these clusters may not share 
similar dynamics. As with the localized clay sample, dominant frequency ranges (Figures 6c and 8a), group-
ings by event counts (Figure 6a) and dissimilarities in waveforms extracted from the same ranges are observed 
(Figure 8b). High reconstruction accuracies (with the exception of one signal) were observed for I(ω) obtained 
through the ball impact sensor calibration method. Since DMDc is a linear method, and the calibration framework 
models I(ω) as a linear time-invariant system this output supports the abilities of DMDc in its current form. This 
begs the question of, are these well reconstructed, high accuracy waveforms only a representation of the sensor 
response? The recorded signal from an event is a convolution of the acoustic emission and the sensor response. 
As long as the acoustic emission is broadband, that is, is not a delta function, the measured signal contains 
information from the original emitted signal. If it was merely the sensor response, different frequencies would 
not be observed. The waveform contains information regarding the in-situ process, the state of the material, and 
its structural integrity. Furthermore, drying, that is, fluid movement is a dynamic process which can involve 
several simultaneously occurring phenomena and have been observed to emit AE by other authors (see DiCarlo 
et al. (2003); Chotard et al. (2006); Michlmayr et al. (2012); Moebius et al. (2012); Grapsas and Shokri (2014)). 
These waveforms are not solely a representation of the instrument response (which includes the cables, digitizer, 
coupling, recording instruments, etc). Future work with more detailed knowledge of the generating mechanism 
of individual waveforms which will include expanding on the calibration methods, will aid in efforts to assign a 
meaning to these putative clusters.

Assumptions and Limitations of Classic DMD and DMD with control (DMDc) which are linear methods, but 
many generating processes in the real world obey nonlinear dynamics. Specifically, DMD without control can 
only capture and reconstruct dynamics that are exponential growth, exponential decay, or oscillations. In any 
experimental settings that involves the recording of waveforms, the number of dynamical modes that can be 
captured is limited by the number of simultaneous measurement channels, with real data (no imaginary compo-
nent) requiring a minimum of two channels to capture a single oscillation frequency. The addition of control to 
the DMD method enhances the complexity of the dynamics that can be captured. In principle, arbitrarily complex 
time series can be produced (or fit) by this method, as long as all non-linearities are included in the control signal. 
The method in this paper extends classical DMD to discover the control signal as well as the dynamics. Thus there 
exists a trivial solution: the entire time series is control, and nothing relates to the dynamics, in Equation 1, A = 0 
and U = X. Regularization can be used to penalize this trivial solution, and proper initialization away from this is 
key in practice. This work and the associated code (Fieseler, 2019) uses a sparsity penalty, which is interpretable 
as control signals that are rare in time, for example, sparse initiating cracking events. However, different regulari-
zation could be used, for example, penalizing the total variation of the control signal, which is interpretable as an 
input which is piecewise-smooth in time. As DMDc is an unsupervised ML method, the data are not trained, and 
no training process or other fitting is necessary to apply this method to the various time series. Each dynamical 
mode, that is, frequency of oscillation, growth, or decay time scale, and learned control signal is independent, 
except for the sharing hyper-parameters which are consistent across all datasets. Thus, differences in the number 
of time series has no effect on the reconstruction accuracies or other results.

6.  Conclusion
In geophysics there has always been a great need for understanding and prediction of material behavior and 
responses of system from the laboratory to the large field scale. A major goal that drives many geophysical 
problems is the ability to model and predict subsurface materials and processes at high temporal and spatial 
resolutions. This requires a vigorous understanding of material properties, material behaviors, and the response 
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of the recording equipment and the materials when subjected to individual or coupled processes in different envi-
ronments (laboratory controlled conditions, at the field scale in geological reservoirs or on a larger global scale), 
for example, in-situ static and/or evolving environments at different scales. To achieve and improve fundamental 
understanding of processes and their relationship to the host geologic environment, researchers often use arrays 
of acquisition equipment (e.g., seismometers, geophones, transducers) to passively monitor and detect signatures 
of different process, for example, failure, damage propagation, and fluid flow processes, which can result in big 
data sets. The application of data-driven methods like DMDc provide new algorithms to leverage large quantities 
of data for scientific insight and understanding of geophysical and geo-technical materials and processes. The 
sparse regression method presented in this paper (DMDc) extends previous algorithms (DMD) and provides a 
new feature space to extract AE waveforms where the reconstruction accuracies are significantly higher. Attrac-
tive features of the presented ML approach lies in the fact that it is an accessible unsupervised data-driven 
method that can be used on large datasets obtained through non-destructive methodologies (e.g., passive seismic 
moni toring in the field or acoustic emission monitoring in a laboratory environment), requires no training data, 
and is purposed to learn and extract the underlying dynamics.

Here DMDc makes use of a sparsity penalty while learning and collectively discovering the underlying dynamics 
and control signals. The approach discussed in this paper simultaneously and robustly characterizes the dynamics 
and onset of AE waveforms that are characteristic to a subsection of the data. This algorithm also successfully 
reconstructs a subset of recorded waveforms that are believed to be representative of fluid front movement as 
these particular waveforms are the only AE recorded during the drying of the clay-free, crack-free (mortar) 
samples. Such AE associated with mechanisms of the advancing drying front that are defined by similarities in 
their underlying dynamics, are recorded in all fabricated rock samples. The phenomena that occur during the 
advancement of the drying front that produces these AE are closer to impulsive sources than what is observed 
for the clay- and crack-bearing physically complex distributed sample, and the reconstruction of such waveforms 
incorporates a simple impulse ring down. The outcome of the application of DMDc to these data indicate that 
these particular AE do not originate from mechanisms that will lead to long-term damage and such impulses 
are learned without a priori information. Moreover as the impulse ring down fails to capture the information 
embedded in waveforms when clay is distributed within the relatively homogeneous reference medium (mortar) 
it is indicative that the mechanisms that lead to damage, for example, cracking and debonding, coupled in time 
with an advancing drying front has a more complicated impulse than a simple ring down. Essentially this shows 
that the elastic wave energy generated from the advancing drying front is different from that generated during 
cracking as shown by a deterioration of the reconstruction accuracies for data representative of the latter. The 
insufficient understanding of these complex waveforms is essentially the result of several coupled mechanisms 
that overlap in the waveform spatially and temporally. Cracking and debonding, for example, which occur during 
the drying of clay-bearing analogue rocks involve tensile and shear forces that may manifest at different times or 
simultaneously during damage progression and may spatially coincide with the AE generating mechanisms of 
the advancing drying front.

While the AE waveforms with single, clear initiating incidences may be of interest in many areas of geophysics 
(e.g., research involving non-turbulent fluid movement in porous materials), DMDc should be improved to lever-
age the capabilities of this method to extensively explore waveforms that record overlapping information that 
possibly relate to the stages of cracking and progression of damage in a porous medium. As shown herein, the 
complex waveforms which are exclusive to the clay-bearing samples that contain damage in the form of cracks, 
fall outside the scope of the DMDc method in its present form. Incorporating additional information to the method 
will aid in the reconstruction of the functional form of the crack induced waves. Obtaining a robust representation 
of such waveforms can point to underlying physics which may not be currently evident. These waveforms should 
be further analyzed to improve the method to not only robustly reconstruct the AE waveforms but to also extract 
the finer scale differences embedded and overlapping in such waveforms. In follow-up work, nonlinear methods, 
for example, neural networks, can be employed to find a basis in which the dynamics are approximately linear 
(Lusch et al., 2018). Alternatively, the basis functions can be expanded by assembling more domain knowledge of 
the expected differential equations of the waveforms (Brunton, Brunton, et al., 2016; Brunton et al., 2016b) and 
such enhancements can lead to better reconstruction of different classes of complex signals. Developing a two tier 
ML model by coupling DMDc with methods that can extract characteristics of the non-linear dynamics will allow 
for further clustering of the AE waveforms into sections where data are related to fracture nucleation and prop-
agation or interfacial debonding. As non-destructive sensor technologies that capture acoustic emissions evolve, 
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analysis of the recorded time-series data can be coupled with modern ML methods to exhaustively explore the 
structure and composition of porous materials. This would expand the possibility of predicting the state of the 
system at some level of accuracy and the physical or acoustic mechanisms that generate AE thus allowing users 
to fully exploit the scientifically relevant information embedded in time-series geophysical data.

Currently there are several emerging methods that allow for a broader viewpoint of building models directly 
from noisy data, recent innovations in DMD, for instance, have shown that statistical bagging methods can 
greatly increase the discovery of robust, accurate and stable linear models (Askham & Kutz, 2018; Sashidhar & 
Kutz, 2021). This has motivated the use of ensembling and bagging for building nonlinear, parsimonious dynamic 
models (Fasel et al., 2022; Hirsh et al., 2021). Such non-linear dynamic models have the potential to unravel 
the contemporaneously overlapping information that are representative of AE or seismic events generated by 
different processes, for example, fracturing, slip on faults, chemical reactions, or the various phenomena that tran-
spire during fluid movement through porous media. This would promote better understanding of such complex 
waveforms, and shed light on difficult questions such as; Can the source of an acoustic emission occurring in 
the subsurface be predicted or identified? Can we discriminate events related to individual or coupled process, 
such as the emergence of damage as a result of cracking induced by fluid movement and changes in the water 
content during interactions with subsurface clay-bearing porous mediums (e.g., at the interface of natural rock 
and engineered barriers in nuclear waste disposal repositories)? The value of extending DMDc can be captured 
by the fact that even when the correct variables are unknown, such data-driven methods can be used to discover 
advantageous latent representations that are often directly related to unknown and not directly measured physics 
(Bakarji et al., 2022; Champion et al., 2019; Chen et al., 2019). Several methods are available in open source 
python notebooks (Demo et al., 2018; Kaptanoglu et al., 2021), making their use and implementation in a discov-
ery pipeline efficient and advantageous. All these methods, which are aimed at providing interpretable models, 
can also be used in combination with deep learning (Bakarji et al., 2022; Champion et al., 2019; Chen et al., 2019; 
Gin et al., 2021; Lusch et al., 2018). Thus data-driven modeling (Brunton et al., 2016a), like DMDc, offer flexible 
and robust mathematical framework for advancing scientific efforts and unraveling scientific questions.

Data Availability Statement
Software: The publicly accessible MATLAB (MATLAB, 2021) toolbox, Geophysics Control version, prepared 
by CSF that was used to perform the analysis of acoustic waveforms with the DMDc method is openly available 
for download from GitHub (Fieseler, 2019). url: https://github.com/Charles-Fieseler-Vienna/Geophysics_control 
Licensed under MIT License. Data: The acoustic emission waveforms collected during the monitoring of mois-
ture loss (under ambient laboratory conditions), in synthetic rock samples composed of OPC and sand, and 
OPC, sand and distributed or localized masses of montmorillonite clay are provided by CAM and LJPN, and 
is hosted by Purdue University Research Repository (PURR) Publications. The publicly accessible version 1.0 
publication bundle of the ”Data for Characterization of Acoustic Emissions from Analogue Rocks using Sparse 
Regression-DMDc” can be found with the following information: Publication repository: Data for Characteri-
zation of Acoustic Emissions from Analogue Rocks using Sparse Regression-DMDc v. 1.0 (#4077): https://doi.
org/10.4231/4K64-4818 url: https://purr.purdue.edu/publications/4077/1 Licensed under CC0 1.0 Universal.
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