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Many rock structures include multiple, near-parallel, planar discontinuities such as bedding planes
or joints. The effects of these nonwelded interfaces on seismic wave propagation are often analyzed
using effective moduli, in terms of which seismic wave propagation is independent of frequency and
wjthout loss, unless the moduli include imaginary terms. An alternative approach is to treat these
interfaces as a boundary condition in the seismic wave equation, across which seismic stress is
continuous, but seismic particle displacements are discontinuous. The ratio of the stress to displace-
ment is called the specific stiffness of the interface and characterizes the elastic properties of a
fracture. For a completely elastic system this results in frequency-dependent reflection and transmis-
sion coefficients for each interface as well as a frequency-dependent group time delay. Using multiple,
parallel displacement discontinuities and ignoring converted and reflected waves, expressions derived
for transmitted wave amplitudes and group velocities show that these depend on frequency, angle of
incidence, and polarization in the case of shear waves. Measurements on a laminated steel block show
that shear pulses propagating parallel to the laminations and polarized parallel and perpendicular to the
plane of the laminations both travel at the velocity for solid steel, although the spectra of these pulses
differ considerably. However, the energy of the pulse polarized perpendicular to the laminations may
propagate as an interface wave between each pair of laminations. Predictions of the displacement
discontinuity model have features quite distinct from many crustal observations to date. We suggest
that we are able to model dense populations of coplanar cracks that cannot be treated by effective

moduli methods which require a dilute concentration of cracks.

INTRODUCTION

Within the Earth’s crust, discontinuities exist that range in
size from microcracks to faults and often occur as nearly
parallel groups or sets. A set (or sets) of discontinuities, such
as fractures, often control the hydraulic and mechanical
behavior of a rock mass. Thus determining the location of
sets of discontinuities, such as fractures, from seismic infor-
mation is of great importance to oil recovery from fractured
reservoirs, mine stability, waste isolation, and the study of
earthquakes.

It is commonly observed that the presence of a set (or sets)
of discontinuities results in anisotropy in the material prop-
erties of a rock mass. The usual method for calculating the
anisotropy in seismic velocities caused by the presence of
cracks or fractures is to derive effective elastic moduli for
the rock mass. In this method the additional compliance of a
dilute population of fractures or cracks is incorporated into
an average strain, resulting in effective moduli for the rock as
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a whole. Crampin et al. [1980] calculated the anisotropy in
velocity from elastic constants that define a particular aniso-
tropic symmetry. For the purely elastic case, that is, no
viscous loss (no complex moduli), the resulting velocities are
nondispersive. Hudson [1981] investigated the effect of a
distribution of a dilute population of cracks or fractures on
wave velocities and attenuation. His model assumed that
wavelengths were large compared to the size of the cracks
and, in an important restriction, that the concentration of
cracks was small. Using a static approach to calculate the
effect of cracks on the displacement field, elastic constants
were derived for a medium containing a set of cracks. From
the elastic constants the seismic velocities of the medium
containing the cracks were determined. For the case of dry
cracks and fractures (no viscous losses), nondispersive wave
velocities also result from this formulation. To determine the
effect of cracks on attenuation, Hudson also adapted a
scattering formulation, using the velocities from the static
model. In the model of White [1983] the stiffness of individ-
ual fractures in a set, as well as their spacing, is incorporated
explicitly into expressions for effective moduli. These effec-
tive moduli are then used to calculate seismic velocities.
As an alternative to the effective moduli method, an
approach which is much more independent of the effective
crack density parameter is to treat each fracture or discon-
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tinuity comprised of a population of cracks as a nonwelded
interface. The nonwelded interface, which is of zero thick-
ness, is represented by displacement discontinuity boundary
conditions in the seismic wave equation. Thus stresses
across the interface are continuous, but displacements
across the interface are discontinuous. The discontinuity in
displacement is equal to the average applied stress divided
by the specific stiffness of the interface. Stiffness can, in a
qualitative sense, be related to the density of the coplanar
cracks. A dense crack population leads to low fracture
stiffness, while a dilute crack population leads to a high
fracture stiffness. The term *‘specific stiffness,”” as opposed
to simply “‘stiffness,”” is used because specific stiffness has
units of stress per unit length, whereas stiffness usually has
units of force per unit length. Representing a fracture by
such a model yields transmission and reflection coefficients
which depend upon the frequency of the seismic wave and
upon the ratio of the specific stiffness of the fracture to the
seismic impedance of the rock. From the reflection and
transmission coefficients a group time delay is found that is
a function of the angle of incidence, the frequency of the
propagating wave, and the ratio of specific stiffness to
seismic impedance.

Several investigators have used the displacement discon-
tinuity boundary conditions to analyze wave propagation
through or along nonwelded interfaces. These boundary
conditions were used by Mindlin [1960] in a study of the
coupling between compressional and shear waves at the
boundary of elastically restrained, elastic plates. Kendall
and Tabor [1971] also assumed this boundary condition in
their investigation of wave propagation across nonwelded
interfaces. The solution for compressional and shear waves
propagated at oblique angles of incidence to a displacement
discontinuity is given by both Schoenberg [1980] and Kiz-
sunezaki [1983). Schoenberg [1983] calculated the reflection
coefficients for a wave incident on a periodic stratified
medium containing displacement discontinuities. From lab-
oratory experiments, Myer et al. [1985] showed that the
displacement discontinuity model predicted correctly the
amplitude behavior of waves propagated across synthetic
fractures of calculable stiffness. Pyrak-Nolte et al. [1987]
formulated an expression for group velocity for waves
propagating at normal incidence to fractures and found that
the theory correctly predicted experimentally measured val-
ues of group velocity from rock samples containing single
fractures. For wave propagation along a fracture, Pyrak-
Nolte and Cook [1987] determined the existence of an elastic
interface wave that can travel along a displacement discon-
tinuity and is dispersive. Using both amplitude and velocity
data, Pyrak [1988] showed that the displacement di scontinu-
ity boundary conditions correctly predicted the seismic
response of dry natural fractures in rock.

The purpose of this paper is to examine, theoretically, the
displacement discontinuity model for wave propagation
across a set of plane, parallel fractures. Group velocities and
amplitudes for transmitted compressional (P) waves and
shear (§) waves are calculated as functions of propagation
directions. Group velocities using an effective moduli model
are calculated for a transversely isotropic medium composed
of parallel fractures for comparison with the results from the
displacement discontinuity model. We then present results
of laboratory measurements on a laminated block of steel.
Group velocities and transmitted wave amplitudes were
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measured both normal and parallel to the laminae. To relate
our work to other available observations, an effective me-
dium model for transverse isotropy developed for thin-
bedded sediments was used. Our laboratory data appear to
relate to a highly fractured crustal medium that is not often
documented but may be of interest to future crustal seismic
investigators.

DiISPLACEMENT DISCONTINUITY MODEL
FOR A FRACTURE

Several investigators have studied the displacement pro-
duced by changes in normal and shear stresses across both
induced tensile fractures [Geodman, 1976; Swan, 1983] and
natural fractures [Bandis et al., 1983; Raven and Gale,
1985]. While it is observed that the displacements in a
specimen containing a fracture are greater than those of an
intact specimen without a fracture, it is also observed that
these additional displacements are concentrated in a region
local to the plane containing the fracture. This observation
gives rise to the notion that the additional displacements
associated with the fracture can be represented as a discon-
tinuity in the displacement field. Experimental observations
also show that the fracture deformations are a nonlinear
function of stress and that the nonlinearity arises in part
because of changes in the geometry of the contact areas as
stress on the fracture is increased. The specific stiffness of a
fracture under pseudostatic loading is the slope of the
tangent to the stress-displacement curve, i.e., it is the ratio
of the incremental stress across the fracture to the incremen-
tal displacement that the stress produces.

Under dynamic loading, specific stiffness is defined in the
same manner as in the pseudostatic case. Intuitively, specific
stiffness of the fracture appears to be a relevant parameter
that determines the seismic properties of a fracture because
it permits a quantitative description of how the mechanical
coupling between two fracture surfaces affects wave trans-
mission across the fracture. The main constraint on using the
displacement discontinuity model for wave transmission
across a single fracture is that the seismic wavelength must
be greater than the spacing between the asperites of contact
between the two surfaces of the (infinite) planar fracture.

To model wave propagation across a single fracture, we
describe the boundary between two elastic, homogeneous
isotropic half-spaces as being in nonwelded contact. For the
geometry shown in Figure 1 the boundary conditions for an
incident compressional plane wave (P wave) impinging on a
fracture are

Ugp — Ul = TdK: (D
Uy — Uyp = ToxlKx 2
Tzl = Tzl (3)
Toxl = Tzl 4
where
7., = A{duJax) + (A + 2p)(9u,loz) (5
7, = pl(8ufdx) + (3uldz)] (6)

Seismic stresses are represented by 7, x, and «_ are the
specific stiffnesses in the x and z directions, respectively;
and u is the seismic particle displacement with subscripts 1
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and II referring to opposite sides of the fracture. The
difference in displacements across the fracture, for example,
U,; — Uz, is the displacement discontinuity. Equations (1)
and (2) requirc that the magnitude of the displacement
discontinuity be equal to the stress divided by the specific
stiffness of the fracturc. The second boundary condition
requires that the stresses across the fracture be continuous.
Lame’s constants are represented by A and p. The same
boundary conditions are also applicable for an incident plane
SV wave (Figure 1).

For an incident plane SH wave (Figure 1) the boundary
conditions are

Uyl — Uyl = TolKy Tl = Tyl (7)

where

Ty = el duy/oz) (8)

and fracture stiffness in the y direction is represented by k.
The displacement discontinuity boundary condition does
not influence the emergence angles of the reflected and
transmitted waves. Only the material properties of the
elastic half-spaces affect these angles.
Using solutions which satisfy the wave equation and are of
the form

u =y exp (—iwt + ik X) (9)

where k is a wave number vector, and x is a spatial vector,
the solution for an incident plane P wave, neglecting the
time-dependent term, is
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Because incident plane SH waves do not generate con-
verted P or SV waves when impinging on an interface, the
solution is reduced to a 2 X 2 matrix:

Ky = ime COSs lf)z:|

Zgyy cos &,
R Ky
'{:T]=1:Z; cos q‘:]] =

The sign in front of iwf in (9) is arbitrary. Choosing a
positive instead of a negative sign would yield solution
matrices with signs consistent with those found in texts such
as that of Aki and Richards [1980].

The transmission coefficient for a P wave at normal
incidence, with equal material properties on either side of
the fracture, is

—Ky
Z.‘-[ cos ¢]

Tyw) = 2 /Zp) [—iw + 2k /Zp)] (13)

In the limit, as specific stiffness tends to infinity, the solution
reverts to the solution for a welded contact, i.e., T — 1 and
R — 0. As specific stiffness tends to zero, the solution
reverts to the case of a free surface where all of the encrgy
is reflected, i.e., T — 0 and R — 1. In general, this solution
has the characteristics of a low pass filter with a cutoff
frequency of 2x/Z. As the specific stiffness of the fracture
increases, the cutoff frequency also increases.

The shift in phase of the transmitted wave, ©, caused by
the fracture is related to the ratio of the imaginary part of the

—K, COS 0 Ky sin (;bl —K COS 83 + imzpu cos Ztﬁz Kz sin ,f): - jwzs{] sin 2¢2

— Ky Sin 6, —Ky COS ¢ Ky SiN 0y — iw(Zgy/Zpn) Sin 20, K, cos ¢y — iwZy cos 2¢

—Zprcos2éy  Zgsin2¢y  Z,y cos 2¢; =Zsn sin 2¢;

(Z3HZp1) sin 201 Zy cos 2¢y  (Z3y/Z,n) sin 26, Zg1 €08 2¢3
R, —Kk, cos 0,
R, Ky Sin 0 10)
T, | = | Zp1 cos 24, e
9 (ZH/Z,y) sin 26,

The quantity Z is seismic impedance, Z = pV, where p is
density, and V' is phase velocity. Subscripts I and II refer to
the material on either side of the fracture as labeled in Figure
1. The phase velocity is given by V, = [(A + 2u)/p]"* for
compressional waves, and V, = (u/p)'? for shear waves.
For incident plane ST waves the 4 X 4 matrix is the same as
for the incident P wave, but the product matrix is different:

transmission coefficient to the real part of the transmission
coefficient. For normal incidence it is given by

07 = tan [w/2(x/Z)]

This phase shift is dependent on frequency and the ratio of
fracture specific stiffness to seismic impedance.
The group time delay for the transmitted wave is given by

(14)

— K, COS 91 K sin (le — Kz COS 92 ar inp" cos 2¢2 I sin d}z — fwzsn sin 2(‘b3 3
— K, sin 84 — K, COS b1 K, Sin 07 — iw(Zfoan) sin 20, k, cos ¢, — iwZy cos 2¢o
_Zz‘”[ cos 2y zy sin 2¢y  Z,y cos 265 —Zgy Sin 2¢2
(Z/Zp1) sin 268, zg cos 244 (qufzp”) sin 26, Zgy cos 2¢5 |
R, [+, sin ¢
R; +x, COS ¢y
e ol BT =
{ i +Zs1 cos 2d
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Fig. 1. Coordinate system used in the displacement discontinu-
ity model showing location of fracture and angles of emergence, for
incidence P wave, §V wave, and SH wave,

tor = dO7ldw (15)

Thus the presence of a fracture causes a delay in the
propagating wave front at the fracture. Because the phase
shift depends both on frequency and on the specific stiffness,
the group time delay for the transmitted wave is also a
function of frequency and fracture specific stifiness. For
normal incidence,

ter = 2kIZ)[A(kIZ)? + ©7] (16)

We have extended this model for a single fracture to
calculate the anisotropy in group velocities and amplitudes
of seismic waves transmitted at oblique angles across mul-
tiple parallel fractures, where the material on either side of
the fracture is elastic, homogeneous, and isotropic. Multiple
reflections are ignored in order to more clearly demonstrate
the characteristic properties of the displacement discontinu-
ity model for the multiple fracture case. We recognize that
multiple reflections can have significant effects on the am-
plitude of the reflected and transmitted waves. particularly in
cyclically stratified media. This problem has been addressed
by Schoenberger and Levin [1974], Spencer et al. [1977],
Banik et al. [1985], and others assuming welded interfaces
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between layers. We also assume that the specific stiffness of
one fracture. and hence its effect on wave propagation, is not
a function of the proximity of other fractures. Experimental
results by Hopkins et al. [1988] indicate this is true as long as
fracture spacing is not comparable to the spacing between
asperities.

Having made these assumptions, the magnitude of the
transmission coefficient for a wave propagating across a set
of parallel fractures is simply |7{N, where |7] is the value of
the transmission coefficient for a single fracture and N is the
number of fractures.

Group time delays of waves at oblique angles of incidence
can be calculated from the shift in phase using (15). The
solution matrix (equation (10) for P waves, (11) for SV
waves, and (12) for SH waves) is solved for the transmission
coefficient as a function of angle of incidence. The phase
shift is determined from the ratio of the imaginary part of the
transmission coefficient to the real part. The group time
delay can then be determined from the change in phase with
respect to change in frequency. The expression for the group
travel time, 7. for a medium containing a set of N fractures
can be obtained from

teg = (LU cos @) + Nit,r (17a)
where 1,7 is the group time delay caused by a single fracture
(equation (15)), U is the group velocity in intact rock
(assuming the intact rock is isotropic and nondispersive so
that U is equivalent to the phase velocity V), and L is the
total path length along a line normal to the planes. The first
term of (17a) is the group time delay caused by the wave
traveling through the intact rock, while the second, frequen-
cy-dependent term is the group time delay that arises be-
cause of the change in the phase across the fractures. As the
angle of incidence is increased from 0° to 90°, the path length
must increase to intersect the same number of fractures at a
certain spacing. To account for this increase in path length,
L is divided by cos 6, where 8 is the angle of incidence. The
resulting effective group velocity

Licos @

Ueg = (17b)

lefi

is a function of the frequency of the seismic wave, the angle
of incidence. and the ratio of specific stiffness of the fracture
to the seismic impedance of the intact rock.

Before discussing results for the general case, it is of
interest to look at the effect of a set of fractures upon the
group velocity of a normally incident wave. Using the
expression for 7,y from (16), (17a) becomes

i 2kIZ)

il

s s (18)
U 4xiZ)+ w~

The effective group velocity for normal incidence, Ul is
thus
I Uil + [o/ 2x/Z]%

U —_—— =
o 1+ [0/ (2x/Z)) + (NUZ/2L)

(19)

Theoretical curves of U, for compressional waves as a
function of frequency are shown in Figure 2, for several
values of x/Z. A constant intact rock impedance (V = 5600
m/s, p = 2600 kg/m?) is assumed, and L/N is set to 0.077
m/fracture. For any value of «/Z, Figure 2 shows that there



PYRAK-NOLTE ET AL.: ANISOTROPY IN SEISMIC VELOCITIES AND AMPLITUDES

6000 - —

o —
Syl KT = 1w10° /:
ALy
: iy EE fitis it
ol o e T T TR T
S [ Az = 110" /
Z I
g fiean] |
£ 3000 / X |
2 er=mot| | ;
3 2000 [ / / |
&5 i
Kz = wio* i
e R R
A owlz= w0’
0 e v S e MU L Lo L
10° 10 ilo 10° 10' 10° 10°
Frequency (Hz)
Fig. 2. Group velocity as a function of frequency for a range of

(k/Z) for waves of normal incidence upon a set of fractures.

is a range of low frequencies for which the group velocity is
a minimum and changes little with frequency. This is be-
cause, as seen from (16), the group time delay is large and
approaches a constant when w is small relative to «/Z. When
w is large compared to x/Z, (16) shows that the group time
delay approaches zero. Thus the effective group velocities,
as shown in Figure 2, approach the group velocity in the
intact material at high frequencies. Between these two
extremes there is a rapid decrease in the group time delay,
resulting in a rapid increase in effective group velocity. The
last term in the denominator of (19) includes the stiffness but
is independent of the frequency, so that the group velocities
in Figure 2 cannot be characterized solely by the dimension-
less parameter w = 2x/Z. Notice that at some frequencies,
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Fig. 3. Normalized P wave group velocity as a function of angle
of incidence calculated from the displacement discontinuity model
for a fracture spacing of 0.003 m and different values of «/Z and w.
The inset shows the angle of incidence and the polarization of
particle motion.
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Fig. 4. Normalized SV wave group velocity as a function of
angle of incidence calculated from the displacement discontinuity
model for a fracture spacing of 0.003 m and different values of x/Z
and w. The inset shows the angle of incidence and the polarization of
particle motion.

fractures of high stiffness will result in a lower effective
group velocity (but larger amplitudes) than fractures of lower
stiffness. It is also observed that at a particular frequency,
different values of x/Z yield the same group velocity. For
example, at a frequency of 1 x 10° Hz the same group
velocity is found for x/Z = 1 x 10* s " and 1 x 10*s~'. The
region where the effective group velocity for the fractured
rock approaches the group velocity of the intact rock corre-
sponds to the range of frequencies where the transmission
coefficient is a minimum and the reflection coefficient is a
maximum. In this region, more information about the frac-
tures is contained in the transmission or reflection ampli-
tudes than in the travel times.

The influence of the angle of incidence on the effective
group velocities as predicted by the displacement disconti-
nuity model for a set of fractures is shown in Figures 3, 4,
and 5. Values plotted in the figures were calculated using
{(17a) and (17h) and normalized with respect to the group
velocity in intact material. Results in these figures are also
for one value of fracture spacing. The selection of this value
is arbitrary, but to be consistent with experiments discussed
later, a fracture spacing of 0.003 m was assumed. Thus for
L = 1 m, N equals 333. Calculations were carried out at
different values of @ and x/Z to show the effect of variation
in these parameters.

For a transmitted P wave as shown in Figure 3, the
displacement discontinuity model predicts that as the angle
of incidence increases, the effective group velocity increases
and approaches the group velocity of the intact material at an
angle of incidence of 90° (parallel to the fractures). Thus the
displacement discontinuity theory predicts that when the
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angle of incidence calculated from the displacement discontinuity
model for a fracture spacing of 0.003 m and different values of x/Z
and w. The inset shows the angle of incidence and the polarization of
particle motion.

wave travels parallel to the fracture, the fractures cause no
delay in the wave front. The values of one curve in Figure 3
rise slightly above unity at angles of incidence between 80°
and 90°. This arises because the group time delay, as
calculated from (15), becomes negative. Comparison of the
two curves for which k/z are equal shows that at all angles of
incidence, if w increases while x/z is held constant, the P
wave group velocity also increases.

Figures 4 and 5 contain curves of effective group velocities
predicted by displacement discontinuity model as functions
of the angle of incidence for the two polarizations of shear
waves. The effective group velocities predicted by the
displacement discontinuity model for an SV wave (Figure 4)
and an SH wave (Figure 5) are equal to one another at both
the 0° incidence (perpendicular to the fractures) and 90°
incidence (parallel to the fractures). Perpendicular to the
fractures, both the SH and the SV waves are slowed, while
parallel to the fractures, neither are slowed. The discontinu-
ity in the SV wave effective group velocity corresponds to a
critical angle for a converted P wave generated by the
incident SV wave. For a constant value of x/Z, increasing »
leads to higher group velocities for both shear waves.

In addition to a group time delay the displacement discon-
tinuity model also predicts changes in the amplitudes of the
transmitted seismic waves. Figure 6 is a graph showing the
effect of 30 fractures on transmitted P, SH, and SV wave
amplitudes, for wZ/k = 0.744, normalized with respect to
the amplitudes (assumed equal to 1) of the incident waves.
The amplitudes of the transmitted SH wave increases with
increasing angle of incidence. The transmitted P wave
amplitude increases with increasing angle of incidence to
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about 56° and then decreases to very small values as the
angle of incidence approaches 90°. The SV wave amplitude
decreases with increasing angle of incidence until a discon-
tinuity occurs at the critical angle (32°) for a converted P
wave from an incident SV wave. At about 73° a spike occurs
because the reflected and converted wave amplitudes go to
zero. The existence of such a spike is related to the partic-
ular value of wz/x chosen for the calculations. It is signifi-
cant to note that while the effective group velocities of the
transmitted P and SV waves in a direction parallel to
fractures approach those in the intact material, the ampli-
tudes of the transmitted wave approach zero.

COMPARISON OF DISPLACEMENT DISCONTINUITY
MobpEeL 10 EFFECTIVE MopULI MODEL

In order to compare the two models, expressions for
effective moduli which include, explicitly, the properties of
the fractures are required. In the effective moduli model a
rock mass containing a single set of plane parallel fractures
can be represented by a transversely isotropic medium
described by five elastic constants. Using an average strain
method, Amadei and Goodman [1981], Schoenberg [1983],
Majer et al. [1988], and others have derived expressions for
the five effective elastic constants in terms of the elastic
properties of the intact rock, fracture spacing, and fracture
specific stiffness. These elastic constants for the coordinate
system shown in Figure 7 are

Cin=pCun=[1+4(1 - y)E,]JCi
Cii33 = (1 = 29)Caa3
Coipy = p/(1 + Ep) = Ciapz

Ci333 = u/(y + EN) (20)
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Fig. 6. Effect of 30 fractures on the normalized transmitted
amplitude for the case of wZ/x = 0.744 for P, SV, and SH waves.
The inset shows the angle of incidence and the polarization of
particle motion.
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where

In these expressions, p is the shear modulus; H is the
fracture spacing; k7 and « py are the transverse and normal
specific stiffnesses of the fractures, respectively; and v is
Poisson’s ratio. The ratios ET and EN express the contri-
bution of the fractures to the stiffness of the rock mass. As «
—» o, £ — 0 and the values of the elastic constants become
equal to those of an isotopic elastic medium defined by p and
». Hence velocities would be equal to the those of a material
containing no fractures.

From Thomsen [1986] and others the phase velocity V as
a function of the angle of incidence 6, that is, the angle
between the direction of propagation of the phase velocity
and the normal to the plane of the fractures, can be calcu-
lated from the following equations:

pVa(8) = Y Cayp3 + Caazz + (Crin — Caaza) sin? 0 + D(0)]
(21a)

pV5(0) = YCaazs + Cazz + (C11py — Ca33y) sin® 6 — D(6)]
(21h)

pV2(8) = Cia1 sin? 0 + Cazp3 cos? 0 (21¢)
where

D(6) = {(Caz — Ca323)* + 2[2C1y33 + Cany)® = (Caazs

~ C3323)(Ciit + Cyzz = 2Ca323)] sin® 0 + [(Cyyyp + Cazs
(21d)

For comparison with displacement discontinuity model,
group velocities are also required. Thus from Crampin
[1981],

~ 2Cy33)% — 4(Cyy33 + Ca323) ] sin? 6}17

U =[V?*+ (dVide)*]"?

(22)

and

Fig. 7. Coordinate system for effective moduli method showing
particle motion of S1 wave and 52 wave.
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Fig. 8. Normalized P wave group velocity as a function of angle

of incidence calculated from the effective moduli method for two
different values of Ey. The inset shows the angle of incidence and
the polarization of particle media.

dVv
Vsin@+—cos @
de

V¥ = tan
dv

Vcos@——sin @
de

where U is the magnitude of the group velocity; ¥ is the
angle between the direction of propagation of the phase and
group velocities; and V is the phase velocity in a direction 8,
the angle of incidence. The group and phase velocities are
equal only for angles of incidence of 0° and o0

The angular dependence of group velocities for P, 51, and
52 waves propagated through a transversely isotropic me-
dium is shown in Figures 8, 9, and 10. The directions of the
particle motion with respect to the fractures for 51 and S2
waves at angles of incidence of 0° and 90° are shown in
Figure 7. At 90°, S2 wave particle motion is perpendicular to
the fractures, and S1 wave particle motion is parallel to the
fractures.

The values of group velocity shown in Figures 8, 9, and 10
were calculated for material property values and fracture
specific stiffness values given in Table 1. To be consistent
with the displacement discontinuity model calculations, the
material properties of steel and a fracture spacing of 0.003 m
were assumed. The table also shows the values of E, and
«/Z which correspond to the assumed values of fracture
specific stiffness.

Figure 8 shows how the group velocity of P waves
increases from a minimum at 0° incidence to a maximum at
90°. At 0° incidence the values of group velocity for the
medium with fractures of low specific stiffness are, as
expected, lower than for the medium with fractures of high



11,352

15

S1-wave

Yk

1.0

08 -

o8

07

ol

0.6

Normalized Group Velocity

04 —

03 -

02 1 | I | I l 1 1
DL 0205530 40C 50T 80" 70! BO 80

0

Fig. 9. Normalized S1 wave group velocity as a function of
angle of incidence calculated from the effective moduli method for
two different values of Ey. The inset shows the angle of incidence
and the polarization of particle motion.

specific stiffness, However, for the selected material param-
eters, in the range of about 10°-45°, this trend is reversed. At
90° incidence the group velocity is less than the intact
velocity because of the effect of the fractures on the Poisson
expansion of the material.

Comparison with the displacement discontinuity model
results (Figure 3) shows that for the same value of specific
stiffness there are significant differences in the shape of the P
wave group velocity curves as a function of angle of inci-
dence. In addition, at 90° incidence, while the effective
moduli model predicts a group velocity less than that of
intact material, the displacement discontinuity model pre-
dicts that the group velocity will equal that of the intact
material.

Figure 9 shows that the 51 group velocity increases from
a minimum at 0° incidence to a value equal to that for intact
material at 90° incidence. For § wave particle motion as
defined in Figures 1 and 7, it is consistent to compare results
of displacement discontinuity model for SH waves (Figure 5)
to those for the §1 waves. Both models predict that at 90°
incidence, with particle motion parallel to the fractures, the
shear wave velocity will approach that of the intact material.

For the particular material properties selected, Figure 10
shows that the group velocity predicted by the effective
moduli model for an §2 wave is less than the value for intact
material and is essentially invariant with angle of incidence.
As expected, it is equivalent to the §1 wave group velocity at
0° incidence. Because of similar particle motions the SV
wave group velocities from the displacement discontinuity
model (Figure 4) can be compared to the 52 wave group
velocities from the effective moduli model. Both models
predict slowing of the shear wave for propagation perpen-

PYRAK-NOLTE ET AL.: ANISOTROPY IN SEISMIC VELOCITIES AND AMPLITUDES

12

i S2-wave

e - GK.',

B 8o

098

08 +

o E; =116

06

056 -

Normalized Group Velocity

= 5.67
04 -

03

02 1 | 1 | ] 1 1 |
51025205 3040560 480. 7080590

g

Fig. 10. Normalized §2 wave group velocity as a function of
angle of incidence calculated from the effective moduli method for
two different values of E;. The inset shows the angle of incidence
and the polarization of particle motion.

dicular to the fracture planes. However, for the same values
of fracture specific stiffness the variation of group velocity
with angle of incidence is completely different for the two
models. These differences could have significant implica-
tions with respect to interpretation of field vertical seismic
profile (VSP) or cross-hole results in which propagation
directions vary over a wide range of angles.

In Figure 10 the invariance of the §2 wave group velocity
with angle of incidence arises from the choice of equal values
for Ey and E7. Selection of values of E7 less than E, would
result in an angular variation such as is more typically expected
for a transversely isotropic media. Selection of unequal values
of ky and k3, however, would not substantially change the

TABLE 1. Material Properties and Other Constants Used in
Calculation of Group Velocities
Property Value
Shear modulus 82.15 GPa
Density 7750 kg/m?
Poisson’s ratio 0.3
Fracture spacing 0.003 m/fracture
KT — KN 50 x ]0]2 Pafl'l‘l
24.4 x 10" Pa/m

EN e E'!'

Ky = 5.0 x 102 Pa/m 5.67

Ky = 24.4 x 102 Pa/m 1.16
K‘,\.'JJZP

ky = 5.0 x 10" Pa/m 1.06 x 10° 571

Ky = 24.4 x 10" Pa/m SHTE DS
KTJ"ZS

Ky = 5.0 X 10'2 Pa/m 1.98 x 10° s~!

Ky = 24.4 X 10" Pa/m 9.68 x 10° 57!
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general character of the predictions of the displacement discon-
tinuity model. It is also clear from the results that the medium
represented by a sequence of layers differs greatly from models
of dilute populations of cracks commonly observed in the crust
(e.g., papers in this issue). In this sense we suggest that
displacement discontinuity models address an entirely different
class of crustal fracture sets.

EXPERIMENTAL PROCEDURE

A block of laminated mild steel plates was used to simulate
on a laboratory scale the effect of parallel, multiple fractures
on the velocities and amplitudes of seismic waves propa-
gated perpendicular and parallel to the fractures. To simulate
the surfaces of the fractures, the surfaces of the steel plates
were sandblasted before stacking and bolting the plates
together. After 31 plates, each 0.00318 m thick, were bolted
together to form a block, the outer surfaces were ground flat
and parallel. The final dimensions of the block were 0.0906 m
perpendicular to the fractures by 0.0905 m parallel to the
fractures. For comparisons, measurements were made on a
solid steel cylinder that measured 0.0990 m in length by
0.1026 m in diameter.

The steel block was loaded biaxially in a test frame as
shown schematically in Figure 11. One actuator was used to
clamp the plates together, and the other applicd an equal
load parallel to the plates. The seismic transducers, one for
transmission and the other for reception, were loaded in
series with the block to establish seismic coupling.

Each transducer comprises a thick-walled, hardened steel
cylinder (Figure 12). One transducer contains the compres-
sional and shear wave piezoelectric elements for transmis-
sion, and the other transducer those for reception of the
seismic pulses. The end of each transducer in contact with
the sample is closed by a thick hardened steel plug with
parallel surfaces. The piczoelectric elements and their com-
bined electrodes are stacked sequentially behind each end
closure. In back of the electrode is a piston with an O ring
seal. The space behind this piston is piped to a bottle of
high-pressure nitrogen with a pressure regulator, while the

Laminated Block
{31 plates)

Fig. 11. Sketch of biaxial loading system used to apply load to the

laminated block consisting of 31 steel plates.
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Fig. 12.

portion of the cylinder in front of the piston containing the
elements and electrodes is vented. The nitrogen pressure
ensures good seismic coupling between the piezoelectric
elements and the end closure in contact with the specimen.
The pressure was maintained constant with a regulator,

The natural frequency of each piezoelectric element in the
transducers was about 1 MHz, and the transmission crystals
were pulsed with a 1 kV spike of 0.3 us duration at a
repetition rate of 100 Hz (Velonex high-power pulse gener-
ator, model 350). The receiver elements were terminated
with a 50-ohm impedance and dc coupled to a Tektronics
(model 7704A) digital oscilloscope. The oscilloscope was
triggered by a pulse from the high-voltage pulser through a
calibrated variable delay on the oscilloscope so that the
arrival time of each pulse could be read to 0.01 us. Group
arrival times were measured for both compressional and
shear waves. The oscilloscope was used to digitize and hold
a portion of each seismic pulse with a duration of 20 us.
These pulses were digitized (Tektronics P7001 digitizer) at a
rate of 25.6 points/us, and three such digitized pulses were
stacked to produce a good signal to noise ratio. The oscillo-
scope was connected to a PDP 11/44 computer where each
record was stored on disc.

To examine the spectral content of the seismic pulse, the
received waveform signal was tapered to isolate the initial
pulse of the wave from subsequent reflections. Different
tapers were evaluated to determine which one would give
the best representation of the spectral energy of the first
pulse. The selection tapers were found to isolate the initial
pulses from the reflections and yet preserve most of the
low-frequency content of the signal without too much dis-
tortion in the high-frequency range (see, for example, Figure
13). Amplitude spectra were calculated by performing a fast
Fourier transform (FFT) on the tapered pulse.

Compressional and shear pulse group travel times and
transmitted amplitudes were measured at angles of incidence
of 0° (normal to the fractures) and 90° (parallel to the
fractures). Two polarizations of one S wave were measured
when propagating in the direction parallel to the fractures.
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resulting from the tapering procedure.

Measurements of group travel time and transmitted wave
amplitudes were also made on the solid steel cylinder. Both
the laminated block and the solid cylinder were subjected to
loads of 15 kN and 30 kN. Good contact between the seismic
transducers and the steel blocks was insured by the insertion
of a thin lead foil, 25 um in thickness, between the trans-
ducers and the sample.

EXPERIMENTAL RESULTS

Table 2 lists the group velocities and peak-to-peak ampli-
tudes of the first arriving pulses from the solid steel cylinder
and the laminated block consisting of 31 steel plates. Peak-
to-peak amplitudes were determined from the difference
between the trough and the peak amplitudes of the pulse.
Data for the laminated steel block are given for biaxial
loading conditions of 15 kN and 30 kN for waves propagated
at angles of incidence of (° (perpendicular to the interfaces
between plates) and 90° (parallel to interfaces). Two values
of group velocity and received pulse amplitude are given for
P waves for the 90° incidence for the laminated block corre-
sponding to each orientation of shear wave polarization.

Table 2 shows that the group velocities and peak-to-peak
pulse amplitudes of received P and S waves for the 0°
direction for the laminated block under a 30-kN load were
much lower than those for the solid cylinder or the laminated
block at an angle of incidence of 90°, For the 90° angle of
incidence in the laminated block the P, SH, and SV wave
group velocities approached the value of group velocity from
the solid cylinder. Though the group velocities for SH and
SV waves were very close in value for this propagation
direction, the received pulse amplitude for the SV wave was
only about one third that of the SH wave.

Velocities and amplitudes of P and § wave pulses at (°
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incidence for the laminated block under a 15-kN biaxial load
were lower than those for the block under a 30-kN load. This
is consistent with the assumption that the higher load in-
creased the specific stiffness of the interfaces,

Figures 14 and 15 contain the recorded waveforms of P
and § wave pulses for the solid cylinder under uniaxial load
of 30 kN and the laminated block under a biaxial load of 30
kN. The trends shown by the data in Table 2 can be seen
from comparison of the various waveforms. In addition,
Figures 14 and 15 also show the variations in frequency
content of the waveforms for the various test conditions.
Figure 14 shows that the received P wave pulse for the solid
cylinder contains higher frequencies than the received pulse
for the laminated block at either an angle of incidence of 90°
(Figures 14c-14d) or 0° (Figure 14b). As can be seen, the
effect was much more pronounced at 0° than at 90°,

Figure 15 contains the waveforms of § wave pulses
propagated through the solid cylinder (Figure 154), the
laminated block at 0° incidence (Figure 15b), and the lami-
nated block at 90° incidence for both shear wave polariza-
tions (Figures 15¢—15d). For 0° incidence the § wave pulse is
not only slower and of much lower amplitude but also has
much lower frequency content than any of the other § wave
pulses. The waveform of the SV wave pulse incident at 90°
(Figure 15d) exhibits both a lower amplitude and a higher
frequency content than the SH wave (Figure 15¢).

The difference in amplitude and frequency content of the
waveforms for the two § wave polarizations at 90° incidence
is further illustrated by the spectra of the two waveforms
shown in Figure 16. For the SH wave pulse a maximum
spectral amplitude of about 62 occurs at about 300 kHz while
for the §V wave pulse the maximum spectral amplitude is
about 27 at 600 kHz,

DiscussioN oF EXPERIMENTAL RESULTS

The plots in Figures 8, 9, and 10 can be used to show
qualitatively the trends that would be expected if the lami-
nated block were represented by a transversely isotropic
medium. At angles of incidence of 0° and 90° it is consistent
to refer to the S1 and S2 waves as SH and SV waves,
respectively. Thus the effective moduli model predicts that

TABLE 2. Measured Velocities and Amplitudes at 0° and 90°
Incidence
Solid Laminated Laminated
Steel, 30 kN Block, 30 kN Block, 15 kN
P (0°) Wave
Velocity, m/s 6023 3845 3581
Amplitude, mV 460 14 9
S () Wave
Velocity, m/s 3254 2056 1702
Ampiitude, mV 3600 520 220
P (90°) Wave
Velocity, m/s 5876/5899 5815/5838
Amplitude, mV 300/295 68/73
SV (90°) Wave
Velocity, m/s 3284 3272
Amplitude, mV 1200 348
SH (90°) Wave
Velocity, m/s 3274 3249
Amplitude, mV 4200 96()
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to the laminations.

the group velocity of the P wave and SH wave at angles of
incidence of 0° should be slower than at a angle of incidence
of 90°. It also predicts that an angle of 90° the $H wave group
velocity should be equivalent to that for a solid piece of
steel, and the P wave group velocity should be slightly less.
With small discrepancies in absolute numbers, these trends
were observed. The effective modulus model, however,
cannot account for the observed similarity in SH and SV
wave group velocities at angles of incidence of 90°. Assum-
ing only elastic properties, it also cannot account for the
observed frequency-dependent reduction in amplitudes.
Using only the measured P and § wave velocities at an
angle of incidence of 0°, the effective moduli model can also
be used to estimate quantitatively values of « and x5 for

the interfaces between the steel plates. On the basis of (20)
and (21), using travel times under a 30 kN load and the
material properties of steel listed in Table 1, values of ky =
6 x 1013 Pa/m and k7 = 2 x 10" Pa/m were obtained.
The displacement discontinuity model permits evaluation
of the effect of a series of parallel fractures on both velocity
and amplitudes. With respect to the laminated steel block
tests the displacement discontinuity model would predict
that the group velocities of all three waves, P, SH, and SV at
0° incidence should be reduced compared to those for the
solid steel block, and at 90° incidence the group velocities of
all three waves should approach the values for the solid
block (see Figures 3, 4, and 5). The displacement disconti-
nuity model predicts that the amplitude of the transmitted
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wave will be reduced according to the value of |7]*° where | T|
is the magnitude of the frequency-dependent transmission
coefficient for a wave propagating across one of the 30
interfaces in the laminated block. At 0° incidence the value
of |7] is dependent upon the specific stiffness of the interfaces
and the frequency of the propagating wave. At 90° incidence
the displacement discontinuity model predicts that the group
velocities of P and SV waves approach those of intact material,
while their amplitudes go to zero (Figure 6). For the SH wave
at 90° incidence the displacement discontinuity model predicts
that the amplitude will approach that of intact material.

At 0° incidence the observed results corresponded well
with predictions of the displacement discontinuity model,
that is, the received P and S wave pulses for the laminated

block were lower in velocity and much lower in frequency
and amplitude than those for the intact cylinder (Figures 14
and 15). On the basis of the displacement discontinuity
model the velocities and amplitudes at 0° incidence can be
used independently to estimate values of « and « 7 for the
interfaces in the laminated block. Using the difference be-
tween arrival times for P and § wave pulses in the solid
cylinder and in the laminated block at 0° under a 30-kN load,
estimates of « y and x 7 were obtained using (16). Values of
©=1x10%s"! for P waves and w = 1.1 x 105 s~! for §
waves, which correspond to the center frequency of the
received pulse for the laminated block at 0°, were used in the
calculation. It is noted that (16) has two roots, so, from the
P wave data, values of k y = 9.3 x 10! Pa/m and 5.9 x 10'2
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Pa/m are obtained. From the § wave data, values of k7 = 1.5
x 10'* Pa/m and 1.3 x 10'* Pa/m are obtained.

The peak spectral amplitude for the received P wave pulse
propagated through the laminated steel block had an ampli-
tude of about 7 of that for the solid cylinder at a frequency
of about { of the frequency of the peak spectral amplitude for
the cylinder. The S wave pulse had a frequency of about i
and an peak spectral amplitude of about 1 of the received
pulse for the solid cylinder. These frequency shifts and
amplitude changes suggest a value of |T| of about 0.93 for a
single interface. This value, along with the w = 1 X 10° s~
for P waves and w = 1.1 x 10° s7! for S waves, was
substituted into the expression for |T| obtained from (13) and
given by

2 ezt |12
= 4x/Z)? + w?

The solution of this equation yielded one real root each for
xy and k. These values are ky = 5.9 X 10" and k7 = 3.5
w1l

At 90° incidence the velocity of the SH wave for the
laminated block was about equal to that for the intact
cylinder, as predicted by either the displacement disconti-
nuity model or the effective moduli model. The amplitude,
however, was greater than that observed in the intact
cylinder. This result remains unexplained.

The observed group velocity of the P wave at 90° inci-
dence was lower than that predicted by displacement dis-
continuity model. The observed amplitude while lower than
for the intact cylinder, was much larger than anticipated on
the basis of the displacement discontinuity model. One expla-
nation for the large amplitude of the P wave pulse is that none

(24)

LRSS

of the energy actually crosses an interface, so that this wave
propagates as described by the effective moduli method.,

The group velocity of the SV wave at 90° in the laminated
block was close to that for the solid cylinder, in apparent
agreement with the displacement discontinuity model. How-
ever, the amplitude of the SV wave pulse was also greater at
an angle of 90° than anticipated on the basis of the displace-
ment discontinuity model, though still significantly lower
than the SH wave pulse amplitude at 90° or for the solid
cylinder. Thus the behavior of the SV wave was contrary to
both the effective moduli model and the displacement dis-
continuity model. It appears as if the laminated structure
was filtering out SV wave wavelengths greater than the plate
thickness. Evidence in support of this explanation is found in
Figure 16, which shows the spectra for the SV and SH waves
pulses at 90°. Above 600 kHz the spectral amplitudes for the
two pulses are similar in magnitude, while at lower frequen-
cies the spectral amplitudes for the SV wave pulse are much
lower than those for the SH wave pulses. A frequency of 600
kHz corresponds to a wavelength of 0.005 m, compared with
a plate thickness of 0.003 m. It is possible that the observed
shear energy in the SV wave pulse was being propagated as
a dispersive interface wave [Pyrak-Nolte and Cook, 1987].
Such waves propagate with velocities between those of
shear waves and those of Rayleigh waves.

SUMMARY

To investigate the effect of discrete structures, such as
fractures, on seismic anisotropy in velocity and amplitudes,
we have used the displacement discontinuity model for wave
propagation across a fracture. In our analysis we chose to
analyze the anisotropy in seismic velocities and amplitudes
for a purely elastic, transversely isotropic medium com-
posed of multiple, parallel fractures using both the displace-
ment discontinuity model and the effective moduli method.
The results from the displacement discontinuity model differ
in several ways from those determined from the effective
moduli method. First, in the displacement discontinuity
theory the effect of the fracture on wave propagation occurs
at the fracture. In contrast, in the effective moduli method
the discreteness of the fracture is lost when the effects of the
fracture are incorporated into effective moduli.

Second, for a purely elastic, transversely isotropic me-
dium composed of a set of parallel fractures, the displace-
ment discontinuity model predicts a group velocity and a
transmitted wave amplitude that depend on the frequency of
the wave, the ratio of fracture specific stiffness to seismic
impedance, and the angle of incidence. The effective moduli
method does not yield frequency-dependent group velocities
nor changes in the amplitudes of transmitted waves. Fre-
quency dependence can be introduced into the effective
moduli method using complex moduli. However, the me-
dium then is no longer purely elastic, but is viscoelastic.

A third and very important difference is the behavior of
the SV wave group velocity and transmitted wave amplitude
when the wave is propagated parallel to the fractures. The
effective moduli method predicts that the SV wave group
velocity at an angle of incidence of 90° will be equal to the
value of SV wave and SH wave group velocities at 0°
incidence (perpendicular to the fractures). On the other
hand, the displacement discontinuity model predicts that the
group velocity of the SV wave at an angle of 90° (parallel to
the fractures) will be equal to the group velocity assumed for
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the intact portion of the medium. When the waves are
propagated parallel to the fracture, the fractures do not
cause a delay or phase shift in the wave front, and the wave
travels through the intact portions of the medium. This also
means that at 90° the group velocities of P and SH waves
propagated parallel to the fracture will equal the group
velocity of a wave propagated through intact material.

From the experimental results the dependence of group
velocity and wave amplitude on fracture specific stiffness
was observed by comparing the results for normal incidence
when the block consisting of 31 steel plates was subjected to
loads of 15 kN and 30 kN. As the load was increased, the
fracture stiffness increased, thereby increasing the group
velocity and increasing the transmitted wave amplitude.
Increasing the stiffness of the interfaces in the steel lami-
nated block also resulted in an increase in the high-frequency
content of the signals. For waves propagated perpendicular
to the interfaces, group velocities were reduced compared to
the solid steel cylinder in accordance with both the effective
moduli model and the displacement discontinuity model.
The displacement discontinuity model, however, was able to
predict not only the decrease in group velocities but also the
reduction in amplitudes and changes in frequency content
assuming no additional material parameters., At 90° inci-
dence the transmitted waves did not cross the interfaces.
The P wave group velocity was closer to that predicted by
the effective moduli model than that predicted by the dis-
placement discontinuity model. However, for 90° incidence,
neither model could account for the observed velocity of the
shear wave with particle motion perpendicular to the frac-
tures. For the particular plate thickness used in the experi-
ment, this direction of propagation seems to act as a high
pass filter for § wave wavelengths shorter than the spacing
between the interfaces.

In conclusion, the displacement discontinuity model for
wave propagation through multiple parallel fractures pre-
dicts anisotropy in velocity and wave amplitudes that de-
pend on the angle of incidence, on the frequency of the
signal, and on the ratio of fracture specific stiffness to the
seismic impedance. Though further experimental data are
needed to confirm predictions of the displacement disconti-
nuity model at oblique angles of incidence, the difference in
behavior of the displacement discontinuity model in compar-
ison with traditional models could result in significantly
different interpretations of field data.
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