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Abstract. Interface waves on a single fracture in an elastic solid are investigated 
theoretically and numerically using plane wave analysis and a boundary element method. 
The finite mechanical stiffness of a fracture is modeled as a displacement discontinuity. 
Analysis for inhomogeneous plane wave propagation along a fracture yields two dispersive 
equations for symmetric and antisymmetric interface waves. The basic form of these 
equations are similar to the classic Rayleigh equation for a surface wave on a half-space, 
except that the displacements and velocities of the symmetric and antisymmetric fracture 
interface waves are each controlled by a normalized fracture stiffness. For low values of the 
normalized fracture stiffness, the symmetric and antisymmetric interface waves degenerate 
to the classic Rayleigh wave on a traction-free surface. For large values of the normalized 
fracture stiffness, the antisymmetric and symmetric interface waves become a body S wave 
and a body P wave, respectively, which propagate parallel to the fracture. For intermediate 
values of the normalized fracture stiffness, both interface waves are dispersive. Numerical 
modeling performed using a boundary element method demonstrates that a line source 
generates a P-type interface wave, in addition to the two Rayleigh-type interface waves. The 
magnitude of the normalized fracture stiffness is observed to control the velocities of the 
interface waves and the partitioning of seismic energy among the various waves near the 
fracture. 

Introduction 

At the microscale, a fracture in rock appears as two 
surfaces of irregular topography which contact to form void 
spaces and asperities of contact. A fracture with a sparse 
population of asperities is more compliant than a fracture with 
closely spaced asperities [Greenwood and Williamson, 1966; 
Gangi, 1978; Brown and Scholz, 1985; Hopkins et al., 1987; 
Cook, 1992]. It has been observed that the additional 
compliance of a fracture results in a variety of interesting 
elastic wave phenomena. For example, laboratory 
transmission measurements of normally incident P and S 
waves across a fracture exhibit low-pass filtering of the source 
'wavelet accompanied by a small travel time delay [ Pyrak- 
Nolte et al., 1990]. In addition, laboratory measurements of 
elastic wave propagation parallel to a fracture have revealed 
that a fracture can support dispersive interface waves [ Pyrak- 
Nolte et al., 1992]. In both sets of experiments, the amplitude 
and velocity of the waves propagating across or along a 
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fracture were observed to be sensitive to the magnitude of the 
mechanical stiffness of the fracture or, equivalently, to the 
static stress imposed on the fracture. 

Murty [1975] examined the condition for the existence of 
an interface wave on a nonwelded interface with a 

discontinuity in shear displacement across the thickness of the 
interface. Pyrak-Nolte and Cook [1987] extended Murty's 
analysis to the case where both normal and shear 
displacements are discontinuous across a nonwelded interface. 
They found that a single nonwelded interface, such as 
fracture, can support a fast (symmetric) wave and a slow 
(antisymmetric) wave which propagate with phase velocities 
between the Rayleigh and shear wave velocities and are 
dispersive. Recent laboratory measurements by Pyrak-Nolte 
et al. [1992] have confirmed the existence of the fast and slow 
interface waves in a synthetic fracture in aluminum. Very 
good agreement was found between the measured and 
predicted group velocities of the fast and slow interface 
waves. In the field of nondestructive evaluation, the 

displacement discontinuity model has been used to 
approximate thin elastic adhesive bonds [e.g., Rokhlin, 1984; 
Xuand Datta, 1990]. In these models, shear displacements. 
across the thin bond are discontinuous by an amount that is 
inversely proportional to the shear stiffness of the bond while 
normal displacements are continuous, as in the case of 
Murty's [1975] model. 
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Figure 1. Problem geometry used in the derivation of 
interface wave equations. 

This paper investigates interface waves on a planar fracture 
in an elastic solid using plane wave and numerical analysis. 
The fracture is modeled as a displacement discontinuity 
boundary condition in both shear and normal displacements. 
Closed-form equations for fracture interface waves are 
developed. The characteristics of the dispersion and particle 
motions of trapped and leaky interface waves are examined. 
The partitioning of seismic energy among waves near the 
fracture is also evaluated. 

Plane Wave Analysis 

The seismic behavior of a thin fracture compared to the 
wavelength can be well described by the displacement 
discontinuity model. Across such a discontinuity, seismic 
stresses are continuous and particle displacements are 
discontinuous by an amount which is determined by the ratio 
of the stress on the fracture surface to the fracture specific 
stiffness [ Kendall and Tabor, 1971; Schoenberg, 1980; Rokhlin 
and Wang, 1991; Cook, 1992]. This boundary condition 
degenerates to that for a welded fracture as the fracture 
specific stiffness approaches infinity and, for two traction-free 
surfaces, as the fracture specific stiffness reaches zero. The 
displacement discontinuity model was found to accurately 
predict the frequency-dependent transmission of a plane ,wave 
normally incident upon a fracture [ Schoenberg, 1980; Myer e t 
a/., 1985] and the existence of interface waves along a 
fracture [Pyrak-Nolte and Cook, 1987]. 

Consider a fracture located in the x-y plane, as shown in 
Figure 1. The displacement discontinuity boundary conditions 
for in-plane motion (P and SV waves) are 

Ul- u2 = •'xzl/kx, 

Wl - w2 = •'zzl/kz, (1) 
•'zx l = •'zx 2 , 

•'zz l = •'zz 2, 

where u and w are the x and z components of the particle 
displacement, •:• and •:zz are the shear and normal stresses 

symmetric interface wave 

Figure 2. Schematic of symmetric and antisymmetric 
interface waves. 
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Figure 3. Normalized phase velocities of the symmetric and 
antisymmetric interface waves as a function of the normalized 
fracture stiffness for a range of C•,/Cs ratios. The numbers of 
1.50, 1.63, 1.87, and 2.45 labeled on the curves are the C•,/Cs 
ratios, which are equivalent to Poisson's ratios of 0.1, 0.2, 0.3 

and 0.4, correspondingly. Symbol (•z)cf is the cut-off 
normalized fracture stiffness above which the symmetric 
interface wave ceases to exist in the normal mode. 

on the fracture surfaces, kx and kz are the x and z components• 
of the fracture specific stiffness, and subscripts 1 and 2 refer to 
the media above and below the fracture, respectively. 

The generalized potentials for an inhomogeneous plane 
wave propagating in the x direction with exponentially 
decaying amplitude in the z direction can be expressed as 

•l= Ale-PøøZeiøø(x/C-t)' z-> O (2) 
•2= A2ePøøZeiøø(x/C-t), z_< O 

for P wave motion and 

I//1 = Ble-qøøZe iøø(x/C-t), z -> 0 
¾t 2 = B2 e qøø z eiOO(x/C-t), z -< 0 

(3) 

for SV wave motion, where i=-•/•-•, w is the angular 
frequency, t is time, A1, A2, B1, and B2 are undetermined 
constants, C is the phase velocity of the inhomogeneous 
wave, and p and q are defined as 

P= 'c2 c2' (4) 
I 1 ' q= C 2 C} ' 

where C.• and Cs are the P and S wave velocities, 
respectively. 

Using the potentials in (2) and (3) and the Helmholtz 
theorem, 

u- &- &, (5) 
w + 

the particle displacements are derived with the form 

[' Ul=to i-•Ale-PøøZ+qBle-q øøz eiOO(x/C-t), 

I 1 ]eitO(x/C_t) ' Wl = tO -PAle-PtøZ+i•Ble-q tøz 
(6) 
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Figure 4. Normalized phase velocities of the symmetric and 
antisymmetric interface waves, including the leaky mode of 
the symmetric interface wave, as a function of the normalized 
fracture stiffness when C•,/Cs=1.53. 

for the upper medium and 

I i 1 eqøa zleiøa(x/C-t), u2 = O) '•A2ePeøZ-q B2 
(7) 

w2=o) PA2e•'ø•z + i• B2e qø•z eiOa(x/C-t), 
for the lower medium. 

Seismic stresses in the upper and lower media obtained 
from (6) and (7) and Hooke's Law are 

Tzxl = (,02 _2ipkt Ale_vO•z_k t + p2 Ble-qO•z eiOa(x/C-t), 
c 

1 - A1 B1 e -qm z eim(x/C-t) •,=•2 • • •) C ' 
(s) 

z 1 ß •2=•'L•A2eP• + B2e • ei•(x/C-t) 

2F(2 1• z+2i• •2=• L••-• A2e• c B2e•Z ei•(x/C-•)' 
where X •d • are the Lame's constants. 

By substituting (6) through (8) into the boundary conditions 
(equations (1)), the following four homogeneous, linear 
equations are obtained, 

i( kx + 2/zo)p) 
A• 

C 

I I, t o) 21,to) ) i k x ,, C2 s C2 qkx B1--•-a2+qkxB2=O, 

C2 s C2 P kz A1 
i(kz + 21'ttøq) i kz ,• 

+ BI-PkzA2-'•-a2 =0, C 

2ip (A1 +A2) + + (B1-B2)=O, • •'7 q2 

-'• (A1- A2) + (B1 +B2) = 0. 

(9a) 

(9b) 

(9c) 

(9d) 

A comparison of displacements for the upper medium in (6) 
and those for the lower medium in (7) shows that when 
B2=-B1 and A2 =A1, the wave field is symmetric with 

respect to the fracture; and when B2 = B1 and A2 =-A1, the 
wave field is antisymmetric with respect to the fracture. The 
symmetric and antisymmetric wave fields are schematically 
shown in Figure 2. Substituting B2 = -B1 and A2 = A1 into 
(9) results in two linearly independent equations, 

C Al+ +q2 Bl=O ' 
(10) 

C2s C 2 ]go) AI +'•'(•'•+q BI =0. 
a) a symmetric interface wave 

lower surface propagation 
of a fracture 

O. 11)•sm 

0.24)•sm 
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0.96)•sm 0 

b) an antisymmetric interface wave 

lower surface 

of a fracture 

O. 11)•asm 

w 

propagation• 

0.22)•asm 

O. 43)•asm 
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Figure 5. Particle motions of a symmetric and antisymmetric 
interface wave versus depth from a fracture when Cp/Cs=l.53 
and the normalized fracture stiffness is assigned a value of 0.1. 
Symbols 3,sm and /•asm are the wavelengths of the symmetric 
and antisymmetric interface waves, respectively. 
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Figure 6. Reversal depths of the particle motion direction as 
a function of the normalized fracture stiffness for Ce/Cs=l.53. 
Symbols •sm and •asm are the wavelengths of the symmetric 
and antisymmetric interface waves, respectively. 
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Figure 7. Radius ratios of the particle motion ellipse on the 
surfaces of a fracture as a function of the normalized fracture 

stiffness when Ce/Cs=l.53. Symbols wpp and upp are the 
peak-peak amplitudes of the vertical and horizontal 
components, respectively, of the displacement on the fracture 
surface. 

For a nontrivial solution of (10) to exist, the coefficient 
matrix of the two constants A1 and B1 must vanish, which 

yields an equation for the symmetric interface wave: 

where • = Cs/C, •' = Cs/Ce , and •z = kz/rø Zs ( Zs = PCs is 
the S wave impedance). 

Similarly, substituting B2 = B• and A2=-A1 into (9), an 
equation for the antisymmetric interface wave is obtained, 

where •x = kx/O Zs. 
When the normalized fracture stiffnesses, /•z and •x, are 

zero, both symmetric and antisymmetric interface wave 
equations (11) and (12) degenerate to the ordinary Rayleigh 
equation for a traction-free surface. However, when the 
normalized fracture stiffnesses are finite, (11) and (12), unlike 
the Rayleigh equation, contain wave frequency. Therefore the 
interface waves propagating along a fracture with a finite 
normalized stiffness are dispersive. The respective 
appearance of /•z and •x in (11) and (12) indicates that the 
symmetric and antisymmetric interface waves are supported 
by the normal and tangential coupling between the surfaces of 
the fracture, respectively. 

Using (11) and (12), the normalized phase velocities, 
C/Cs, of the symmetric and antisymmetric interface waves 
are calculated as a function of •z and /7:x for a range of 
Ce/Cs ratios and displayed in Figure 3. As •z and /•x 
increase, the phase velocities of the two interface waves 
increase from the Rayleigh wave velocities to the shear wave 
velocity, with the symmetric interface wave propagating faster 
than the antisymmetric interface wave. Examination of the 
normalized fracture stiffness terms reveals that an increase in 

/7: z and /7:x can be induced by a decrease either in w or Zs 
or by an increase in kz and kx, respectively. Hence the 
increase of the normalized phase velocities of the interface 
waves with the normalized fracture stiffness can be a result of 

an increase in w or Zs or of an increase in kz and kx. By 

useof v=0.5(1-2C2)/(1-C 2) where v is the Poisson's ratio, 

it can be shown that the Ce/Cs values of 1.50, 1.63, 1.87, and 
2.45 correspond to the Poisson's ratios of 0.1, 0.2, 0.3, and 0.4, 
correspondingly. Thus Figure 3 also shows that with 
increasing Poisson's ratio, the phase velocities of the interface 
waves increase relative to the S wave velocity for a given 
value of the normalized fracture stiffness. 

The explanation 'for the increase of C/Cs with Poisson's 
ratio may be as follows. As Poisson's ratio increases, the 
velocity of the ordinary Rayleigh wave increases. Therefore 
the phase velocities of the interface waves accordingly 
increases because the interface waves are formed of coupling 
of two ordinary Rayleigh waves by the fracture stiffness. 

It should be pointed out that the normalized phase 
velocities of the interface waves depicted in Figure 3 are 
obtained by searching for roots of (11) and (12) in the real 
domain. When the solution range is extended to the complex 
domain, a complex root of (11), that is, the leaky mode of the 

symmetric interface wave, is obtained for •z >(•z)cf. The 
normalized phase velocities of the symmetric and 
antisymmetric interface waves, including the leaky mode of 
the symmetric interface wave, are shown in Figure 4 for 
C•,/Cs=1.53. 

By setting • = 1 in (11), the normalized fracture stiffness 
which defines the boundary between the normal and leaky 

modes of the symmetric interface wave, (•z)cf, can be fobriff 
with the form 

source 

a non-welded fracture 

45.79 m 

Cp = 5800m/s 
Cs = 3800m/s 
P= 2600kg/m3 

Figure 8. Simulation geometry used to generate symmetric 
and antisymmetric interface waves. The source line is 
perpendicular to the plane of the paper. 
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a) horizontal source, kz = 5 x 109 Pa/m 
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Figure 9. Seismic sections recorded along the lower surface of the fracture. 

1 

(•Z)cf: 241_•. 2 ' (13) 
or 

(•'Z)cf:O. 542(1-v), (14) 
by substituting •.2 = (1 - 2 v)/(2- 2 v) into (13). Equations 
(13) and (14) give an expression for the cut-off normalized 
fracture stiffness for the symmetric interface wave. However, 
no cut-off normalized fracture stiffness is found to exist for the 

antisymmetric interface wave from (12). This demonstrates 
once again that the antisymmetric interface wave is nonleaky 

for the whole range of normalized fracture stiffnesses (see also 
Figures 3 and 4). 

Particle motions of the two interface waves for a 
normalized fracture stiffness of 0.1 and C•,/Cs=1.53 are 

plotted in Figure 5. The particle motions of both the 
symmetric and antisymmetric interface waves, like those in 
the Rayleigh wave field on a traction-free surface, exhibit 
elliptic trajectories and they are retrograde near the fracture 
and reverse to prograde at a certain depth. The reversal depth 
of particle motion direction is calculated as a function of the 
normalized fracture stiffnesses and is displayed in Figure 6. 
With increasing normalized fracture stiffness, the reversal 
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Waveforms recorded on the lower fracture 

surface, at distance 45.79 m from source. Fracture specific 
stillnesses are (1) kz=109, (2) kz=Sx109, (3) 
kz = 2.5x10 lø, and (4) kz = l0 ll PaJm in the horizontal source 
case, and (1) kx=Sx109, (2) kx=10 lø, (3) kx=2.Sx10 lø 
and (4) kx = l0 ll PaJm in the vertical source case. 

depth for the symmetric interface wave greatly increases 
while that for the antisymmetric interface wave slightly 
decreases. 

Figure 5 also shows that the particle motion ellipse on the 
fracture surface is more vertically polarized for the 
antisymmetric interface wave than the one for the symmetric 
interface wave. The ratio of the ellipse radii of the particle 
motion, or equivalently, the ratio of the peak-peak amplitude 
of the vertical displacement to that of the horizontal 
displacement, on the fracture surface has been evaluated for a 
range of normalized fracture stiffnesses and displayed in 
Figure 7. The two curves in Figure 7 indicate that, with 
increasing the normalized fracture stiffness, the particle 
motion ellipse on the fracture surface becomes more 
horizontally polarized for the symmetric interface wave and 
more vertically polarized for the antisymmetric interface 
wave. This dependence of particle motion polarization on the 
symmetry of interface wave fields may be explained as 
follows. The symmetric interface wave is supported by only 
the normal component and not the tangential component of 
the normalized fracture stiffness (see (11)). Thus, as the 
normalized fracture stiffness increases, the symmetric 
interface wave is compressed in the normal direction and not 
in the tangential direction, which leads to the particle motion 
of the symmetric interface wave becoming more horizontally 
polarized. For the antisymmetric interface wave, the 
tangential component and not the normal component of the 
normalized fracture stiffness has an effect on it (see (12)). As 

a result, as the normalized fracture stiffness increases, the 
particle motion ellipse of the antisymmetric interface wave 
becomes more vertically polarized because it is compressed 
only in the tangential direction and not in the normal 
direction. 

Figures 3, 4, and 7 show that as •'x--->oo, the p/irticle 
motion ellipse of the antisymmetric interface wave 
approaches an asymptote defined by the particle polarization 
of a body S wave propagating parallel to the fracture, and the 
velocity of the antisymmetric interface wave reaches the 
velocity of the S wave. With (6), (7), (10), and (11), it can 
be demonstrated that as •'x -• oo, the antisymmetric interface 
wave degenerates to a body S wave which propagates parallel 
to the fracture with the form 

Ul = U2 = 0, 

Wl = W2 = -- B1 ('o sin•( •- t). (15) Cs t, Cs 

With increasing •'z, the particle motion of the symmetric 
interface wave becomes more horizontally polarized (see 
Figure 7). As •'z---> •,, the phase velocity of the symmetric 
interface wave approaches the P wave velocity (see Figure 4). 
From (6), (7), (9), and (12), it has been derived that as 
g z--> •,, the displacements for the symmetric interface wave 

become 

a) PIW interface wave 

a, 0 
10 7 

'horizontal source) 

u Pay (vertical source) 

108 109 101ø 1011 10 t2 1013 
fracture specific stiffness (Pa/m) 

b) RIW interface wave 

W RIW 
(horizontal source) 

U a•w (vertical source) 

6 

0 

107 108 10 ø 101ø 1011 iO n IO n 
fracture specific stiffness (Pa/m) 

Figure 11. Peak-peak amplitudes of the PIW and R/W 
interface waves as a function of fracture specific stiffness. 
The range of the fracture specific stiffness from 10 7 to 1013 
Pa/m in this figure corresponds to that of the normalized 
fracture stiffness from 0.2 x 10 -3 to 0.2 x 10 3 ß 
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numerical simulations is not long enough for the two waves to 
separate from each other. Clearly, there exist on the surface 
of the fracture only u v in the horizontal source case and w s 
in the vertical source case when the fracture is completely 
welded. Hence, w row, u mw and w mw in the horizontal 
source case and u row, w mw, and u mw in the vertical source 
case are generated due to the finite stiffness of the fracture 
and are interface waves. 

To examine the effects of the fracture specific stiffness on 
the interface waves, displacements recorded on the lower 
fracture surface, 45.79 m from the source, are displayed in 
Figure 10 for a range of fracture specific stiffnesses. Both the 
shape and amplitude of the waveforms vary with fracture 
specific stiffness. 

Figure 12. Phase velocities of the R/W interface waves as a 
function of fracture specific stiffness. The range of the 
fracture specific stiffness from 10 7 to 1013 Pa/m in this figure 
corresponds to that of the normalized fracture stiffness from 
0.2x10 -3 to 0.2x10 3. 

ul = u2 = -Al •ø sin•ol'-•-x - t i, Cv •.Cv (16) 
w1 = w2 = 0. 

This indicates that the symmetric interface wave degenerates 
to a body P wave that propagates parallel to the fracture as 

a) symmetric interface wave 

propagation 

P+PIW 
upper surface 

RIW 

P+PIW •ower surface propagatio• L 
Line Source Analysis 

Interface waves along a fracture generated by a line source 
at the fracture are investigated using a boundary element 
method (BEM). In the BEM scheme, the upper and lower 
fracture surfaces are divided into quadratic boundary elements. 
The time variable is discretized using an implicit time- 
stepping algorithm. The displacement discontinuity boundary 
conditions given in (1) are applied between the upper and 
lower surfaces of a fracture. A system of linear equations is 
then formed, which is used to solve for unknown 

displacements and stresses on the surfaces of the fracture. 
The displacements in the two half-spaces are computed 
afterward by direct use of the dynamic integral representation. 
Details of the BEM for a fractured medium have been given 
by Gu et el. [1994]. 

In the following, numerical experiments are conducted for 
the model geometry shown in Figure 8. The two elastic half- 
spaces are assigned P and S wave velocities and a density, 
Cp= 5800 m/s, Cs = 3800 m/s and p=2600 kg/m 3, 
respectively. The source is a three-lobe Ricker wavelet with a 
central frequency of 800 Hz. 

Figure 9 displays two seismic sections recorded on the 
lower surface of the fracture. The four arrivals observed are 

labeled u p+mw, w row, u mw and w mw in the horizontal 
source case and u mw w row, u mw and w s+•w in the vertical 
source case. Here superscripts PIW and RIW indicate, 
respectively, P-type and Rayleigh-type interface waves, 
P+PIW denotes a mixture of a body P wave and a P IW 
interface wave, and S+RIW refers to a mixture of a body S 
wave and a R/W interface wave. The mixing of the interface 
waves and the body waves is because the fracture used in the 

b) antisymmetric interface wave 

propagation • 
=•.•• upp• 

propagation ! • 

Figure 13. Particle motions on the upper and lower surfaces 
of the fracture, at distance 45.79 m from source. 
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Figure 11 shows that the peak-peak amplitudes of the 
displacements for the PIW and RIW interface waves decrease 
as the fracture specific stiffness increases, which indicates 
that less seismic energy is partitioned from body waves into 
the interface waves with increasing fracture specific stiffness. 

Figure 12 displays the phase velocities of the RIW interface 
waves versus fracture specific stiffness. The analytical phase 
velocities are calculated using the symmetric and 
antisymmetric interface equations (11) and (12). The 
numerical phase velocities of the symmetric and 
antisymmetric interface waves are obtained by calculating 
14.82w/AO for a line source at the fracture, where AO is the 
phase difference of a Fourier component of the interface 
waves recorded on the fracture surface at distance 29.83 m 

and 44.65 m from the sources and the angular frequency of the 
Fourier component w = 2n: '690 Hz. The numerical and 
analytical velocities are basically consistent with each other 
although there is some discrepancy between them. The 
discrepancy is induced, most probably, by the use of not-fine- 
enough grids and time intervals for the numerical simulations. 

Figure 13 shows particle motions of the symmetric and 
antisymmetric interface waves observed on the upper and 
lower fracture surfaces, 45.79 m from the source, for the 

geometry shown in Figure 8. The symmetric and 
antisymmetric interface waves are generated by the horizontal 
and vertical sources, respectively. The fracture is assigned a 
specific stiffness of kz = 5x109 Pa/m in the symmetric case 
and kx = 5x109pa/m in the antisymmetric case. The particle 
motions of the RIW interface waves on both the upper and 
lower surfaces of the fracture are retrograde. 

Figure 14 shows particle motions recorded along the 
vertical receiver profile in the lower medium for the horizontal 
source case shown in Figure 8. Th.e P+PIW wave traces out 
largely horizontally polarized particle motions, and the 
S+RIW and RIW waves trace out more vertically polarized 
particle motions. The particle motion of the S+RIW wave 
reverses from retrograde to prograde at depth 0.17 Xs (3' 

wavelength) from the fracture. The particle motion of the 
P+PIW wave, opposite in particle motion direction to the 
S+RIW wave, changes from prograde near the fracture to 
retrograde at depth 0.17 Xv (P wavelength) from the fracture. 
Now, the vertical component of the P+PIW wave, instead of 
the horizontal component of the 3'+RIW wave, goes through 
zero at depth 0.17Xv from the fracture. The vertical 
displacement of the P+PIW wave reaches a maximum, not on 
the fracture surface, but at a slight depth, around 0.06 Xv away 
from the fracture. Deeper than 1.18 X s from the fracture, the 

PIW and RIW interface waves disappear and the body waves 
dominate. 

Summary and Conclusions 

An extensive fracture in a solid can be modeled for seismic 

waves as a displacement discontinuity boundary condition 
between the surfaces of the fracture. Across the fracture, 

seismic stresses are continuous and particle displacements are 
discontinuous by an amount which is proportional to the 
stresses and inversely proportional to the mechanical specific 
stiffness of the fracture. Based on the fracture model, 
interface waves along a single, extensive fracture in an elastic 
solid were investigated using plane wave analysis and a 
boundary element method. 

P+PIW • RIW 
propagation• 

S+RIW 

O.06X,, 0.09)% 

S+RIW 

0.11X,, O.17Xs 
P+PIW 

S+RIW 

0.17)% 0.25)% 
P+PIW 

+RIW 
0.22•, p+p•• -- 0.42•s 

• S-wave 
0.77)•p P-wa• 1.18)% 

Figure 14. Particle motions observed along the vertical 
profile for the horizontally polarized source (see Figure 8). 
The fracture is assigned a specific stiffness of kz =5xlO 9 
Pa/m. The depth is normalized by the P and S wavelengths, 
•,•, and •,s. 

In the plane wave analysis, the displacement discontinuity 
boundary condition for a fracture was applied to the potentials 
for the displacement field of inhomogeneous plane waves. 
This directly results in a 4 by 4 matrix equation for interface 
waves. By considering the symmetry of the wave field with 
respect to the fracture, the 4 by 4 matrix equation is 
decomposed into two 2 by 2 matrices which give the 
symmetric and antisymmetric interface wave equations. The 
normalized fracture stiffness (which is the ratio of the fracture 
specific stiffness to the product of the wave's angular 
frequency and the S wave impedance of the two half-spaces) 
controls the behavior of the interface waves. The normal and 

tangential components of the normalized fracture stiffness 
support the symmetric and antisymmetric interface waves, 
respectively. As the normalized fracture stiffness increases 
from lower to higher values, the phase velocities of the 
symmetric and antisymmetric interface waves increase from 
the Rayleigh wave velocity to the velocities of the body P and 
S waves, respectively. For values of the normalized fracture 
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stiffness above 0.5•/2(1-v) (v is Poisson's ratio), the 
symmetric interface wave exists in a leaky mode. 

In the wave field near a fracture generated by a line source, 
a P-type interface wave is observed to exist in addition to the 
Rayleigh-type interface waves predicted by the plane analysis. 
The particle motion of the RIW interface wave reverses from 
retrograde near the fracture to prograde at a certain depth. 
The particle motion direction of the PIW interface wave, 
opposite to the particle motion direction of the RIW interface 
wave, changes from prograde near the fracture to retrograde at 
a certain depth. With decreasing fracture specific stiffness, 
more seismic energy is partitioned from body waves into the 
interface waves. 

These results may find direct application to seismic 
detection and characterization of fractures in the field. 

Interface waves are characterized by localization of the 
seismic energy in the neighborhood of the fracture and hence 
travel with less loss in amplitude along the fracture than body 
waves which spread in three dimensions. In addition, fracture 
interface waves directly sample the mechanical properties of 
fractures. Therefore interface wave techniques may become a 
quantitative diagnostic tool for evaluating the physical 
properties of fractures in geoengineering and the strength of 
welding, bonds, and adhesives in nondestructive testing. For 
example, the leaky mode of the symmetric interface wave 
allows fractures to be detected by receivers located off the 
fracture. The dependence of the interface waves on the 
components of fracture stiffness may allow separate estimates 
of the horizontal and vertical components of fracture stiffness. 
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