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ABSTRACT: ' A stratified: continunm model is used-to:geénerate fracture void geometries
to investigate the effect of trapping on immiscible flow threugh-a fracture:: For.a wetting
phase invading a fracture initially saturated with a nen-wettingphase, trapping of the non-
wetting phase occursiin local maxima that are.surrounded, by smaller apertures. Trapping
of the non-wetting:phase results in high.residual saturation:and low;values ofiwetting. .
phase telative; permeabilnty . An epoxy cast of a natura] fracture was used ta vnsua]ly
observe trapping in a fracture.

1 INTRODUCTION

Energy sources such as.coalbed-methane, geothermal springs, and.oil fields often occur
in fractured reservoirs and involve. the flow of two phases in fractures. Multiphase flow,
through fractures i also:a.concern for contaminant transport and. ;he{;solatlon of.
radioactive waste.. Anunderiying question of the movement of two fluids through a
fractute is how the fracture. geometry affects residual saturation and relative .. .
permeabilities. In reviewing the literature, few experimental measurements have been
made of relative permeability in fractures (Barton, 1972; Merrill, 1975; Bawden &
Rogiers, 1985). These experiments were performed on artificial fraotures or fractures
represcnted by parallel glass platcs Scveral investigators have undertakep theoretical
investigations of multiphase flow in fractures, Some models involve the; l{Se of capillary
theory to study multiphase flow through fractures idealized as parallel plates (Evans,
1983; Bvans & Huang, 1983; Rasmussen et al,, 1985) or wedge-shapeq fractures with
continuously varying apertures [Rasmussen, 1987]. Pruess & Tsang (1990) numencally
analyzed relative permeabllltles of a rough-walled fracture for a lognormal apertiire
distribution and various spatial correlations. They found that rclat;i\r péml‘éab;htles are '
sensitive to the nature and range of spatial cortelation of the aperpii . Pyrak-Nolte et al..
(1990) examined unsaturated flow in single fractures for the cage of a:jon-wetting phase’,
mvadmg a wetling phase fluid (such as mercury m_]eclcd mtg a fraeture‘! aturated w1th air
in rock).

Pruess & Tsang (1990) investigated numcncally the el'fect-of different aperturc :
distributions on two-phase flow through a fracture using gl@b acgessibilityi
Acocssnblllty determines which apertures will be occupied:by'} hich. phage: For wetting-
phase invasion, global accessibility allows all sites to be occupied evVen if'they are not
connected to the inlet. This paper will examine the effect of global accessibility compared
with inlet accessibility with trapping for a wetting phase invading a fracture initially. .
saturated with a non-wetting phase. Numerical and experimental.results will be
presented.
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2 EXPERIMENT

A labaratory study was undertaken to observe trapping in natural fraciures, To visually
cxamine the distribution of each phase in the [racture, an epoxy cast of a natural fracture
in granite was made. The natural fracture measured 52 mm in diameter. A mold of each
fraciure surface was made using Wood's metal, i.c., a Bismuth-based, low melting point
metal. The molds of each surface were [illed with epoxy and allowed to solidify, After
the epoxy solidified, the mold with epoxy was placed in boiling water w0 remove the
Wood's metal, The two casis of the [racture surfaces were placed 1ogether o form the
fracture. The sides of the specimen were sealed except for two ports for the fluid inlet
and outlel. These ports were approximately 3.18 x 102 m in diameter and were
diametrically opposed. The fracture was first saturated with a non-wetling phase (a dye
with a surface tension = 50.7 dyncs/em, and a viscosity = 1.37 ¢p) using an inlet
pressure of 635 Pa. The wetting phase was a mineral oil (surface tension = 30,3
dynesfem; viscosity = 28,05 cp). The oil was invaded imo the dye-saturated fracture
using an inlet pressure of 1044 Pa. The velocity of invasion of the oil was approximately
1.8 x 10 mys and was kept al this rale to avoid viscous fingering (Wong, 1988). Once a
connected path across the cast was [ormed and stabilized, the oil flowrate was measared
at 5.0x 10 m/s. The entire invasion of oil into a dye-saturated [raclure was caplured on
video tape. Figure 1 is a drawing from a video image when the distribution of the welling
phase (oil) and the non-welting phase (dye) reached steady-state. In the image, large
regions of trapped dye (non-welling phase) are observed and the oil (wetting phase) flow
path is tortuous.

3 MODEL

In this analysis of the effect of rapping on two-phase flow, fracture void wpologies are
generated using a siratified continuum model. A continuum model is used because the
distribution of void aperiures is continuous and there is no underlying lattice structure.
The simulated fracture void patlerns are based on a fractal construction that produces
spatially correlated aperture densities with an approximately log-normal size distribution.

Figure 1. Oil (wetting phase: black) invaded into a fraciure saturated with dye (non-
welling phasc: white) under capillary pressure effects,
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Details of the model and construction of the pattern can be found elsewhere in the
literature (Pyrak-Nolte et al., 1988; Nolte and Pyrak-Nolte, 1991). Figure 2 is a contour
map of the aperture distribution from a fracture void pattern generated using the stratified
continuum model. The pattern is based on a five-tier model (T = 5) with twelve points
per tier (N=12) and a scale factor of B=2.37 between tiers. The white regions represent
contact area and increasing shades of gray represent increasing aperture. The contour
interval is 20 units of aperture. This pattern represents a fracture under low stress
because there is very little contact area (~ 1%). The maximum aperture is 264 units. In
this analysis, five different patterns were generated using the same values of T, N, and B.

4 FLUID ACCESSIBILITY

The relationship between capillary pressure and saturation of a fracture will affect how
two phases are introduced into a fracture. We assume that the distribution of each phase
in the fracture will depend only on capillary pressure effects and neglect the effects of
buoyant and viscous forces. The configuration of the flow paths of the wetting and non-
wetting phases are based on the local fracture geometry and are independent of global
pressure gradients. We make the assumption that the area occupied by each phase is
directly dependent on the capillary pressure. The capillary pressure is taken to be
inversely proportional to the local aperture. When the non-wetting phase is in a small
aperture, this corresponds to a high capillary pressure. The simulations begin with the
fracture saturated with a non-welting phase. Flow is assumed to occur left to right in
simulations with zero-flow boundary conditions at the top and bottom of the patterns.
Global accessibility and inlet accessibility with trapping are used to introduce each

Figure 2. Aperture contour map of a simulated fracture void geometry using the stratified
continuum model. White regions represent areas of contact. Increasing shades of gray
represent increasing aperture. Contour interval: 20 units.
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phase into the fracture. For wetting-phase invasion, global accessibility allows all sites of
a given aperture or less to be occupied even if they are not connected to the inlet. Inlet
accessibility with trapping refers to the approach where wetting phase is introduced from
the inlet of the fracture simulation and occupies sites with wetting phase for all sites of
aperture b or less connected to the invading front, unless the non-wetting phase
occupying that site is surrounded by the wetting phase. If the non-wetting phase is
surrounded by the wetting phase, the non-wetting phase is trapped and no longer
participates in the flow and can never be occupied by the wetting phase,

Figure 3 shows the distribution of the wetting phase and non-wetting phase in a
fracture using inlet accessibility with trapping at breakthrough (Figure 3 top) and at
maximum possible saturation (Figure 3 bottom). Breakthrough occurs when the first
connected path of wetting phase is formed that spans the fracture. Black in Figure 3
represents the invading wetting phase and white regions represent the non-wetting phase.
Gray regions represent rock-to-rock contact. Trapping causes a high value of residual

Figure 3. Invasion of wetting phase (black) into the fracture saturated with non-wetting
phase at breakthrough (top) and for maximum saturation (bottom). The aperture
distribution is shown in Figure 2. Contact area is represented by gray regions.
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saturation of non-wetting phase in the fracture. If global accessibility were used, the
entire pattern in Figure 3(bottom) would be black . Because of the correlated and
continuous nature of the void geometry of the simulated fracture, the non-wetting phase
becomes trapped in regions of local maxima. Regions of local maxima are surrounded by
voids of smaller apertures through which the wetting phase preferentially flows. The
amount of trapping in a fracture depends on the spatial correlations of the apertures in the
fracture.

5 CAPILLARY PRESSURE -SATURATION RELATION

The capillary pressure-saturation is calculated by assuming that the capillary pressure is
inversely proportional to the aperture of the fracture. Throughout the simulation the
volume and area of the wetling phase were recorded as a function of invaded aperture size
as the wetting phase was introduced into the fracture. The wetling phase saturation is
calculated by dividing the volume of welting phase in the simulated fracture by the total
volume. Figure 4 shows the average for five fracture void simulations for both global
accessibility and inlet accessibility with trapping. The capillary pressure curve for a log-
normal aperture distribution in a fracture is similar to the customary j function for three-
dimensional porous media (Pruess & Tsang, 1990). The important feature of Figure 4 is
the difference between the results for inlet accessibility with trapping and global
accessibility. Trapping of the non-wetting phase by the wetting phase has a dramatic
effect on the capillary pressure curves for a single fracture. Because of trapping,
lowering the capillary pressure will never result in complete wetting phase saturation. For
the simulations, at the lowest capillary pressure, the maximum wetting phase saturation is
roughly thirty-five percent.

6 FLOW & RELATIVE PERMEABILITY

To determine the relative permeability of cach phase in the simulated fractures, relative
flow of each phase through the fracturc is cvaluated. Relative fluid flow through the
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Figure 4. Capillary pressure as a function of wetting phase saturation for global
accessibility and inlet accessibility with trapping.
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fracture:is calculated for ¢ach inctement of capillary pressure.(increment of apbrture)
assuming sieady-state equilibrium:conditions. 1i chlculating/fluid flow. throughthe) - -
fracture, a zerothworder'approach/is-taken thatintludes only:thé simplést dependences. .
For. deter:mmmsgthss wetting:phase. flow);Qiy, "cubiciaw”:(Witherspoon etial,, 1980). -
behavior i3.assimed to.describe theJocal deperidence ofifluid flow on apertoke. : Thetwo-
dimensional critical behavior isrincluded by a'scalinig lawthat destribes changesin. 7 -
tortuosity. v
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The area, aw occupled by the wetung phase is nonnahzed by the area of the entire
simulated fracture. The critical area, Acy, is the normalized areu of the wetting phase at
threshold, and t is a critical exponent taken to be t=1,9 for these simulations, The eritical -
expoanent for standard random continuum percolation ranges between 1.7 < t < 2.7 '
(Halperin et al., 1985). Tortuosity is important for determining the wetting phase flow
because the path of the wetting phase i3 constantly changing with changes in saturation.
An effective critical aperturd, beg, Is used for the welting phasc to account for the parallel
flow paths that are established as the wetting phase is allowed into larger apertures,

Because the non-wetting phase dominates the critical path of the pattern.and only
flows along this path, the tortuosity of the non-wetting phase flow path does not change .
with a change in saturation. | The non-wetting phase flow is gwen by | 5
AP W B

o= 02 o

where begy is the critical neck of the criticalzpath of the fracture sitiulation, and by is -
~ the largest aperture the wetting phase has entéred for a give capillary pressure. The
quantity {1 - (bw / beow)} in equation (2) Tepresents the change in the width of the non-
wetting phase critiéil'fiéek a8 the weiting phasé is allowed into ‘Tager jpertures, ’
Equations (1) and (2) differ slightly from thie‘equatidis put forth by Pyrak-Nolte ct ai.
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(1990) to model the alternate process for the dlaplacerncnt of a wetting phase by a non-
wetting phase.

Relative permeabilities of each phase in the fracture void simulations were determined
from relative flow values:

kv o Qu Ko o Qo
kl‘ot QT.D1 and klot Qlol
where
AP W 3
Qo = ——
O AL Hw crpatr

where ky, is the permeability of the wetting phase, and ki is the single phase
permeability. Flow for cach phase was normalized by the flow through the simulation for
complete saturation by the wetting phase. The global pressure gradient was assumed
equal for both phases. Viscosities are based on the values for methane (108.7 x 10-6
poise) and water (0.01 poise). In coal, methane is the wetting phase and water is the non-
wetting phase because coal is hydrophobic (Fuerstenau et al., 1990).

Figure 5 shows the effect of trapping on the relative permeabilities of each phase.
Trapping results in a maximum wetting phase permeability of six percent for a maximum
wetling phase saturation of thirty-five percent. The high residual saturation is a direct
result of the fracture topologies. Because of the correlated geomeltry of the simulated
fracture, the non-wetting phase becomes trapped in regions of local maxima. Regions of
local maxima are surrounded by voids of smaller apertures through which the wetting
phase preferentially flows.

7 CONCLUSIONS

From the experiments, trapping of a non-wetling phase by a wetting phase is observed for
a natural fracture. This phenomenon can be modeled based on fundamental physical
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Figure 5. Relative permeabilities as a function of wetting phase saturation for global
accessibility and inlet accessibility with trapping.
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principles. The significant éffect of frapping 'on the flow of iwo immiscible fluids in a
fracture is directly related to the fracture void geometry, For the flow of a ges and water,
such as in coaltied tethané productioh, irapping of the wate¥ by thethane will’ '
significantly reduce the flow of methane,
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