
Wave guiding in fractured layered media

S. SHAO1*, C. L. PETROVITCH2 & L. J. PYRAK-NOLTE1,3,4

1Department of Physics, Purdue University, West Lafayette, IN 47906, USA
2Applied Research Associates Inc., Raleigh, NC 27615, USA

3Department of Earth, Atmospheric and Planetary Sciences, Purdue University,

West Lafayette, IN 47906, USA
4School of Civil Engineering, Purdue University, West Lafayette, IN 47906, USA

*Corresponding author (e-mail: shao5@purdue.edu)

Abstract: Many carbonate rocks are composed of layers and contain fracture sets that cause the
hydraulic, mechanical and seismic properties to be anisotropic. Co-located fractures and layers in
carbonate rock lead to competing wave-scattering mechanisms: both layers and parallel fractures
generate compressional-wave (P-wave) guided modes. The guided modes generated by the frac-
tures may obscure the presence of the layers. In this study, we examine compressional-wave
guided modes for two cases: wave guiding by fractures in a layered medium with sub-wavelength
layer thickness; and wave guiding in media with competing scattering mechanisms, namely layer-
ing (where the thickness is greater than a wavelength) and parallel sets of fractures. In both cases,
the fracture spacing is greater than a wavelength. When the layer thickness is smaller than a wave-
length, P-wave guiding is controlled by the spacing of the fractures, fracture specific stiffness, the
frequency of the signal and the orientation of the layering relative to the fracture set. The orien-
tation of the layering determines the directionally dependent P-wave velocity in the anisotropic
matrix. When the layer thickness is greater than a wavelength and an explosive point source of
a signal is located in the layer containing a fracture, the fracture either enhanced or suppressed com-
pressional-mode wave guiding caused by the layering in the matrix.

Carbonate reservoirs pose a scientific and engi-
neering challenge to geophysical prediction and
monitoring of fluid flow in the subsurface. This is
particularly true for carbonate rocks, many of which
form in spatially and temporally variable deposi-
tional environments, and are modified further by
diagenesis and deformation during the subsequent
rock history. Variations in primary depositional geo-
metries (metre to kilometre scale), as influenced by
factors such as their depositional environments, sea-
level fluctuations and climate, are reflected by dis-
tinct stacking patterns of rock layers or bodies,
and variations in their thickness and lateral conti-
nuity. Depositional and/or construction processes
influence finer-scale (micron to centimetre scale)
textural variations and the formation of sedimentary
structures. The resulting pore systems in the rock
matrix comprise pores that vary in scale from sub-
micron to centimetres. Fossil and primary mineral
content, as well as spatial and compositional vari-
ations in cements, introduce further heterogeneities
to the rock texture. Both cements and pore structure
can be modified multiple times by temporal vari-
ations in the compositions, temperatures and flow
rates of fluids migrating through the rocks. Carbon-
ate rocks that have been subjected to deforma-
tion in response to burial, tectonic and induced

(e.g. during hydrocarbon production) stresses com-
monly develop arrays of fractures as well as stylo-
lites. While the orientations of these features vary
with the burial and deformation history, fracture
arrays are commonly steeply dipping, while stylo-
lites tend to be oriented parallel to bedding.

Difficulties in interpreting subsurface data from
carbonate reservoirs and aquifers are increased by
the fact that their geological features span a wide
spectrum of length scales and form over a wide
range of timescales. The hierarchy of processes
that generate the geological features in carbonate
rocks (e.g. stacking patterns of strata and their con-
tinuity, diagenetic geobodies, hardgrounds, frac-
tures, stylolites, and faults) generate features that
overlap in their length scales. This geological ‘blur-
ring’ makes it particularly difficult to isolate the
discrete elements at a given scale that form the
building blocks of features at larger scales. Thus,
an accurate geophysical assessment of the flow
behaviour of carbonate reservoirs requires a fun-
damental understanding of the interplay of the phys-
ical processes that act over multiple timescales to
form multiscale rock fabrics. The geological fea-
tures that contribute to these fabrics impact flow
behaviours and geophysical signatures over various
length scales.
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This paper focuses on just two components of
carbonate rocks that affect seismic interpretation
of the physical properties of carbonates, namely,
the effect of layering in the rocks and a set of paral-
lel fractures. In this study, fracture orientation is
either parallel to the strike and dip of the layering
(i.e. fractures are oriented parallel to the layer-
ing), or the fracture strike and dip are perpendicular
to the layering (i.e. fracture sets are perpendicular
to the layering). The effect of layering on seismic
wave propagation depends on the thickness of the
layers relative to a wavelength. Layers are assumed
to represent an impedance contrast or change in
mechanical properties relative to the surround-
ing layers. The source of the material contrast may
arise from different texture porosity, mineralogy,
cement or microcrack distribution or orientation
(Boggs 2006). When the layer thickness in a car-
bonate is much smaller than a wavelength – that
is, d ′/l ≪ 1, where d ′ is the layer thickness and l
is the wavelength (Backus 1962; Sheriff & Geldart
1995) – the rock can be treated as a transversely
isotropic (TI) medium. In more complex settings,
the local stress distribution can result in ortho-
rhombic behaviour, such that the velocity varies in
all three directions because of layering and pref-
erential microcrack closure or opening. When the
thickness of the layers is comparable to an inte-
ger multiple of a wavelength, wave guiding can
occur as a result of different acoustic impedance
between layers for the P-wave (compressional)
and S-wave (shear) (Li 2011). This will lead to
energy confinement within layers and interference
between the direct mode and modes internally
reflected within layers.

The effect of thick layers (i.e. greater than a
wavelength) on P-waves is shown in Figure 1. Li
et al. (2009) performed acoustic wavefront imag-
ing on a 100 × 100 × 100 mm cubic sample of
Austin Chalk to obtain a three-dimensional (3D)
(X × Y × t) dataset of the compressional wave-
front: the dimensions of a rectangular scanned
region are X mm × Y mm, with data acquired in
1 mm increments in each direction. A total num-
ber of X × Y waveforms were collected. Each wave-
form contained t data points of amplitudes. Figure 1
contains 2D slices (X × t) from a 3D dataset
collected on Austin Chalk. One spatial dimension
(slices on face E) and one temporal direction (time
axis) are shown for locations Y ¼ 10–58 mm.
Acoustic wavefront imaging uses a spherical source
(Roy & Pyrak-Nolte 1995; Wolfe 1995; Xian et al.
2001; Oliger et al. 2003). If the rock had been isotro-
pic, the wavefront would have spread out uniformly
(spherically) in space as a function of time. In
Figure 1, the variation in the arrival time of the
direct P-wave is observed to be non-uniform. The
non-uniformity is caused by the large layers in

the sample. Li et al. (2009) determined that the
density among the layers in a companion Austin
Chalk sample varied from 1700 to 2300 kg m23,
while the P-wave velocity varied by 16% through-
out locations in the X mm × Y mm region of the
sample. The difference in velocity among the
layers in their Austin Chalk sample produced sig-
natures of wave guiding. For example, in the slice
from the 30 mm location, strong wave-guiding sig-
natures were observed at positions between 10 and
20 mm, 30 and 40 mm, and 50 and 60 mm (Fig. 1,
such as strong energy confinement and multicycles
of signals). Specifically, multiple oscillations are
observed with the dominant energy (red in Fig. 1)
arriving after the first arrival. Thus, layering in
Austin Chalk is sufficient to produce guided modes
on the laboratory scale. These guided modes are
leaky modes because of energy loss that occurs
upon reflection at the boundary between layers (Aki
& Richards 2005). At field-scale frequencies, the
layers in this rock would be sub-wavelength, and
wave guiding would not occur. However, if frac-
tures are present and are more widely spaced (e.g.
c. 30–60 m fracture spacing for 100 Hz signals),
guided modes could exist.

In this paper, we present a theoretical, exper-
imental and numerical study of wave guiding in
fractured layered media for two specific cases: (1)
fractured media with sub-wavelength layer thick-
ness (referred to as the sub-wavelength layers);
and (2) fractured media with layer thicknesses that
are comparable to a wavelength. In both cases, the
fracture spacing, which is defined as the perpen-
dicular distance between two parallel fractures, is
always greater than a wavelength. In the next sec-
tion (‘Fractured media with sub-wavelength layer
thickness’), we present a theoretical and experi-
mental study of wave guiding between fractures in
a transversely isotropic (TI) material with sub-
wavelength layer thickness. In the section on ‘Frac-
tured media with layer thicknesses greater than a
wavelength’, a numerical study is introduced to
determine whether a set of parallel fractures in a
medium featuring periodic isotropic layers, whose
thicknesses are comparable to a wavelength, can
enhance or suppress wave guiding that arises from
layers.

Fractured media with sub-wavelength

layer thickness

Carbonate rocks are often anisotropic because of
layering and commonly contain fractures that are
typically vertical or sub-vertical. Many of these
fractures will interconnect causing further com-
plexity. Horizontal fractures are less common but
can form during partial uplift of buried sequences
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owing to the removal of overburden or in compres-
sional tectonic settings (Fatemi & Kharrat 2012). In
this study, two fracture orientations with respect to
the layering were selected that represent the end
members of the many complex situations that may
occur in carbonate rocks. These end members are
(Fig. 2): (1) a medium with fractures oriented per-
pendicular to the layers and referred to in this
paper as the FV medium (Fig. 2a); and (2) a medium
with fractures oriented parallel to the layers and
referred to as the FH medium (Fig. 2b). The pres-
ence of a set of parallel fractures in a transversely
isotropic (TI) medium can produce P-wave (com-
pressional wave) guided modes and energy con-
finement. In this section, we demonstrate that the
number of modes, the time delay for different
P-wave guided modes and the phase shifts depend
on the orientation of the fractures relative to the

matrix layering. A theoretical derivation of P-wave
guided modes between fractures in a TI medium
with sub-wavelength layers is presented followed
by experimental observations.

Theory: wave guiding between fractures

in an anisotropic medium

A monochromatic plane wave with wavelength l
and phase velocity v propagates in the x–z plane
with a reflection angle of u, with respect to the z-
axis (Fig. 3). The plane wave reflects between the
upper and lower fracture planes as it propagates.
The wave-guiding condition (Saleh & Teich 1991)
requires constructive interference after each reflec-
tion (i.e. twice reflected). This action results in two
distinct plane waves: the original wave and the
twice-reflected wave (Fig. 3). Waves that satisfy this

Fig. 1. (a) Acoustic wavefronts from a sample of Austin Chalk that were transmitted from Face E to Face F (opposite to
Face E). A 20 ms window (X– t) of wavefronts recorded over a 60 mm (X ) × 60 mm (Y ) region is shown for slices from
the 3D dataset for positions Y ¼ 10, 20, 30, 40, 50 and 58 mm that are taken perpendicular to the layering on Face
E. Colour represents the amplitude of the signal. A sketch of the sample with the X and Y directions are shown in (b). The
dotted lines in (b) indicate the approximate orientation of the layers in the sample. A sketch of the measurement
technique and a recorded signal are presented in (c) and (d), respectively.
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condition are called guided modes (or eigenmodes).
This wave-guiding condition can be expressed as:

2p(AC − AB)

l
+ 2fRpp = 2pm (1)

where m is a non-negative integer, AC and AB are
the distances from A to C and from A to B, and
fRpp is the phase shift calculated from the com-
plex reflection coefficient for the P-wave. Equation
(1) is the condition for perfect constructive inter-
ference. Geometrically, AC and AB are related
through:

AC − AB = 2 d cos u (2)

where d is the spacing between two fractures
(Fig. 3). Once the P-wave reflection coefficient
for a fractured TI medium is obtained, the mode
number, m, can be calculated numerically for the
reflection angle, u, from 08 to 908 (Xian et al. 2001).

The reflection coefficient is derived for a P-
wave incident upon a fracture in a TI medium
based on the work of Carcione & Picotti (2012).
A fracture is represented by a set of boundary
conditions that is often referred to as the displace-
ment discontinuity theory or the linear-slip theory
(Murty 1975; Schoenberg 1980; Kitsunezaki 1983;
Pyrak-Nolte et al. 1990a, b). These boundary
conditions are: (1) the stress is continuous across a

Fig. 2. (a) A photograph of fractures oriented perpendicular to the layering and a sketch of the FV medium representing
the end members of this case in this study. (b) A photograph of fractures oriented parallel to the layering and a sketch of
the FH medium used in this study. In the sketches of the FV and FH media, the thick solid lines represent the fractures
and the thin dashed lines represent the layers. The images were taken by the author in Mosaic Canyon in Death Valley
National Park, California, USA.

Fig. 3. Ray paths (arrows) of a wave guided between two
parallel fractures for sub-wavelength layers in the
x–z plane (the y-direction is into the page). The fracture
planes are parallel to the x–y plane. For the fractured
TI media with fine sub-wavelength layering, the layering
planes either lie in the x–y plane, parallel to the fractures
(the FH medium), or in the x–z plane vertical to the
fracture (the FV medium). The wave front is
perpendicular to the ray path. l represents the
wavelength, u represents the reflection angle with respect
to the z-axis.
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fracture; and (2) the discontinuity in displacement
across the fracture is inversely proportional to the
specific stiffness of the fracture. Fracture specific
stiffness depends on the size and spatial distribu-
tion of the aperture and contact area within a frac-
ture (Barton et al. 1985; Brown & Scholz 1985;
Brown et al. 1986; Hopkins et al. 1987; Hopkins
1990; Hopkins et al. 1990; Pyrak-Nolte & Morris
2000; Lubbe et al. 2008; Petrovitch et al. 2013). As
a fracture opens or closes in response to changes
in stress, the fracture specific stiffness changes
because the contact area and aperture distribution
are altered. Thus, seismic wave transmission and
reflection, as well as group time delays, are affected
by changes in fracture specific stiffness. In most
conditions, wave guides formed by parallel frac-
tures are leaky (Nihei et al. 1999) because energy
is lost every time a wave reflects off a fracture.
The amount of energy loss depends on the fre-
quency of the signal and the fracture specific stiff-
ness (Xian et al. 2001).

The following derivation is for P-wave guided
modes in the FH medium, which has a vertical sym-
metry axis perpendicular to the horizontal layers
(the z-direction in Fig. 2). P-wave propagation is
taken to be in the x–z plane (Fig. 2). For an FH
medium, the elastic stiffness tensor C for a TI back-
ground is expressed as:

C=

C11 C11−2C66 C13 0 0 0

C11−2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)

For convenience, Voigt’s notation has been applied
to convert the tensor into a second rank matrix (e.g.
1123 −�14, see Thomsen 1986).

When only the in-plane P-SV wave propagation
is considered (no SH-wave, and no y-component of
displacement), the displacements on the upper and
lower surfaces of a fracture are written as:

u(1) = uPI + uPR + uSR

u(2) = uPT + uST

(4)

where superscripts (1) and (2) indicate displace-
ments in the upper and lower media of the fracture,
subscripts (I, R, T) represent the incident, reflected
and transmitted waves, and subscripts (P, S) rep-
resent the P-wave and SV-wave.

Carcione & Picotti (2012) derived the matrix
equation for the reflection and transmission coeffi-
cients for a fracture in a TI medium:

bP1 − cxWP1 bS1 − cxWS1 −bP2 −bS2

jP1 − czZP1 jS1 − czZS1 jP2 jS2

ZP1 ZS1 −ZP2 −ZS2

WP1 WS1 WP2 WS2

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

×

RPP

RPS

TPP

TPS

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ =

−bP1 − cxWP1

jP1 − czZP1

ZP1

WP1

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠ (5)

where normal stress szz ¼ Z, tangential stress
szx ¼ W, b and j are vertical and horizontal plane
wave polarization components that relate to the
directionally dependent S- and P-wave velocities,
and ca(a ¼ x, z) is the inverse of the normal or tan-
gential fracture stiffness (i.e. compliance). The
reflection coefficient RPP is obtained numerically
by solving equation (5).

In an FV medium, the fractures lie in the x–y
plane, while the normal to the layers is in the x-
direction (Fig. 2). The stiffness tensor for an FV
medium is:

C=

C11 C12 C11 −2C55 0 0 0

C12 C22 C12 0 0 0

C11 −2C55 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C44

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(6)

The P-wave reflection coefficient, RPP, for the FV
medium is calculated by using equation (5).

Xian et al. (2001) derived the solution for
compressional-mode wave guiding between frac-
tures in an isotropic medium, and found that the
number of modes generated depends on the fre-
quency of the signal and the fracture specific stiff-
ness. From our derivation for wave guiding
between parallel fractures in a TI medium, the
number of modes is shown to also depend on the fre-
quency and fracture specific stiffness. Moreover, the
number of modes is also affected by the orientation
of the layers relative to the fractures because of the
difference in the values of the elastic constants of
the matrix (Fig. 4). Figures 4–9 are theoretical
results based on the material properties of the FH
and FV garolite samples, which are epoxy-cloth
laminates with fine sub-wavelength layering used in
the experiments. The material properties are given
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in Table 1 for the experimental frequency range.
Figure 4 shows the number of guided modes for
the FH and FV media that satisfy equation (1) as a
function of frequency for selected stiffnesses
(shear stiffness and normal stiffness are assumed
to be equal) from 109 to 1015 Pa m21.

As shown in Figure 4, for the same frequency
and fracture specific stiffness range, fewer modes
are generated for FV than for FH. For the FH
medium, no guided mode exists when the frequency
is lower than 0.05 MHz. However, guided modes
exist for frequencies higher than 0.07 MHz for the
FV medium. More modes are observed for lower
fracture specific stiffness and higher frequencies
because less energy is lost to transmission across
the fracture upon reflection.

The group delay for guided waves arises from
two aspects: geometric (when the guided wave
travels a longer distance than the direct wave) and

dynamic (group delay that occurs because of the
phase shift upon reflection from fracture). The geo-
metrical, tgeo, dynamic, tdyn, and total delay, Ttotal,
are expressed as:

tgeo = L

VP(u)sinu
− L

VP(u)

tdyn = N
dfRpp

dv

Ttotal = tgeo + tdyn

(7)

where VP(u) is the P-wave velocity as a function of
reflection angle u, fRpp is the phase shift experi-
enced upon reflection from the fracture and N is
the number of reflections within a sample of
length L (with the source assumed to be at the
centre of the waveguide). The dynamic time delay,
tdyn, depends on the phase shift upon the reflection
from the fracture (equation 7). From the displace-
ment discontinuity theory, the phase shift depends
on frequency, fracture specific stiffness and the
material properties of the matrix (equation 7). The
geometric time delay, tgeo, is also affected by
these same parameters through the wave-guiding
requirement (equation 1).

Figure 5 shows the contributions to the total time
delay (Fig. 6) from the dynamic and geometric
group time delays as a function of frequency for
a fracture specific stiffness of k ¼ 1011 Pa m21.
First, the orientation of the fractures relative to the
layering affects the time delays because the layering
produces anisotropy that affects VP(u) in equation
(7) and the phase shift upon reflection. Velocities
and energy partitioning of P- and S-waves are
directionally dependent on the material properties
in anisotropic media. The reflection angle, u, as a
function of frequency is shown in Figure 7 for a
range of fracture specific stiffness for FH and FV.
The number of reflections for a given sample
length determines the magnitude of tdyn.

Fig. 4. Number of guided modes (m) for media FH and
FV as a function of frequency and for a range of fracture
specific stiffness (k ¼ 109–1015 Pa m21).

Fig. 5. (a) The dynamic group time delay and (b) the geometric group time delay as a function of frequency for modes
m ¼ 0, 1 and 2 for fractures parallel to the layering, FH, and for fractures perpendicular to the layering, FV, for fractures
with a specific stiffness of 1011 Pa m21.

S. SHAO ET AL.380

 at Purdue University Library on May 25, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


Secondly, both geometric and dynamic time
delay components (Fig. 5), as well as the total time
delay (Fig. 6), are a function of frequency because
the existence of fracture guided modes (equation
1) depends on the wavelength of the signal and the
fracture spacing. However, an additional frequency
dependence arises from the fracture that does not
occur for waves guided only by layering. A frac-
ture that is represented as a non-welded contact pro-
duces a group time delay for both transmitted and

reflected waves. The dynamic time delay, tdyn, is
found by taking the change in phase as a function
of frequency. The presence of a fracture results in
a P-wave reflection phase shift (fRpp) that is a func-
tion of frequency and fracture specific stiffness.
Figure 8 illustrates the dependence of the phase
shift upon reflection on signal frequency and on

Fig. 6. Total group time delay for as a function of
frequency for modes m ¼ 0, 1 and 2 for fractures parallel
to the layering (FH) and for fractures perpendicular to the
layering (FV) for fractures with a fracture specific
stiffness (k) of 1 × 1011 Pa m21.

Fig. 7. Reflection angle (guided mode m ¼ 2) from a
fracture as a function of frequency for fractures parallel
to the layering (FH) and for fractures perpendicular to the
layering (FV) for a fracture specific stiffness (k) of 1011,
1013 and 1015 Pa m21.

Fig. 8. Phase shift (guided mode m ¼ 0) upon reflection
from a fracture as a function of frequency for a range of
fracture specific stiffness for fractures parallel to the
layering (FH) and for fractures perpendicular to the
layering (FV) for a fracture specific stiffness (k) of 1011,
1012, 1013, 1014 and 1015 Pa m21.

Fig. 9. Number of reflections (bounces) as a function of
frequency for modes m ¼ 0, 1 and 2 for fractures parallel
to the layering (FH) and for fractures perpendicular to the
layering (FV) for fractures with a fracture specific
stiffness (k) of 1011 Pa m21.
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fracture specific stiffness, as well as on the fracture
orientation relative to layering. A fracture rep-
resented as a displacement discontinuity boundary
acts as a low-pass filter. As the stiffness of the frac-
ture increases, more high-frequency components of
the signal are transmitted across the fracture, and
less of the reflected energy is trapped within the
wave guide formed by the parallel fractures. It is
noted that lower fracture stiffness results in a rapid
change in the phase shift as a function of the sig-
nal frequency, which increases the magnitude of
dynamic delay of a single reflection (Fig. 8).

Finally, like the isotropic case of wave guiding
between parallel fractures, high mode numbers
experience greater time delays (Figs 4 & 5) than
lower mode numbers because the number of reflec-
tions from the fractures increases as m increases
(Fig. 9). The number of reflections increases
because the reflection angle approaches normal inci-
dents (u −� 08) as the frequency decreases.

The theoretical analysis presented here demon-
strates that a TI matrix with sub-wavelength layers
affects the time delay of waves guided between
parallel fractures because of the directionally

dependent P-wave and S-wave velocities. In the
next subsection, we describe the experimental
approach used to measure and observe wave guid-
ing between fractures in an anisotropic medium.

Experimental set-up

Wavefront imaging experiments were performed
to capture the spatial distribution of energy with
time in garolite samples that simulated frac-
tured rock with sub-wavelength layers. Garolite is
an epoxy-cloth laminate that can be considered
transversely isotropic and has layers approximately
0.5 mm thick. Three cubic samples were studied.
Samples FV (Fig. 2a) and FH (Fig. 2b) each con-
tained five parallel fractures with a fracture spac-
ing of 10 mm (approximately 3l–3.3l, where l is
the wavelength of the P-wave, around 3 mm at
1 MHz). An intact sample containing no fractures
was used as a control. Synthetic fractures were
created by cutting the samples with a band saw
and then belt-sanding the surfaces. In the FH
sample, the fracture set was oriented parallel to the
layering, while, for the FV, the fractures were
oriented perpendicular to the layering, as described
in the previous subsection. Both fractured samples
were sealed by placing crystal-clear tape on all sur-
faces of a sample. The sample dimensions were
approximately 102 × 102 × 102 mm.

A wavefront imaging system (Fig. 10) was used
to characterize the samples and to capture P-wave
guided modes. The system includes: (1) ultrasonic
transducers to send and receive signals; (2) a pulse
generator; (3) motion controllers for 1D–3D data
acquisition; (4) an oscilloscope; (5) a digitizer;
and (6) a computer. Two water-coupled spherically
focused piezoelectric transducers (Panametrics
V303S-SU) were used in this experiment with
a central frequency of 1 MHz and a nominal
element size of 13 mm. Water-coupling ensured

Table 1. Material properties

Properties FH FV

C11 (GPa) 13.76 11.71
C13 (GPa) 3.92 6.43
C33 (GPa) 7.71 11.71
C44 (GPa) 2.44 2.34
C55 (GPa) 2.44 2.64
C66 (GPa) 3.11 2.34
r (kg m23) 1327 1301

Elastic stiffness components, C, and density of the matrix, r, for
FH (fractures and layers are parallel) and FV (fractures are perpen-
dicular to the layering) media.

Fig. 10. (a) Schematic of wavefront imaging system showing the location of transducers, translation directions and
sample in the water tank. (b) Schematic of the loading system used during wavefront imaging.
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the same coupling between the transducer and
sample at all locations. After sealing a sample with
tape, the sample was placed between platens in a
tank of water (Fig. 10). Up to 45 kN of normal
load was applied to a sample with a manual hydrau-
lic pump (ENERPAC P80V). A pressure transducer
(Transmetric P115CG) was used to monitor the
pressure during the experiment.

To record a wavefront imaging dataset in the
same manner as that from the experiment in Li
et al. (2009) (see the introduction of this paper),
the source transducer was maintained at a fixed
location, while the receiver was used to record
data over a 2D region to obtain the spatial distri-
bution of energy with time. Each sample was scan-
ned over a 60 × 60 mm region in 1 mm increments
to map out the arriving wavefront (i.e. 3600 trans-
mitted waveforms were recorded). This procedure
resulted in a 3D dataset: two spatial dimensions
and one temporal dimension. Both the source and
receiver transducers were focused on the surface
of the sample, with an approximate focal distance
of approximately 18.2 mm (from the centre of the
transducer to the edge of the sample). The beam
diameter for this distance was about 2.1 mm. The
beam diameter is defined as the transverse distance
between two points where the signal amplitude is
50% (26 dB) of the peak in signal amplitude.

A pulse generator (Panametrics model 5077PR)
was used to input a negative (100 V) electrical
square pulse into the source transducer. The pulse

width was 0.3 ms, with a repetition rate of 100 Hz.
Two computer-controlled linear actuators (Newport
model 850B) were used to translate the receiver
both horizontally and vertically. Waveforms were
collected from the receiver transducer by a digital
oscilloscope (LeCroy 9314L) and were stored on a
computer for analysis. For each transducer combi-
nation, a 100 ms window of the waveform, with a
time delay of 43 ms, was recorded with a resolution
of 0.01 ms per point (10 000 points per signal).

A set of calibration experiments were performed
to assess the ability of using wavefront imaging to
extract quantitative information on the velocity ani-
sotropy of a sample. Figure 11 shows snapshots (2D:
60 × 60 mm) of wavefronts recorded for a transpar-
ent acrylic sample (Fig. 11a) and a phenolic G10
sample (Fig. 11b) that is a fibreglass laminate. The
acrylic sample was isotropic, and the wavefront in
Figure 11 is circular because the P-wave propagates
with the same speed in all directions. The phenolic
G10 sample is a tight fibre-glass laminate with a
unique vertical direction, which is expected to
behave as an example of VTI media. The wave-
fronts in the G10 sample are elliptical because the
P-wave propagates faster parallel to the layers (hori-
zontal axis in Fig. 11b) than perpendicular to the
layers. The P-wave velocity ratio (VP‖/VP⊥) for
the acrylic and G10 samples were 1.04 and 1.24,
respectively, and match the ratios determined from
traditional contact transducer measurements made
for three orthogonal directions.

Fig. 11. 2D snapshots of wavefronts from (a) an isotropic acrylic sample and (b) a VTI phenolic G10 sample. The
colours in the snapshots represent the amplitudes of the received signals at a certain time.
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Experimental results

Wavefront imaging results. Wavefront imaging
enables characterization of the samples and imag-
ing of guided modes. The anisotropy of the Intact
sample was observed in the wavefront shown in
Figure 12b (top). The black dots on the signals
shown in Figure 13 indicate the time of the

wavefronts shown in Figure 12. The wavefronts in
Figure 12b represent a 60 × 60 mm region of the
sample and the colours represent the amplitude of
the signal (see Fig. 13 for amplitude scale). The
wavefront in the Intact sample spreads out faster
in the direction parallel to the layers than perpen-
dicular to the layers, as expected for a TI sample
with no fractures. Data points from the contours of

Fig. 12. (a) Sketch of the samples showing the orientation of the fractures (thick black lines) relative to the layering
(dashed grey lines). (b) Contour map of signal amplitude of measured wavefronts. Samples FH and FV were subjected
to a load of 45 kN applied normal to the fractures. The red crosses indicate the positions where the signal amplitudes are
in desired ranges to plot the contours.

S. SHAO ET AL.384

 at Purdue University Library on May 25, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


the wavefront were fitted with an ellipse to deter-
mine the anisotropy of the samples and are shown
in Figure 12b. The P-wave velocity ratio (VP‖/
VP⊥) in the Intact sample (velocity propagated par-
allel to the layering divided by velocity propagated
perpendicular to the layering) is approximately 1.20
and has an eccentricity of 0.55. In this paper, the
eccentricity is defined by

�����������
1 − b2/a2

√
, where a

and b represent the major and minor axes of an
ellipse, respectively. The effect of the fractures on
the wavefront is clearly observed for samples FH
and FV (Fig. 12b). For FH and FV samples, appar-
ent P-wave velocity ratios (VP‖/VP⊥) are around
1.64 and 0.634, respectively. Apparent wave vel-
ocity ratios are used for the fractured sample
because the wave velocities are affected by the
number of fractures across which a wave has propa-
gated and by the delays associated with wave
guiding (see the earlier subsection on ‘Theory:
wave guiding between fractures in an anisotropic
medium’ for a discussion). However, while the
eccentricities of the wavefront contours in FH and
FV are essentially the same (0.793 and 0.773,
respectively), the major axes differ in orientation
by 908 because of the orientation of the fractures
relative to the layering. For the fractured samples
at low stresses, the observed apparent anisotropy
is controlled by the fractures that mask the matrix
anisotropy observed in the Intact sample.

Energy confinement between the central parallel
fractures is observed in the wavefronts shown in

Figure 14. In Figure 14, the acoustic wavefronts
are shown for the two fractured samples, FH and
FV, subjected to 45 kN and the Intact sample. For
the fractured samples, the position axis (vertical
axis) corresponds to the direction that is perpendicu-
lar to the fracture planes. For the Intact sample, the
position axis is perpendicular to the layers. The
colour represents the amplitude of the signal (see
Fig. 13 for amplitudes). The signals shown in
Figure 13 were taken from the centre of the wave-
fronts; that is, signals with the earliest arrivals
were from the location where the receiver and
source were aligned.

The strong energy confinement between frac-
tures occurs because the fracture specific stiffness
is low, resulting in low transmission across the
fractures. The fracture stiffness is low because the
fracture surfaces are not in sufficient contact with
each other, under a no-load condition (Hopkins,
1990). For the FV sample, the dominant energy
arrives (red colour in Fig. 14c) significantly later
than the first arrival for the Intact or the early
mode in FH. In the next subsection, we will use
the theory to identify the guided modes observed
in the data.

Comparison of theory and experimental results. The
effect of fracture specific stiffness and the orien-
tation of the layers relative to the fracture set on
wave guiding in an anisotropic medium with sub-
wavelength layering is examined using the signals

Fig. 13. Signals from the Intact sample and samples FH and FV from the centre of the wavefront imaging datasets. The
black dot indicates the times of the wavefront snapshots shown in Figure 12b.
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from the centre of the wavefront; that is, from
between the two-parallel fractures that contained
the source. Figures 15 and 16 show the received

waveforms from the FH and FV samples, respect-
ively, subjected to 0 and 4 MPa stress applied
normal to the fractures. The first arrival (the direct

Fig. 15. Comparison of the signals from the FH sample in the unloaded and loaded (4 MPa) condition. The difference
between the two signals is also shown (multiplied by a factor of 5). The arrival times of guided modes are indicated by
the dotted vertical lines.

Fig. 14. Acoustic wavefronts as a function of time and position from (a) the Intact sample, (b) FH and (c) FV. The
wavefronts for FH and FV were taken perpendicular to the fractures.
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wave, identified as the onset time of the signal) is
unaffected by the application of stress because at
this measurement location the direct wave does
not cross a fracture nor has it been reflected from
a fracture. The predicted arrival times from the
theory for the FH sample are listed in Table 2 for
modes m ¼ 0, 1 and 2. Only modes 1 and 2 are
significantly affected by fracture specific stiffness
for this type of frequency and material properties,
because modes 1 and 2 reflect between 4 and
6 times from the fracture plane as the waves are
guided, while m ¼ 0 mode is only reflected twice.
Thus, the additional delay produced by the fracture
increases with increasing mode number (Fig. 6). If
the samples were longer, the number of reflections
per mode would increase and the time delay
would increase. However, as mentioned earlier, a

wave guide formed by parallel fractures is leaky
because some loss of energy occurs each time
the wave bounces off (or reflected from) a fracture.
The amount of energy loss depends on the frequency
of the signal and the fracture specific stiffness. Xian
(2001) showed that compressional-mode guided
waves were measureable for up to 15 wavelengths
while preserving a significant amount of detectable
energy. To help identify the guided modes, the dif-
ference between the signals from the FH sample
with and without load was taken, and is shown
in grey in Figure 15. As predicted by the theory,
mode m ¼ 0 arrives very close to the direct wave,
followed by mode m ¼ 1 at 32.1 ms and a clear
break is identified for mode 2 at 37.4 ms. The
guided modes for the FV sample did not change sig-
nificantly with stress (Fig. 16) as predicted by the

Table 2. Arrival times for Sample FH

Experimental Theoretical

Stiffness (Pa m21) 1010 1011 1012

Directional mode arrival (ms) 29.0 29.0 29.0 29.0
First guided mode m ¼ 0 (ms) 30.0 30.0 30.0 30.0
Second guided mode m ¼ 1 (ms) 32.1 32.9 32.9 33.3
Third guided mode m ¼ 2 (ms) 37.4 38.5 38.6 40.2

Experimental arrival times of the direct and first three guided modes and their theoretical prediction as a function of
fracture stiffness of the FH sample.

Fig. 16. Comparison of the signals from the FV sample in the unloaded and loaded (4 MPa) condition. The difference
between the two signals is also shown (multiplied by a factor of 5). The arrival times of guided modes are indicated by
the dotted vertical lines.
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theory (Table 3). The theory is also used to identify
the arrival of the different modes from the differ-
ence of the signals from loaded and unloaded FV
sample. In Figure 16, the difference amplitude has
been multiplied by a factor of 5 to clearly show
the modes. Modes m ¼ 0, 1 and 2 arrive near that
predicted by the theory (Table 3).

A decrease in amplitude of the guided modes
with stress occurred for both the FH and FV
samples (Figs 15 & 16) when the samples were
loaded because, as the stiffness of a fracture
increases, more energy is transmitted across the

fracture and less energy is confined between the
fractures. Also noted is the difference in amplitude
between the direct waves and guided waves
(m ¼ 2) for FH and FV. For the FH sample, the
amplitude of the first arrival and the m ¼ 2 wave
are similar in magnitude. However, for the FV
sample, the amplitude is greater for the guided
mode m ¼ 2 than the first arrival. This occurs
because the total time delay for the modes m ¼ 0
and m ¼ 2 differs for the FH and FV media, as
shown in Figure 6. The waves are phase shifted
by different amounts because of the orientation of

Fig. 17. The difference in total delay between mode m ¼ 0 and mode m ¼ 2 as a function of frequency for fractures
parallel to the layering (FH) and for fractures perpendicular to the layering (FV) for a fracture specific stiffness (k) of
109, 1011, 1013 and 1015 Pa m21.

Table 3. Arrival times for Sample FV

Experimental Theoretical

Stiffness (Pa m21) 1010 1011 1012

Directional mode arrival (ms) 31.6 31.6 31.6 31.6
First guided mode m ¼ 0 (ms) 32.4 32.2 32.2 32.2
Second guided mode m ¼ 1 (ms) 34.3 34.2 34.2 34.2
Third guided mode m ¼ 2 (ms) 38.9 38.5 38.5 38.7

Experimental arrival times of the direct and first three guided modes, and their theoretical prediction as a func-
tion of fracture stiffness in the FV sample.

S. SHAO ET AL.388

 at Purdue University Library on May 25, 2015http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


the layers relative to the layering that results from
the directional dependence of the wave velocities.

The difference in time delay between the direct
wave and modes m ¼ 0, 1 and 2 differs theo-
retically for the FH and FV samples (e.g. Fig. 17
illustrates the arrival time difference between the
guided modes m ¼ 0 and m ¼ 2 for FH and FV,
respectively). This difference is observed in the
experimental data by aligning the first arrivals of
signals from samples FH and FV under load
(Fig. 18). The difference in time delay caused by
the orientation of the layers relative to the fractures
results in a phase shift between the later arriving
modes of the order of 0.8p. For example, the signifi-
cant shift in phase between the guided modes
observed in samples FV and FH occurs because
the modes arrive at different times relative to the
direct wave for the samples as a result of the orien-
tation of the layers relative to the fractures. In the
signals, a significant phase shift was found around
7.0 ms later than the first arrival (Fig. 18). In the
region of 7.0–9.0 ms (relative to the first arrivals),
guided mode m ¼ 2 arrives in the FV sample,
while guided mode m ¼ 1 arrives in FH. In the
region from 7.0 to 9.0 ms, the total phase shift dif-
ference for these two samples is around 0.8p.
In the region beyond 9.0 ms, guided mode m ¼ 2
exists in both samples, and the total phase shift
difference is also around 0.8p. Table 4 includes
the theoretical prediction of relative phase shift
between FH and FV samples. From the theory, the

stiffness of the fracture is estimated to be between
1.5 × 1011 and 5.5 × 1011 Pa m21. Figure 18 also
illustrates the difference in energy partitioning for

Fig. 18. Comparison of the signals from FH and FV samples when a load is applied normal to the fractures. The signals
have been aligned at the first arrivals. Second guided mode in FH (m ¼ 1) and third guided mode in FV (m ¼ 2) occur in
Region 1 (c. 7.0–9.0 ms later than the first arrivals), while both third guided modes (m ¼ 2) occur in FH and FV in
Region 2 (more than 9.0 ms later than the first arrivals).

Table 4. Phase shift between signals from FH and FV

Fracture
stiffness
(×1011 Pa m21)

Relative phase
shift in Region

1 (p)

Relative phase
shift in Region

2 (p)

1.0 0.86 0.21
1.5 0.79 0.30
2.0 0.73 0.39
2.5 0.68 0.47
3.0 0.62 0.56
3.5 0.57 0.62
4.0 0.54 0.68
4.5 0.51 0.72
5.0 0.48 0.77
5.5 0.46 0.82
6.0 0.44 0.85
6.5 0.42 0.87
7.0 0.42 0.89
7.5 0.41 0.92
8.0 0.41 0.93
8.5 0.41 0.94
9.0 0.41 0.95
9.5 0.41 0.96
10.0 0.42 0.96

Relative phase shift (theory) between guided FV and FH samples in
Region 1 (7–9 ms later than the first arrivals), and Region 2 (more
than 9 ms later than the first arrivals). p in this table represents 1808
or half period.
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the two samples: more energy is contained in mode
m ¼ 2 for FV than in the direct wave and mode
m ¼ 0 wave than that observed for FH.

An unfractured TI medium with sub-wavelength
layers does not support guided modes. As shown
from the experiments and theory, the presence of
parallel fractures in such a medium results in
strong energy confinement between fractures, with
the amount of confinement and arrival times of the
guided modes dependent on fracture spacing, signal
frequency, matrix properties and fracture specific
stiffness.

In this section, as the layer thickness in the matrix
is much smaller than a wavelength, the seismic
response of the matrix can be simplified into a stiff-
ness tensor by employing the effective medium
approach. However, carbonate rocks with layer
thicknesses larger than a wavelength are also en-
countered in a field. For that case, the layered
matrix can no longer be treated as an effective medi-
um. In the next section, we will examine P-wave
guiding in an anisotropic medium with layer thick-
nesses of the order of 2l and fracture spacing of
the order of 4l using computer simulations.

Fractured media with layer thicknesses

greater than a wavelength

This section contrasts the analysis in the previous
section (‘Fractured media with sub-wavelength
layer thickness’) by assuming that the width of
the layering in the bulk material is greater than a
wavelength. In this limit, the bulk medium cannot
be modelled as a homogeneous transversely iso-
tropic material. Therefore, we computed the solu-
tions with a computational domain that contains
layers with different isotropic materials. It should

be noted that for a given site, the bulk rock might
display anisotropic behaviour for many reasons (e.g.
layering, aligned microcracks, arrays of larger frac-
tures and stylolites). However, for simplicity, the
domains in this study only contain two types of
layering that repeated periodically, with fracture
dips parallel to the layering (Fig. 19). We used this
configuration to prevent the obfuscation of wave
solutions by multiple overlapping phenomena. To
simulate a medium similar to Austin Chalk, a car-
bonate rock, the two different materials were
chosen to match the wave speeds from laboratory
measurements on Austin Chalk (Li 2011). The two
materials will be referred to as the cladding and
the core layers, and their properties are listed in
Table 5. This nomenclature is based on the terminol-
ogy used for light transmission along fibre optic
cables. In a fibre optic cable, light is confined to
the core by the contrast in index of refraction
between the core and the material that surrounds
and encases it (known as the cladding). For our
study on compressional wave propagation in a lay-
ered medium, layers with slow wave speeds are
refer to as core layers and the layers with fast
wave speeds are referred to as the cladding layers.

In this section, the Discontinuous Galerkin
(DG) method that was used to simulate isotropic

Fig. 19. Schematic of the computational set-up for sources and receivers. Sample geometries are given in Figures 20
and 21.

Table 5. Material properties of the cladding (fast)
and core (slow) media

Cladding
medium

Core
medium

P-wave velocity (m s21) 3796 3464
S-wave velocity (m s21) 2100 1900
Density (kg m23) 2168 2038
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elastic wave propagation is described. We use this
approach to examine compressional-mode wave
guiding in a layered medium both with and without
fractures.

Numerical scheme: isotropic elastic wave

equation

The DG method was used to compute numerically
the propagation of isotropic elastic waves in the
layered medium. The isotropic elastic wave equa-
tion is a linear hyperbolic equation, which is well
suited for the DG method (Hesthaven & Warburton
2008). This method provides highly accurate sol-
utions that enable waves to travel over multiple
wavelengths with minimal dispersion (Dumbser &
Käser 2006; Wilcox et al. 2010). We assume isotro-
pic media and that each mesh element has constant
material properties, such that the velocity-stress for-
mulation can be written as:

∂Qp

∂t
+ Apq

∂Qq

∂x
,+Bpq

∂Qq

∂y
= Sp(t) (8)

where Qp ¼ (sxx, syy, sxy, vx, vy)
T is the solution

vector (sij is the (i, j) component of the stress
tensor and vi is the ith component of the particle vel-
ocity), (Apq, Bpq) are the space-dependent Jacobian
matrices, given by:

Apq =

0 0 0 −(l− 2m) 0

0 0 0 −l 0

0 0 0 0 −m

−1/r 0 0 0 0

0 0 −1/r 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

Bpq =

0 0 0 0 −l

0 0 0 0 −(l− 2m)

0 0 0 −m 0

0 0 −1/r 0 0

0 −1/r 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

where l and m are the Lamé constants, and r is the
mass density of the material. Note that Einstein
summations are used in equation (8).

The DG construction used in this study will now
be discussed; however, for an in-depth review see
Dumbser & Käser (2006). The first step in deriving
the DG method is to define the representation of the
solution within each triangle. This is performed by
expanding the approximated solution, Qh, into a
trial basis, F (Dumbser & Käser 2006):

(Q(m)
h )p(j, h, t) = Q̂(m)

h (t)F(j, h) (11)

where (j, h) are the coordinates in a reference tri-
angle, TR. The reference triangle is defined by the

coordinates: ((x1, y1) ¼ (0, 0), (x2, y2) ¼ (1, 0),
(x3, y3) ¼ (0, 1)).

The Jacobi polynomials are a common choice of
basis functions (Dumbser & Käser 2006). Next, the
isotropic elastic wave equation is written in its weak
form by first multiplying by a test function and then
integrating over a single finite element, Te

(m), of the
domain. Since this is a Galerkin approximation,
the test function is chosen from the basis functions
that create the trial function space; that is, F in
equation (11),

∫

T (m)
e

Fk

∂Qp

∂t
dV + Apq

∫

T (m)
e

Fk

∂Qp

∂x
dV

+ Bpq

∫

T (m)
e

Fk

∂Qp

∂y
dV =

∫

T (m)
e

FkSp(t) dV . (12)

Then, the second and third terms are integrated by
parts:

∫

T (m)
e

Fk

∂Qp

∂t
dV +

∫

∂T (m)
e

FkFh
p dV

− Apq

∫

T (m)
e

∂Fk

∂x
Qp dV − Bpq

∫

T (m)
e

∂Fk

∂y
Qp dV

=
∫

T (m)
e

FkSp(t) dV. (13)

The second term in equation (13) introduces the
numerical flux between elements that must be
defined such that the system remains numerically
stable and consistent. An upwinding numerical flux
for a given triangle’s edge was used (Dumbser &
Käser 2006). It is written as:

Fh
p = 1

2
Tpq(A(m)

qr + |A(m)
qr |)T−1

rs Q̂(m)
sl F

(m)
l

+ 1

2
Tpq(A(m)

qr − |A(m)
qr |)T−1

rs Q̂
(mj)

sl F
(mj)

l (14)

where Q̂(m)
sl F

(m)
l and Q̂

(mj)

sl F
(mj)

l are the boundary
extrapolated values of the solution on element m
and one of its three neighbours mj ( j ¼ 1, 2, 3),
respectively. Aqr

(m) is the Jacobi matrix defined
in equation (9) with the material properties of
element m. |A(m)

qr | is defined by deconstructing Aqr
(m)

into its eigenvalues and vectors, then reconstruct-
ing it with the absolute values of the eigenvalues
(Dumbser & Käser 2006). Tpq is a transformation
matrix that rotates the system such that the
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x-direction is aligned with the normal to an
element’s face:

Tpq =

n2
x n2

y −2nxny 0 0

n2
y n2

x 2nxny 0 0

nxny −nxny n2
x − n2

y 0 0

0 0 0 nx −ny

0 0 0 ny nx

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦
. (15)

Now that the spatial derivatives have been discre-
tized, all that is left are the temporal derivatives.
The computations for the temporal derivatives
were accomplished with a Time Variation Dimin-
ishing (TVD) third-order Runge–Kutta method
(Atkins & Shu 1998).

Simulation set-up

The computational domain is illustrated in Figure
19. Layers are aligned vertically and given a width
of 7.24 mm (i.e. 2l at 1 MHz). The domain was
constructed by placing nine layers side-by-side,
horizontally, such that each consecutive layer alter-
nated from cladding to core and back to cladding
(fast–slow–fast wave speeds). All of the embedded
fractures were separated by the width of a layer,
such that they were exclusively either in the clad-
ding regions or in the core regions (Fig. 19). The
material properties of the layers are given in
Table 5. Unlike the work of De Basabe et al.
(2011), linear-slip conditions are not implemented
in the DG approach to simulate the reflection and
transmission of waves across fractures. Instead,
the fracture geometry is the source of the resulting
seismic response from the fractures. The fractures
were created by placing small diamond-shaped
cracks equidistantly along the fracture plane. The
cracks acted as if they were air filled by using free-
surface boundary conditions. All of the cracks were
25 mm wide and 0.362 mm long (Fig. 20). By
choosing the crack length to be much less than the
wavelength, the fractures were in the displacement
discontinuity limit (Kendall & Tabor 1971; Schoen-
berg 1980; Angel & Achenbach 1985). Five differ-
ent stiffnesses were simulated by changing the

contact area of the fracture. This was accomplished
by adjusting the crack separation, d (Table 5). When
the ratio of the wavelength to the crack separation
increases (l/d increases), the fracture specific stiff-
ness also increases.

An explosive point source (represented by the
excitation of the trace of the stress tensor) was
placed within the central layer. A Ricker wavelet
was used as an input to the point source, given as:

S(t) = A(0.5 + p fc(t − to)2)e−p fc(t−to)2

(16)

where A ¼ 1 is the amplitude, to ¼ 1 ms is the
source time delay and fc ¼ 1 MHz is the central fre-
quency. This signal has a wavelength of 3.79 and
3.46 mm in the cladding and core layers, respect-
ively. Note that the layer thickness is twice the
average wavelength (l ¼ c. 3.62 mm). A line of
300 equally spaced receivers were placed 10 wave-
lengths away from the source, at the top of the com-
putational domain, to simulate the laboratory
measurements such as those shown in Figure 1.

Simulation results

Simulations were performed for an explosive source
in an isotropic homogeneous domain (control case),
in a homogeneous medium with fractures (control
case), in a medium with alternating isotropic fast
and slow velocity layers, and in a layered medium
with fractures to determine the effect of fractures
on wave guiding in a layered medium where the
layer thickness and spacing are greater than a wave-
length (Figs 21 & 22). The two control cases
enabled the separation of the collected wave signals
from the coupled systems. Figure 21 compares five
different acoustic wavefronts when a source is
located in the core layer (slow wave speed, see Table
6). In a homogenous isotropic medium (H-Co) with
no layers or fractures, the wavefront spreads out
uniformly in all directions (Fig. 21a) as expected.
When fractures spaced 4l apart are added to the

Fig. 20. Sketch of the equally spaced thin cracks used
to model a fracture. The height (25 mm) and width
(l/10 ¼ c. 0.362 mm) of each crack remained constant
for all simulations, and the crack separation, d, was
varied (Table 5). Note that the height and width of the
cracks are not drawn to scale.

Table 6. Simulation parameters

Simulation
name

No. of
cracks

d l/d

Run 0 (control) 0 N/A N/A
Run 2 17 1.8159 mm 1.945
Run 10 49 0.3801 mm 9.524
Run 25 71 0.1454 mm 24.896
Run 50 82 0.0772 mm 46.889
Run 100 90 0.0371 mm 97.536

Simulation names for different fracture specific stiffness generated
by using a different number of cracks, crack separation, d, and the
ratio of wavelength to crack separation, l/d.
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homogeneous medium (H-Co-F in Fig. 21b), the
wavefront is delayed when it crosses a fracture
and reflected waves from the fracture are observed
in the region between positions 25 and 40 mm, the
location between the two central fractures. The first-
arriving compressional wave is essentially the same
for H-Co and H-Co-F. The signal from the H-Co-F
only differs from the signal from H-Co around
12.5 ms when the first reflections from the fractures

arrive (Fig. 21b). Strong energy confinement is not
observed for H-Co-F.

Figure 21c–e compares and contrasts the wave-
fronts when layers are present (L-SCo), and two
cases when both layers and fractures are present
(L-FCl-SCo and L-FCo-SCo), to determine the
effect of the location of the fractures on the wave-
front and on the generation of guided modes. The
acronym SCo stands for the source located in a

Fig. 21. Simulated wavefronts for compressional waves propagated in: (a) a slow homogeneous medium (H-Co);
(b) the same as (a) but with fractures (H-Co-F); (c) a medium composed of alternating layers of isotropic cladding and
core material (L-SCo); (d) same medium as (c) but with fractures (dashed line) located in the cladding layers
(L-FCl-SCo); and (e) a medium composed of alternating layers of cladding and core material with fractures located in
the core (L-FCo-SCp) layers. For these simulations, the source was located in a core layer (SCo). (See Table 6 for the
P-wave speeds.) Fracture geometry is based on Run 2 for (b), (d) and (e).
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core layer (slow layer), FCl for when fractures are in
the cladding layers and FCo for when fractures are
in the core layers. For a layered medium without
fractures (L-SCo in Fig. 21c), where the individual
layers are isotropic but alternate between core and
cladding media, the shape of the wavefront differs
significantly from that in an isotropic medium
(H-Co in Fig. 21a). The wave arrives earlier in the
cladding medium than in the central core layer,

resulting in a distorted wavefront. The alternating
core–cladding layers cause energy confinement
and results in compressional-mode wave guiding.
The guided mode is confined by the velocity con-
trast (or impedance contrast – density × phase vel-
ocity) between the core and cladding layers. In
Figure 23a, the peak-to-peak amplitude of L-SCo
is 3 times larger than for the signals from H-Co
and H-Co-F, which indicates wave-guiding

Fig. 22. Simulated wavefronts for compressional waves propagated in (a) a homogeneous cladding medium (H-Cl);
(b) the same as (a) but with fractures (H-Cl-F); (c) a medium composed of alternating layers of isotropic cladding and
core material (L-SCl); (d) same medium as (c) but with fractures (dashed line) located in the core (L-FCo-SCl) layers;
and (e) a medium composed of alternating layers of cladding and core material with fractures located in the cladding
(L-FCl-SCl) layers. For these simulations, the source was located in a cladding layer (SCl). (See Table 6 for P- and S-
wave speeds.) Fracture geometry is based on Run 2 for (b), (d) and (e).
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Fig. 23. (a) Signals showing first arrivals for signals taken from the centre of the wavefronts shown in Figure 21.
(b) Signals from a layered medium with a source in the core (L-SCo), layered medium with fractures in cladding with a
source in the core (L-FCl-SCo) and layered medium with fractures and source in the core (L-FCo-SCo) as fracture
specific stiffness decreases (Run 2–Run 100).
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Fig. 24. (a) Signals showing first arrivals for signals taken from the centre of the wavefronts shown in Figure 22.
(b) Signals from a layered medium with a source in the cladding (L-SCl), layered medium with fractures in the core with
a source in the cladding (L-FCo-SCl) and layered medium with fractures and source in the cladding (L-FCl-SCl) as
fracture specific stiffness decreases (Run 2–Run 100).
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behaviour from constructive interference between
the direct mode and the twice-reflected mode (see
Fig. 2). When fractures are added to the cladding
layers (L-FCl-SCo in Figs 21 & 23a), additional
delays in the wavefront are observed as waves pro-
pagate across the fractures. But the first-arriving
compressional mode is the same as that without
fractures (Fig. 23a) and is insensitive to changes in
fracture specific stiffness (Fig. 23b). The fractures
are essentially invisible to the guided modes. How-
ever, when fractures are located within the core
layers (L-FCo-SCo in Fig. 21e), the compressional-
mode guided wave depends on fracture specific
stiffness (Fig. 23b). The peak-to-peak amplitude of
the guided mode in L-FCo-SCo is 2.4 times larger
than that for H-Co and H-Co-F.

Whether the fractures enhance or suppress wave
guiding relative to the layered case with no frac-
tures depends on the stiffness of the fracture. For
example, the guided mode for L-FCo-SCo Run
2 exhibits larger amplitudes than the layered unfrac-
tured case L-Sco, where the presence of the frac-
tures increases the amount of energy in the guided
mode. However, it is interesting to note that the
amplitude of the guided mode decreases with
decreasing fracture specific stiffness (decreases
from Run 2 to Run 100 in Figs 23b & 24b) and
wave guiding is suppressed relative to the layered
case with no fractures. The decrease in amplitude

(Fig. 25) arises from energy partitioning. Figure 25
shows an 8 ms window of the signal from the centre
of the wavefront for simulation L-FCo-SCo. The
arrival at 18 ms is the energy reflected from the
fractures that are 4l away from the centre of
the wavefront. As the fracture stiffness decreases
caused by a reduction in contact area (Kendall &
Tabor 1971; Pyrak-Nolte & Cook 1987; Pyrak-
Nolte & Morris 2000; Petrovitch et al. 2013), the
reflected amplitude increases as expected for frac-
tures (Pyrak-Nolte et al. 1990a). At 20.5 ms, a frac-
ture interface wave is observed. Fracture interface
waves are a form of a generalized Rayleigh wave
that depends on the fracture specific stiffness and
signal frequency (Murty 1975; Pyrak-Nolte &
Cook 1987; Pyrak-Nolte et al. 1992a, b, 1996; Gu
1994; Gu et al. 1996; Nihei et al. 1997; Shao &
Pyrak-Nolte 2013). The velocity of fracture inter-
face waves ranges between the Rayleigh velocity
at low fracture specific stiffness (when a fracture
behaves as a free surface) and the bulk shear wave
velocity (when a fracture behaves as a welded
contact). For simulation L-FCo-SCo, the amplitude
of the observed fracture interface wave increases
with decreasing fracture stiffness. The decrease in
amplitude of the guided compressional mode with
decreasing stiffness results from energy partitioning
into this fracture interface wave. Thus, while one
would expect increased energy confinement of

Fig. 25. Signals from a simulation of a layered medium with fractures and source in the core (L-FCo-SCo) as fracture
specific stiffness decreases (Run 2–Run 100) showing the arrival of a mode reflection from fractures located at positions
35 mm and 55 mm, and an interface wave guided by the fracture in the source core layer.
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compressional guided mode to increase as the frac-
ture specific stiffness decreases, the partitioning of
energy into a fracture interface wave mode results
in the opposite behaviour.

Figure 22 compares the wavefront for five cases
when the source is in a cladding (fast) layer (SCl).
As for H-Co, the wavefront from H-Cl spreads out
uniformly in the isotropic medium (Fig. 22a).
When fractures are present, the wavefront is only
delayed when it crosses a fracture (Fig. 22b) and
numerous reverberations are observed from the
fractures. When a source is located in the cladding
for layered medium L-SCl (Fig. 22c), energy con-
finement in the cladding layer is not significant as
expected for a high-velocity layer surrounded by
low-velocity layers. When sources are located in
the cladding for the fractured media L-FCo-SCl
and L-FCL-SCl (Fig. 22d, e), energy confinement
in the cladding layer is also not significant. A com-
parison of the signals (Fig. 24a) from the centre
wavefronts for these samples shows that the
peak-to-peak amplitudes are within +3% of the
homogenous case (H-Cl). Launching a wave in the
cladding for either case L-FCo-SCl or L-FCL-SC
leads to suppression of wave guiding. Only the
first arrival for L-FCL-SCl exhibits sensitivity to
changes in fracture specific stiffness.

Conclusion

Reservoir management relies on geological model-
ling and flow simulations that require information
on the matrix properties of the rock formations,
and the identification of fractures or fracture net-
works. Matrix properties can be obtained from bore-
hole and core analyses but the identification and
characterization of fractures is often more difficult.
Fractures in carbonate rock are known to vary in
size, number, orientation, spacing and connectivity
because of depositional and diagenetic processes,
as well as from tectonic processes during and after
formation. Typically, seismic reservoir characteriz-
ation techniques or cross-well studies use body
wave methods such as shear-wave splitting and azi-
muthal compressional-wave attributes for fracture
location and orientation. These methods lead to
interpretation of directionally dependent properties
but cannot easily separate out the contribution to
the anisotropy from the rock matrix (from texture
porosity, mineralogy, cement and microcracks)
and that from the fractures. This information is
important when trying to determine whether a reser-
voir system is dominated by either fluid flow in
fractures or fluid flow through the matrix or a com-
bination of the matrix–fracture interaction.

Based on the results of this research, the
measurement and interpretation of guided modes

has the potential to identify both the matrix and
fracture-induced anisotropy. Compressional waves
guided by impedance contrasts have been used in
cross-well studies in oil-bearing sand–shale reser-
voirs (Leary et al. 2005), coal seams (Buchanan
et al. 1983) and sandstone–shale formations (Parra
et al. 2002) for distances greater than 600 m for
a frequency range of 50–350 Hz. To apply these
techniques to fractured carbonate reservoir char-
acterization requires an understanding that frac-
tures can produce wave guiding, and the behaviour
of the guided modes depends on contributions
from the mechanical properties of both the fracture
and the matrix.

In this paper, we examined the behaviour of
compressional wave guided modes to obtain infor-
mation on the properties of fractures in layered
media. For a transversely isotropic medium with
sub-wavelength layers, we demonstrated theoreti-
cally and experimentally that guided modes can be
used to determine the orientation of a fracture set
relative to the layering in the matrix from interpret-
ation of time delays of later arriving modes. Frac-
tures support guided modes that are guided by the
fracture orientation, depend on fracture spacing
and the properties of the fractures (e.g. fracture
specific stiffness) and on the frequency of the
signal. In addition, we showed that the arrival
times of these guided modes are also affected by
the anisotropy of the matrix through the directional
dependence of the compressional and shear wave
velocities. In our study, guided modes in fractured
anisotropic media existed with significant energy
over distances comparable to 25 wavelengths for
frequencies between 0.5 and 1 MHz. For the fre-
quencies mentioned above for the cross-well
studies and typical compressional wave speeds in
carbonate rock (4000–6000 m s21), guided modes
with significant energy should be observable at dis-
tances of 300–3000 m depending on the fracture
specific stiffness (of the order of 106–1010 Pa m21).

Interpretation of fracture properties from guided
modes in fracture anisotropic rock is aided by the
seismic response of fractures. Whether in the field
or the laboratory, the best methods for detecting
and characterizing fractures requires a ‘trajectory’
along a variable that is affected by the condition
of the fractures. For example, in the laboratory, a
stress trajectory or loading path is often used to open
and close a fracture; that is, to decrease or increase
the fracture specific stiffness. This, in turn, affects
reflection and transmission coefficients and group
time delays, as well as the spectral content of the
signal. Conversely, a broadband source–receiver
set-up can be used for a fracture sample under a con-
stant static load. Spectral analysis shows that for
the same fracture specific stiffness, high-frequency
components of the signal will be more strongly
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attenuated and exhibit smaller time delays than low-
frequency components (i.e. dispersion). For the
guided modes studied in this paper, identification
of the fracture orientation relative to the matrix
and characterization of the fracture properties at
cross-hole or field frequencies would require broad-
band sources and receivers, and spectral analysis of
the data. Spectral analysis would provide the time
dispersion that aids in the identification of guided
modes and is also a link to the stiffness of the frac-
tures and to the fracture spacing. Future controlled
field studies are needed to achieve the full potential
of guided modes for interpreting fracture and matrix
properties in carbonate rock.
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