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Abstract. A wavelet analysis is performed on seismic
waveforms of elastic interface waves that propagate along a
fracture. The wavelet analysis provides a direct quantitative
measure of spectral content as a function of arrival time. We
find that the spectral content of the interface wave signals is
not stationary, but exhibits increasing frequency content for
later arrival times, representing negative velocity dispersion.
The dispersion increases from -11 m/sec/MIz to -116
m/sec/MHz as the stress on the fracture is increased from 3.5
kPa to 33 MPa. The negative velocity dispersion agrees with
predictions from the displacement-discontinuity theory of the
seismic response of fractures, and can be used o fit fracture
stiffness.

Introduction

It has previously been demonstrated that seismic modes can
propagale along macroscopic fractures in homogeneous solid
media [Pyrak-Nolte and Cook, 1987; Nagy, 1991, Pyrak-
Nolte et al., 1992]. These interface waves may be regarded as
propagating eigenmodes generated by the interaction of
Rayleigh waves at the surfaces of two half-spaces, coupled by
the specific stiffness of the fracture. The displacement-
discontinuity boundary condition [Kendall and Tabor, 1971;
Schoenberg, 1980; Kitsunezaki, 1983; Pyrak-Nolte et al.,
1990a and b], that describes the coupling of the two half-
spaces, introduces a characteristic frequency into the dynamic
response of the fracture. Therefore, the originally non-
dispersive Rayleigh modes become dispersive when they are
coupled in the interface modes.

Elastic interface waves have the potential for use in seismic
characterization in the field, and may be especially uvseful for
determining the stability of fractured rock masses. In this
paper, we describe experimental measurements of elastic
interface waves propagating along a synthetic fracture in
aluminum. The velocity dispersion is obtained using wavelet
analysis and is compared with theoretical values from the
displacement-discontinuity theory for interface waves [Pyrak-
Nolte and Cook, 1987].

Velocity Dispersion Theory

Velocity dispersion of interface waves can be determined
theoretically wvsing the displacement-discontinuity model to
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simulate the seismic response of a fracture [Pyrak-Nolte and
Cook, 1987]. In this model, the stress across the fracture is
assumed to be continuous, and the displacement across the
fracture to be discontinuous. The discontinuvity in
displacement is inversely proportional to the specific
stiffness of the fracture. The specific stiffness, k, of a fracture
depends on surface roughness and contact area of a fracture
[Yoshioka and Scholz, 1989; Brown and Scholz, 1985 and
1986; Hopkins et al., 1987 and 1990] and is defined as the
ratio of the increment in stress to the resulting increment in
displacement.

There are two distinct normal modes of the interface waves,
designated as the "fast” and the "slow” interface wave. For the
fast wave, the displacement-discontinuity is normal to the
fracture plane (it is only sensitive to normal stiffness), while
for the slow wave, the discontinuity is parallel to the fracture
plane (it is only sensitive to shear stiffness). The slow
interface wave has been found experimentally to have larger
amplitudes [Pyrak-Nolte et al., 1992], for reasons related to
the energy partitioning between the two waves [Gu, 1994].
Therefore, in this paper, we focus on the dispersion properties
of the slow interface wave, which dominates the seismic
response of the fracture.

The phase and group velocities of the slow interface wave
are obtained by finding the solutions for the normal modes
[Pyrak-Nolte and Cook, 1987] in terms of the angular
frequency ® and the wavenumber k. These velocities are given

by
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and are shown in Figure 1 as functions of normalized frequency
based on the physical parameters given in Table 1. The slow
wave velocities have been normalized by the shear wave
velocity of the intact material and are plotted against the
frequency normalized by the characteristic frequency of the
fracture wo=K/Z, where Z is the seismic impedance of the half
spaces (i.e. Z = density * phase velocity). The phase and
group velocities of the slow interface wave both exhibit
strong frequency dispersion, varying from the bulk shear-wave
velocity at low frequencies or high stiffnesses, to the Rayleigh
wave velocity at high frequencies or low stiffnesses. At
intermediate frequencies or stiffnesses, the phase and group
velocities differ from one another and have maximum
frequency dispersion.
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Figure 1. Theoretical values of phase and group velocity

dispersion for the slow interface wave plotted as functions of
frequency and fracture specific stiffness.

Wavelet Analysis

Wavelet analysis [Combes ef al., 1989], also known as
multi-resolution analysis, uses a series of scaled and delayed
oscillatory functions to decompose a time-varying signal into
its nonstationary spectral components. The key advantage of
wavelet analysis over traditional Fourier analysis is that the
wavelet analysis retains information on how the spectral
content varies with time delay. Wavelets also are
advantageous over so-called windowed Fourier methods
because with wavelets the relative accuracy of the delay and
frequency remain constant over all of the delay-frequency
parameter space. :

In our wavelet analysis we use a non-orthonormal Morlet
wavelet [Morlet et al., 1982] mother function g(t) composed of
a harmonic wave modulated by a Gaussian envelope

g =exp(—t*/20%) exp(i2nt/Ty) (2)

where Tp is the period of oscillation. The mother wavelet
attains a minimum uncertainty when the accuracy in the arrival
time is equal to the accuracy in the period of oscillation. This
condition is expressed as '

and fixes the relationship between ¢ and Ty in eq.(2) as

T
o= 4
\"27-': @
Table 1. Parameters used to determine theoretical values of

group velocity in Figure 1. Compressional and shear wave
velocity values are based on experimental measurements on
aluminum.

Compressional Wave Velocity 6476.2 m/s
Shear Wave Velocity 3120.6 m/s
Density 2700 kg/rn3
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The mother wavelet is scaled and delayed to produce a set of
daughter wavelets according to

-1l a = 11:,_—4ei'fcxp(-((ir— r)fa]EIZOQ)
exp(i2z(t- 1)/ aT,)

where o is a scaling parameter, and T is the delay. The
prefactor ensures norm-squared normalization. The daughter
wavelets retain the same uncertainty condition eq.(3) for all
scales o and all delays T.

The wavelet transform as a function of scale and delay is
obtained by integrating a time varying signal S(t) over the
daughter wavelets

Wi 1= g oso (6)

where g* is the complex-conjugate of the daughter wavelet, the
prefactor is for normalization, and W(a.T) is the two-
dimensional wavelet transform. The resulting transform is
complex, with both amplitude and phase information. In our
analysis. we consider only the amplitude of the wavelet
transform. For our analysis, in which we are concerned with
both the frequency content as well as the arrival time of the
signal, the wavelet transform is superior to a moving
windowed Fourier transform because the uncertainties in
oscillation period and arrival time are equal for all frequencies
and time delays, giving frequency and time information equal
accuracy in the «-T plane.

Experimental System

A synthetic fracture in aluminum was used to study velocity
dispersion of interface waves. The isotropic aluminum
eliminates dispersion that might occur in the bulk material.
The synthetic fracture was made by cutting an aluminum
cylinder in half, planing down the surfaces, and sandblasting
the surfaces with 300 pm grit to roughen the surfaces. The
sample is 0.293 m in diameter by 0.293 m in height. Shear
piezoelectric crystals (1 MHz resonant frequency) were
mounted on opposing faces straddling the fracture. The
polarization of the shear-wave particle motion was
perpendicular to the fracture. The transducers were excited with
a 1000 Volt spike that was 0.3 ps in duration at a repetition
rate of 100 cycles/sec. The received signal was sent to a
digital oscilloscope and the data were collected by a computer.
To change the specific stiffness of the fracture, the aluminum
specimen was placed in a load frame and subjected to stresses
from 3.5 kPa to 33 MPa, applied normal to the fracture plane.

Wavelet Transforms of Seismic Data

The results of the wavelet analysis of seismic waveforms are
presented in Figure 2. The raw waveforms received during the
experiments are included in the Figure for comparison. The
wavelet transform is presented in two-dimensions with color
representing the strength of the transform (red-high; blue
low). Figure 2a shows the wavelet transform for intact
aluminum. Figures 2b and 2c show the wavelet transforms for
the fracture at low stress (3.5 kPa) and high stress (33 MPa).
The two-dimensional representation of the wavelet transform
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gives a direct measure of the frequency content of a seismic o |ntact m Fracture 19.8 MPa
signal as a function of group arrival time. Velocity dispersion , fraciure 3.5 kPa % Erachie D0 MPa
is observed as a finite slope. The source waveform can also
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' of the slow interface wave. The velocity dispersion increases
from -11 m/sec/MHz to -116 m/sec/MHz with increasing

stress applied normal to the fracture.
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chirp, which also appears as a finite slope. It is therefore
necessary to quantify the chirp of the ultrasonic transducers.
The transducer chirp in this experimental configuration was
3% per MHz. This frequency chirp on the source must be
subtracted from the experimental waveforms received on the
fracture to obtain the velocity dispersion of the interface
waves. It is interesting to note that the wave amplitudes in
Sl ol e & Figure 2b and 2c¢ decrease with increasing stress. This
Amplitude 0.4 0.9 1.5 1.9  behavior is unintuitive and is a consequence of energy
(Volts) Frequency (MHz) partitioning between body waves and interface waves. Gu
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shape and amplitude of the waveforms varies with frequency
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Gu [1994]).
Several striking features are apparent in the transforms,
comparing the intact transform with the transforms of the
seismic signals in the fractured specimen. The waveform on
the intact specimen is a single wavepacket without additional
structure. The waveforms on the fracture have complicated
structure, with energy arriving significantly later than for the
intact case and with lower frequency content. The lower
frequency content for the interface waves relative to the
frequency content of the intact sample is consistent with the
interface behaving as a displacement discontinuity, i.e. the
interface acts as a low pass filter [Pyrak-Nolte et al., 1990].
The velocity of the interface wave increases with increasing
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(VDRS) F(equency {(MHz) for (a) intact, (b) fractured sample - 3.5 kPa, (c) fractured
sample - 33 MPa. Red represents the largest amplitudes while
B violet represents the lowest amplitudes. The horizontal axis
] 05 1.0 1.5 gives the frequency content of the waveform, and the vertical
Volts / v MHz ?ms gives t|?le arrival time. The original waveforms are shown

oI comparison.
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stress, corresponding lo increasing stiffness. A distinct slope
is also visible in the fractured transform data, as higher-
frequency components of the seismic signal arrive at later
times. This slope constitutes negative velocity dispersion
{decreasing velocity with increasing frequency).

Quantitative values for velocities as functions of frequency
are obtained by taking one-dimensional cross-sections
through the two-dimensional wavelet transforms. The
experimental values for four load conditions on the fractured
specimens are shown in Figure 3 after correction for the
frequency chirp on the ultrasonic transducers. They are
compared with theoretical curves from the displacement
discontinuity theory for varying fracture stiffnesses.
Increasing stress produces increasing velocities and increasing
dispersion, consistent with increasing fracture stiffness. The
stiffnesses increase from 4x1012 Pa/m to 3x1013 Pa/m and
the velocity dispersion increases from -11 m/sec/MHz to -116
m/sec/MHz with load increasing from 3.5 kPa to 33 MPa. The
theoretical curves provide accurate fits to the fracture stiffness.
The values of stiffness obtained from the wavelet analysis are
expected to be more accurate than the estimates made in earlier
work which neglected velocity dispersion [Pyrak-Nolte et al.,
1992].

Summary

In summary, we have performed a wavelet analysis on the
seismic signals of elastic interface waves propagating along a
synthetic fracture in aluminum. The wavelet analysis allows
the frequency content of the seismic waveform to be obtained
as a function of arrival time. The interface wave exhibits
negative velocity dispersion and is consistent with theoretical
values predicted from the displacement-discontinuity theory of
the seismic response of fractures. The interface waves can be
understood as coupled Rayleigh waves, which by themselves
are dispersionless waves. However, the displacement-
discontinuity boundary condition introduces a characteristic
frequency ¢ to the seismic response of a fracture, making the
interface waves dispersive. The wave velocity changes from
the Rayleigh wave velocity at frequencies greater than @¢, (o
the bulk shear wave velocity at frequencies less than w¢.
Because the velocity dispersion is sensitive to fracture
stiffness, and hence to stress conditions, these interface waves
may provide a means of detecting fractures in the field and
assessing [racture stability.
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