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Elastic interface wave propagation along a fracture

Propagation de I'onde d’interface élastique le long d’une fracture
Elastische Interfacewellenausbreitung entlang einer Bruchfuge

KURT T.NIHEI, BOLIANG GU & LARRY R.MYER, Lawrence Berkeley Laboratory, Calif., USA
LAURA J.PYRAK-NOLTE, University of Notre Dame, Ind., USA
NEVILLE G.W.COOK, University of California, Berkeley, USA

ABSTRACT: Fractures in rock can serve as mechanical waveguides for elastic interface waves. Because the energy of the interface wave is
confined mainly to the fracture, these waves primarily sample the mechanical properties of the fracture and, therefore, should prove useful
for remotely determining fracture properties. Plane wave analysis of a fracture embedded in an elastic medium predicted two distinct
fracture interface waves with mathematical forms similar to the classic free-surface Rayleigh wave equation, indicating that these interface
waves are generalized Rayleigh+ interface waves. Analysis of the interface wave equations revealed that both waves are dispersive and that
each wave depends on either a normal or shear dimensionless fracture stiffness. The predicted interface waves were observed in both
numerical simulations and laboratory tests. Numerical simulations also produced a compressional interface wave that is not predicted by the
plane wave theory. The results of this study demonstrate how interface waves can be excited and detected on a single fracture and how
measured interface wave velocities can be used to determine the fracture stiffnesses.

RESUME: Les fractures dans un rocher peuvent servir comme guides d’ondes pour les ondes élastiques d'interface. Puisque I'énergie
d’un onde d’interface est attribué en majorité a la fracture, ces ondes illustrent les caractéristiques méchanique de la fracture et par
conséquense devraient se prouver utiles pour determiner les caractéristiques d’une fracture & grande distance. Une analyse simple des
ondes d'une fracture se trouvant dans un milieu élastique prévoit deux ondes de fracture d’interface differents avec des formes
mathématiques similaires & I'equation classique d’ondes de la surface libre de Rayleigh, indiquant que ces ondes d’interface sont les ondes
d'interface généralisées de Rayleigh. Les analyses des équations d’ondes d’interface démontrent que les deux ondes sont dispersives et
que chaque onde dépend de la solidite de la fracture normale ou partagé sans dimension. Les ondes d’interface prévues ont été observeés
également dans les simulations numériques et dans les test en laboratoire. Les simulations numériques ont produit également une onde de
compression d’interface qui n’est pas prévue par la théorie simple des ondes. Les résultats de cette étude démontrent comment les ondes
d’interface peuvent étre exciteés et detecteés sur une fracture simple et comment les vitesses mesurés des onde d’interface peut étre utilisées
pour déterminer la solidité de la fracture.

ZUSAMMENFASSUNG: Gesteinsrisse kinnen als mechnische Kaniile fiir elastische Grenzwellen dienen. Die Energie der Grenzwelle ist
hauptsiichlich im Bereich des Risses konzentriert und wird somit von dessen mechanischen Eigenschaften beeinfluit. Es besteht daher die

Maglickkeit, die Grenzwellen zur Bestimmung von Rissparametern zu benutzen. Die Theory der ebenen Wellen, angewandt auf einen in
einem elastische Medium eingebetten RiB, deutet auf zwei unterschiedliche RiB-Grenzwellen hin, deren mathematische Form der
klassischen Rayleighwelle an der freien Oberfliche dhnelt. Dies deutet darauf hin, daBl die erzeugte Grenzwellen generalisierte
Rayleighwellen darstellen. Die Analyse der Wellen zeigt, daB beide dipersiven Character aufweisen, und Funktionen der normalen und
Scher Steifigkeit des Risses sind. Die von der Theorie beschriebenen Grenzwellen sind in numersiche Modellierungen und Laborversuchen
nachgewiesen worden. Gleizeitig erzeugen die numerischen Untersuchungen eine Kompressions-Grenzwelle, die nicht von der Theorie
ebener Wellen vorhergesagt wird. Die vorgestellten Untersichungen zeigen, daB Grenzwellen an Rissen erzeugt und nachgewiesen werden
kénnen, und daf die RiBsteifigkeit von der Geschwindigkeit der Grenzwellen abgeleitet werden kann.

1 INTRODUCTION

One of the most important characteristics of rocks is that they are
discontinuous on all scales from microcracks to faults. These
discontinuities make rock weak in tension despite its considerable
compressive strength. They also make rock capable of storing and
transporting fluids. The mechanical and hydraulic properties of
these discontinuities are of the utmost importance in relation to the
production of energy resources, such as hydrocarbons and
geothermal energy, the isolation of nuclear and other wastes, and
the remediation of contaminated sites. Faced with the responsibility
of assessing the continued integrity and stability of underground
waste repositories, excavations and geostructures in fractured rock
and enhancing oil and gas production in hydraulically and naturally
fractured reservoirs, it is essential that geophysical techniques be
developed for locating and characterizing the mechanical and
hydraulic properties of fractures.

It has recently been discovered that fractures possess distinct
seismic properties that may prove useful for remotely evaluating the
mechanical properties of fractured rock. The compliant nature of
fractures in rock produces a variety of potentially diagnostic effects
on the displacements and velocities of elastic waves propagating
across or along fractures. Field and laboratory tests have
established that an elastic wave incident upon a fracture is partially
transmitted and reflected by a process which partitions low
frequencies into the transmitted wave and high frequencies into the
reflected wave (Myer and Majer, 1984; Pyrak-Nolte et al.,
1990a,b; Sudrez-Rivera, 1992). In addition, recent laboratory
measurements have confirmed the existence of two dispersive
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interface waves that propagate along the fracture (Pyrak-Nolte et
al., 1992), both of which are predicted by the theory of Pyrak-
Nolte and Cook (1987). Fracture interface waves primarily probe
the mechanical properties of a fracture and, therefore, offer unique
prospects for directly measuring fracture stiffnesses. This paper
describes the properties of elastic interface waves on single
fractures using a combination of plane wave analysis, numerical
simulation and laboratory measurements, and discusses techniques
for generating and detecting fracture interface waves.

2 MECHANICAL PROPERTIES OF FRACTURES IN ROCK

At the microscale, fractures in rock appear as two surfaces of
irregular topography which intersect to form void spaces and
asperities of contact. The presence of the void spaces within a
planar fracture collectively define a thin, compliant zone with
effective normal and shear stiffnesses that can range from near zero
for open fractures, to values in excess of 10!3 Pa/m for fractures
which are cemented or subjected to high compressive stresses
(Pyrak-Nolte, 1988). A fracture loaded in shear or compression
typically exhibits a highly nonlinear stress-displacement
relationship (Fig.1) resulting from deformation of the asperities,
the number and distribution of which changes with load (Cook,
1992). Hysteresis may also be present in the stress-displacement
curve (Fig.1), indicating the presence of inelastic deformation of
the asperities -of contact and frictional sliding between contacts
oriented at some angle relative to the applied stress (Goodman,
1976; Bandis et al., 1983; Barton et al., 1985).
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Figure 1. Schematic illustration of the stress-displacement
characteristics of a fracture subjected to normal compression.

For most seismic applications in the field and laboratory, it is
generally assumed that the strains produced by an elastic wave
incident upon a fracture are (00 small to cause relative
displacements across the fracture sufficient to exercise fracture
nonlinearity and hysteresis. For these applications, the constitutive
properties of the fracture are well approximated by linear elastic
relationships between the normal and shear tractions applied to the
fracture and the resulting relative normal and shear displacements
across and along the fracture,

rN - Kﬂ Au”
(1

t, =K Ay, ,

where ¢, and t, are the normal and shear tractions, x, and K, are
the normal and shear fracture stiffnesses, and Auw, = [4) —u] and
Au, = [u! —u'] are the displacement-discontinuities describing the
relative closure and shear between the upper (denoted by the
superscript @) and lower (denoted by the superscript b) fracture

surfaces, Newton's Third Law requires that the tractions across the
fracture be continuous as in the case of a continuous medium,

g 2

Numerical studies (Angel & Achenbach, 1985) have
demonstrated that the dynamic fracture stiffness is independent of
wave frequency provided that the wavelength is greater than the
spacing between the asperities of contact, a condition which is valid
for most fractures provided that frequencies are kept below 1 MHz.
Under these conditions, the fracture stiffnesses appearing in Eq.(1)
are well approximated by their static values which can be computed
from the tangent to the unloading portions of the stress-
displacement curves where friction is locked-up (Cook &
Hodgson, 1965; Walsh, 1965; Stoll, 1989). Eq.(1) and (2) form a
simple model for the linear elastic properties of a nonwelded
contact between two media that has also found application in
ultrasonic nondestructive testing of welds and adhesive bonds
(Nagy et al., 1990; Rokhlin & Wang, 1991). In the remainder of
this paper, Eq.(1) and (2) will be referred to as the displacement-
discontinuity model of a nonwelded interface (Pyrak-Nolte, 1988),
but it should be noted that a variety of other terms have been used
to describe the same constitutive model, including the incomplete
interface model (Kendall & Tabor, 1971), the slip interface model
(Schoenberg, 1980), and the imperfect interface model (Rokhlin &
Wang, 1991). The displacement-discontinuity model is a
generalization of the classic boundary conditions encountered in
most seismology problems in the sense that it degenerates to the
boundary conditions for a welded interface as K, K, — <2 and fora

"? t
traction-free interface as x,,k, — 0.

3 FRACTURE INTERFACE WAVES

Interface waves represent a class of elastic waves that propagate
along the boundary between two media. Trapped interface waves
are localized within a zone that may extend only a few wavelengths
away from the fracture, allowing these waves to propagate large
distances while suffering little reduction in amplitude. Leaky
interface waves continuously radiate elastic body waves as they
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propagate along the fracture and, consequently, suffer from @n
increasing loss of amplitude with increasing propagation distance
along the fracture. Since interface waves primarily sample the
mechanical properties of the fracture as they propagate away from
the source to the receiver, these waves may contain diagnostic
information on the mechanical properties of the fracture. This
section presents plane wave theory, numerical boundary element
simulations, and laboratory modeling - of interface waves
propagating along the surface of a single fracture. The results of
this analysis demonstrate: (1) how measured velocities and particle
displacements can be used to determine the normal and shear
stiffnesses of a fracture, (2) the existence of other types of fracture
interface waves, and (3) techniques for generating and detecting
interface waves.

3.1 Plane Wave Analysis
The displacements for an inhomogeneous plane wave propagating
along the fracture with an amplitude that decays exponentially with

distance away from the fracture can be expressed as (Pyrak-Nolte
& Cook, 1987; Gu et al., 1995)

u: =0 [fC_IA] e P +q B, e—qal:] eielxic=t)

(3)
ul = o|-pAeroi+ic”'B ¢~10z] gfo(fe=)
for the upper medium, denoted by the superscript @, and
uf =@ [fC_lAQ etP?i_gB, e+qw:] etolxie—t)
(4)

uf = (r.)[p Ay et PO+ ic”! B, e“”w"] r,".w[x-"'c_l]

for the lower medium, denoted by the superscript b., where @ is
the angular frequency, ¢ is time, A; A, B and B are
undetermined constants, ¢ is the phase velocity of the
inhomogeneous wave, and p and g are wavenumbers defined as

p=lc?- c;,z 2 )
q= feP Cj—z]lgz
where ¢, and c; are the P- and S-wave velocities, respectively.
Tractions in the upper and lower media obtained by substituting
Eq.(3) and (4) into Hooke's Law are
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where A and g are the Lame's constants, L= (A+2u), and
M=(c?+p%).

Substituting Eq.(3), (4) and (6) into the displacement-
discontinuity boundary conditions given in Eq.(1) and (2) yields a
system of four homogeneous, linear equations in the four constants
AI' Az, B; and Bz -

ic (i, + 240P) A, +(g K+ BON)B, ~ic k<A, +dK:B,=0
(@Q-prIA, +ic! (i, +200q) B, - PK:A, —ic' x.B,=0
—2ic'ﬂupAl~pN3J—2ic"ppA2+,uN32=0 N
-04, —zic‘lquﬁQaz-Zic"',quB:U

where N =(c 2 +4%) and @=(Ac 2 -Lp").

The condition for the existence of a non-trivial solution of Eq.(7) is
that the determinant of the coefficients of A, A,, B, and B; vanish.

Examination of the terms in the last two equations of Eq.(7)
reveals that there are two possible solutions corresponding to:

1. B2=—Bi1 A2=A] (8)
2. B2=B;, A2=—A; . 9



Upon substitution of Eq.(8) into Eq.(3) and (4), it becomes
apparent that case | produces extensional wavemotion characterized
by horizontal displacements that are symmetric about the fracture
plane and that case 2 produces flexural wavemotion characterized
by horizontal displacements that are antisymmetric about the
fracture (Fig.7).

Substituting Eq.(8) into Eq.(7) yields the dispersion equation
for the symmetric interface wave (Fig.7),

plosiles b f g |1
0°\Ve? oz, \e?
: Rl ;
(-255) (-2 )4z
0 ] Ver v oz

where @=c/c;, U =csfcs, and z;=pcs is the S-wave
impedance. Similarly, substitution of Eq.(9) into Eq.(7) yields the
dispersion equation for the antisymmetric interface wave (Fig.7),

o [T
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The symmetric and antisymmetric interface waves described by
Eq.(10) and (11) are generalized Rayleigh waves. That is, when
the dimensionless fracture stiffnesses x./(wz;) and x/(wz;) are
set to zero, both Eq.(10) and (11) degenerate to the Rayleigh
equation for surface waves on a traction-free surface (Aki &
Richards, 1980, p.161). However, when the dimensionless
fracture stiffnesses are finite, Eq.(10) and (11), unlike the Rayleigh
equation, contain wave frequency. Therefore, the interface waves
propagating along a fracture with finite dimensionless stiffness are
dispersive, Note that x, and K, appear in Eq.(10) and (11),
respectively. This indicates that the symmetric interface wave
results from the normal coupling between the surfaces of the
fracture and the antisymmetric interface wave, from the tangential
coupling. If the rock properties are different on the two sides of the
fracture, then the two interface waves become generalized Stoneley
waves that propagate along the fracture only for a specific range of
?g%a;‘}moduli ratios and wave frequencies (Pyrak-Nolte & Cook,

(10)

(1)

1.02 -
( sz(!.)Zs) cf
1w —-—————= = — — _: - — —
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- 0.96
o
=
9 094
antisymmetric
0.92 interface wave |
0.90 b symmetric
: interface wave
0.88

: i kxfozs and kr./(l]zs
Figure 2. Normalized phase velocities of the symmetric and
antisymmetric interface waves as a function of the dimensionless
fracture stiffnesses for a range of ¢,/c; ratios: 0.89, 1.63, 1.87
and 2.45 (corresponding to Poisson's ratios of 0.1, 0.2, 0.3 and
0.4, respectively). The numbers labeled on the curves are the ¢,/c;
values, and (k. /@z j)rf is the dimensionless cut-off stiffness above

which the trapped symmetric interface wave ceases to exist.

The roots of the nonlinear dispersion Eq.(10) and (11) are the
normalized phase velocities, ¢/cs, of the two interface waves for
given dimensionless fracture stiffnesses x,/wz, and x./@z,.
Fig.2 displays c/cs for a range of c¢,/c, ratios. As k./@wz, and
K/ @z; increase, the phase velocities of the two interface waves
increase from the Rayleigh wave velocity to the shear wave
velocity, with the symmetric interface wave propagating faster than
the antisymmetric interface wave. Examination of the
dimensionless fracture stiffness term reveals that decreasing @ and
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zs has the same effect as increasing x, and x,. Thus, as z; is
decreased for given values of x,, x, and @, the fracture is
effectively stiffened even though the fracture stiffnesses are not
increased. Equivalently, as the frequency of the wave is reduced
for given values of x,, x, and z,, the fracture is also effectively
stiffened. The curves in Fig.2 show that an increase in the
Poisson's ratio of the rock surrounding the fracture results in an
increase in the phase velocities of the interface waves relative to the
S-wave velocity of the rock. This occurs because as the Poisson's
ratio is increased (i.e., as the dilatation of the rock surrounding the
fracture is increased), the fracture becomes effectively stiffer even
though the fracture stiffnesses are not increased. This effective
stiffening of the fracture results in higher interface wave phase
velocities relative to the S-wave velocity. This behavior is
consistent with that of a free-surface Rayleigh wave for which there
is an observed increase in the velocity of the Rayleigh wave with
increasing Poisson's ratio.

When the solution range for the roots of Eq.(10) and (11) is
extended to the complex domain, complex roots of Equation (10)
are obtained for the symmetric interface wave for
Kz,.-’(uz,.)(lex"mz,.)d. (Fig.3). These roots correspond to a
symmetric interface wave with a phase velocity between ¢, and c,,.
Since the phase velocity is complex in this range, the symmetric
interface wave suffers a loss in amplitude as it propagates along the
interface as a result of energy radiation into the rock surrounding
the fracture. Thus, for «,/wz;>(k, ,.-"wzs]d- the symmetric

interface wave becomes a leaky wave which propagates with a
phase velocity between the S- and P-wave velocities, as shown in
Fig.3. Note that no dimensionless cut-off stiffness and complex
roots of Eq.(11) were found, indicating that the antisymmetric
interface wave exists for all possible dimensionless stiffness values
as a trapped interface wave.

1.6
____________ ]
1.4 Ce/Cs leaky symmetric s
interface wave  /
,
o 1.2 normal symmetric \’
2 interface wave .
S .
1o - = = =
08 antisymmetric
’ interface wave
107 107 10" 10° 10’ 16

k:fwzs md kxfols

Figure 3. Normalized phase velocities of the symmetric and
antisymmetric interface waves as a function of the dimensionless
fracture stiffness for ¢,/e;=1.53.

An explicit equation for the dimensionless fracture stiffness
(. /@z;), , Which defines the boundary between the normal (i.e.,
trapped) and leaky domains of the symmetric interface wave can be
found by setting 8 = 7 in Eq.(10),

[__’E;_] =22(1-v) . (12)
Wzs cf

0.70

065 [ leaky symmetric

interface wave

normal symmetri
interface wave

DN\

0. 0.10 0.20 0.30 0.40 0.50
v

(k { 0zs),

2

Figure 4. Dimensionless cut-off stiffness of the symmetric interface
wave as a function of the Poisson's ratio.



Eq.(12) is the dimensionless cut-off stiffness of the symmetric
interface wave. The dimensionless cut-off stiffness is depicted as a
function of Poisson's ratio in Fig.4.

Particle motions of the two interface waves, computed from
Eq.(3) and (4), for are plotted in Fig.5. The particle motions of
both the symmetric and antisymmetric interface waves, like those
of the free-surface Rayleigh wave, are retrograde near the fracture
and reverse to prograde at a depth of approximately 0.2
wavelengths away from the fracture. An analysis of Eq.(1) and (2)
for Kk, /®z; — e (Guetal., 1995) revealed that the particle motion
of the antisymmetric interface wave approaches that of an S-wave
propagating parallel to the fracture, which is consistent with its
phase velocity approaching the S-wave velocity as k, /@ z; — oo,
as shown in Fig.2 and 3. A similar analysis of the particle motion
of the symmetric interface wave as K, /@ z;— e revealed that the
displacement approaches that of a P-wave propagating parallel to
the fracture, which is consistent with the phase velocity of the
symmetric interface wave approaching the P-wave velocity, as
observed in Fig.2 and 3.

a) a symmetric interface wave

PRIy e R '-.- T
of a fracture . i e
0.11Aan O

|

0,24 han

0. 47ham

0.96 Agn

b) an antisymmetric interface wave

lower surface h
of a fracture propagation
—_—

0. 11 Auwm

0.22% asm

0. 43Ahasm G
0

0.85M asm

Figure 5. Particle motion of the symmetric and antisymmetric
interface waves at various depths below the fracture for
K /0z,=x,/wz, =01 and ¢, /c,=1.53. A_ and 4, are the
wavelengths of the symmetric and antisymmetric interface waves,
respectively.

3.2 Boundary Element Simulations

The results of the preceding section provide a framework for
analyzing the characteristics of interface waves that propagate along
a fracture. These results, however, do not completely address the
more fundamental question of how to generate fracture interface
waves from a source of finite size. In addition, the analysis does
not provide information on the existence of other possible types of
interface waves with displacement characteristics different from that
assumed in Eq.(3) and (4).

To explore these questions, a dynamic boundary element code
has been developed for modeling wave propagation in a medium
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containing fractures (Gu, 1994). The code is a time domain
implementation of the dynamic Boundary Element Method (BEM)
for multiple regions that are coupled together by the displacement-
discontinuity boundary conditions given in Eq.(1) and (2). In this
scheme, the upper and lower fracture surfaces are divided into
quadratic boundary elements. The time integration is performed
using an explicit time stepping algorithm. The displacement-
discontinuity boundary conditions given in Eq.(1) and (2) are
applied between the upper and lower fracture surfaces to form a
system of linear equations for the displacements on the fracture.
The surface displacements are directly obtained by solving the
system of linear equations and the surface tractions are computed
from these displacements using Eq.(1). The displacements at any
point off of the fracture can be computed from the values on the
fracture by numerically integrating the elastodynamic integral
representation equation.

For the geometry shown in Fig.6, the results of the previous
section suggest that the symmetric wave is best generated by a
horizontally polarized source and the antisymmetric interface wave
by a vertically polarized source, as displayed schematically in
Fig.7. For a horizontal source centered on the fracture, the
symmetry of the problem requires that the horizontal displacement
on the upper and lower surfaces, u¢ and w? be equal, which
through examination of Eq.(1), reveals that the symmetric wave is
independent of the tangential component of fracture stiffness.
Similarly, the problem symmetry for a vertical source centered on
the fracture requires that the antisymmetric wave be independent of
the normal component of the fracture stiffness.

‘ a non-welded fracture
source - — — — — — — — —
- 4579 m e
g:2
Cp= SR0DM/s § :'§
Cs=3800m/s =
P=2600kg/m?3 -1

Figure 6. Two dimensional boundary element simulation geometry
illustrating (line) source location and orientations (arrows) used 10
generate symmetric and antisymmetric interface' waves.

S

displacement

antisymmetric TW

source

Figure 7. Schematic view of symmetric and antisymmetric interface
waves.

In the numerical experiments, the rock surrounding the fracture
is assigned P- and S-wave velocities ¢,= 5800 m/s and ¢;= 3800
m/s and a density p=2600 kg/m’. A three-lobed wavelet with a
central frequency of 800 Hz was used as the source wavelet. Fig.8
displays two seismic sections recorded on the lower fracture
surface for horizontal and vertical line sources centered on a

fracture with normal and tangential stiffnesses of Xk, =5X 10°
Pa/m. Four arrivals are observed for both source orientations and
are identified with the superscripts PIW to denote the P-type
interface wave, RIW to denote a generalized Rayleigh interface
wave, P+PIW to denote a mixture of a P-body wave and the P-
type interface wave, and S+RIW to denote to a mixture of an S-
body wave and a generalized Rayleigh interface wave. Clearly, if
the fracture is completely welded, a receiver located at some
horizontal distance on the fracture will observe only a P-wave from
a horizontally polarized source and only an S-wave from a
vertically polarized source. Thus the PIW and RIW arrivals
detected on the vertical component for the horizontal source case
and on the horizontal component are wave phenomena resulting
from the finite fracture stiffnesses.

The PIW interface wave is generated by both the horizontally
and vertically polarized sources and its, therefore, unlikely that this
wave is the leaky symmetric interface wave described in the
previous section (Fig.3). At present, it is postulated that this wave
may be a leaky mode of the type described by Gilbert et al. (1962)
for a traction-free surface. Since the amplitude of the PIW wave is
sensitive to the fracture stiffnesses (Fig.9), this wave may also
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Figure 8. Seismic sections recorded along the lower surface of the
fracture for sources oriented in the horizontal (a) and vertical (b)
directions (Fig.6).
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Figure 9. Waveforms recorded on the lower surface of a fracture
4579 m from a source (Fig.6). Fracture stiffnesses for the

horizontal source case are k, = (1) 1x10%, (2) 5x109, (3) 2.5x1010
and (4) 1x10!! Pa/m, and for the vertical source case are K, = (1)
5%10%, (2) 1x1010, (3) 2.5x1010 and (4) 1x101! Pa/m.
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Figure 10. Phase velocities of RIW interface waves as a function of
fracture specific stiffness for the geometry shown in Fig.6.

prove useful for remotely characterizing fracture properties
provided that a theoretical understanding of this wave is developed.

To examine the effects of fracture stiffness on the interface
waves, displacement traces recorded on the lower fracture surface
45.79 m from the source are displayed in Figure 9 for a range of
fracture stiffnesses. Both the phase and amplitude of the
waveforms vary with fracture stiffness. The phase velocities of the
RIW interface waves obtained from numerical simulations are
displayed in Fig.10 for a range of fracture stiffnesess, along with
theoretical values computed from Eq.(10) and (11). Phase
velocities obtained from the numerical simulation are in good
agreement with the theoretical values for the symmetric and
antisymmetric interface waves indicating that the RIW arrivals are
indeed generalized Rayleigh interface waves.

The particle motions of the symmetric and antisymmetric
interface waves computed on the upper and lower fracture surfaces
45.79 m from the source for the geometry of Fig.6 are displayed in
Fig.11 for K,,k, = 5x10° Pa/m. The symmetric wave is generated
by a horizontal source and the antisymmetric wave by a vertical

a) symmetric interface wave

propagation
—_—

P+PTW

P+PIW X
lower surface
propagation
—_—

b) antisymmetric interface wave

propagation
e

upper surface
t

S+RIW

lower surface
s

propagation
_—
S+RIW

Figure 11. Particle motions on the upper and lower surfaces of a
fracture 45.79 m from the source for the geometry of Fig.6.



interface wave for stiffnesses ranging from 4x10!2 to 3x10'3 Pa/m
are in good agreement with the experimental data. These results
indicate that it is possible to gencrate an antisymmetric interface
wave of the from predicted by Eq.(11) using a polarized shear
source oriented perpendicular (0° degrees) to the fracture.

4 SUMMARY AND CONCLUSIONS

Despite having negligible thickness, fractures in rock represent
compliant interfaces that are capable of supporting a class of elastic
interface waves. Plane wave analysis of a fracture embedded in an
elastic medium produced two distinet fracture interface dispersion
equations with mathematical forms similar to the classic free-
surface Rayleigh wave equation. Analysis of these equations
revealed that both waves are dispersive and that each wave depends
on either the normal or shear fracture stiffness. Laboratory
experiments on artificial fractures and numerical simulations
performed with the dynamic boundary element method confirmed
the existence of the two fracture interface waves. Numerical
simulations also predict a fast compressional interface wave. We
are presently exploring the properties of this wave and determining
whether it can be observed in the laboratory. The results of this
study demonstrate how to excite and detect interface waves which
propagate on single fractures using polarized sources and how to
use measured velocities of these waves to extract the fracture
stiffnesses. Future work will focus on analyzing the partitioning of
energy between body waves and interface waves and the effects of
multiple fractures.
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