

Lecture 2: Research Results

Laura J. Pyrak-Nolte* ‡

*Department of Physics [‡] Department of Earth & Atmospheric Sciences *Purdue University*

Image 27

Image 42

Image 91

To test theoretical hypotheses on the relationships among capillary pressure, saturation and interfacial area per volume...

... using laboratory data from micro-models of porous media.

Fluid Distributions

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Photo-projection lithography

Displacement measurements

Image Analysis

Simulated Pore Structures

Spatially Uncorrelated

Spatially Correlated

Decane-Nitrogen - Micro-model System Surface Tension: 24.7 dynes/cm

Contact Angle:

Glass: 4.4° Photoresist: 4.1°

Fluid Invasion: Nitrogen into Decane

Data: Fluid Invasion of Nitrogen into Decane

Image Analysis:

Phase IdentificationInterface IdentificationCurvature

Capillary Pressure - Wetting Phase Saturation

Black - PhotoresistMaroon - NitrogenBlue - DecaneWhite - Capillary DominatedBright Red - All pressures

Pyrak-Nolte

Method 1: Assumes that wetting fluid leaves a thin film. There is no contact between non-wetting fluid and solid.

Method 2: Wetting phase film thinner than 2 microns (optical resolution scale) is discounted. The non-wetting fluid can be in contact with the solid.

Wetting - Non-wetting Interfaces

Raw Image

Dark Gray - Photoresist White - Nitrogen Gray - Decane Method 1 Including Films

Method 2

Black - Photoresist

Purple - Nitrogen

Blue - Decane

White - Interface Decane-Nitrogen

\$8.c.18

From Image Analysis:

SaturationInterfacial LengthCurvature

Curvature:

$$K = \frac{\Phi_{y}^{2}\Phi_{xx} - 2\Phi_{x}\Phi_{y}\Phi_{xy} + \Phi_{x}^{2}\Phi_{yy}}{\sqrt[3]{\Phi_{x}^{2} + \Phi_{y}^{2}}}$$

(Sethian, 1985)

Image Analysis: Curvature Analysis

Spatially Uncorrelated: For All Interfaces: Includes Films Capillary Pressure - Wetting Saturation - IAVwn relationship

Spatially Uncorrelated: For Capillary Dominated Interfaces: Capillary Pressure - Wetting Saturation - IAVwn relationship

Spatially Uncorrelated: For Capillary Dominated Interfaces: Capillary Pressure - Wetting Saturation - IAVwn relationship

Sample S8g

Pyrak-Nolte

Same Saturation

Pressure: 43.8 kPa

IAV: 1727 m⁻¹

Saturation: 0.75

Pressure: 41.6 kPa

IAV: 3247 m⁻¹

Same Pressures

Saturation: 0.76

Pressure: 42.67 kPa

IAV: 2393 m⁻¹

Sample S8c

Saturation: 0.88

Pressure: 42.64 kPa

IAV: 1240 m⁻¹

Spatially Uncorrelated: For Capillary Dominated Interfaces: Capillary Pressure - Wetting Saturation - IAVws relationship

Spatially Uncorrelated: For Capillary Dominated Interfaces: Capillary Pressure - Wetting Saturation - IAVns relationship

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Sample ID	Desired Porosity	Real Porosity
S70	0.70	0.67
S75	0.75	0.70
S80	0.80	0.78
S85	0.85	0.80
S90	0.90	0.90
S95	0.95	0.91

Sample: s70 with porosity = 67%

Sample: s75 with porosity = 70%

Sample: s80 with porosity = 78%

Sample: s85 with porosity = 80%

Sample: s90 with porosity = 90%

Sample: s95 with porosity = 91%

Hysteresis in IAVwn - Saturation Relationship as a Function of Distance from Percolation Threshold

*If interfaces from all pressures are considered, IAV_{nw} exhibits a linear dependence on wetting-phase saturation. The relationship is non-invertible.

Midpoint Summary

* If only interfaces dominated by capillary forces are considered, a hysteretic relationship between IAV_{nw} - Saturation is formed.

Midpoint Summary

* If only interfaces dominated by capillary forces are considered, IAV_{nw} is a single valued function of capillary pressure and saturation to within 4% and is now invertible.

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Micro-Models in this study

Sample S1_spr05_Q

Pyrak-Nolte

Data Set:

for Sample S1_sum05_Q

Relationship among Pcap, Wetting Saturation & IAVnw for Drainage Condition

Imbibition Drainage Interfacial Area per Volume Ct-m. MAL Y Wetting Phase Saturation Wetting Phase Saturation Capillary Pressure Capillary Pressure

nterfacial Area per Volume

Method of comparison

$$R = \frac{a_{data}(s, p)}{a_{interpolated}(s, p)}$$

$$R_{imbibition} = \frac{a_{data,imbibition}(s,p)}{a_{interpolated,drainage}(s,p)}$$

$$R_{drainage} = \frac{a_{data,drainage}(s,p)}{a_{\text{interpolated,imbibition}}(s,p)}$$

Comparison of Imbibition & Drainage Surfaces

Squares: imbibition

Diamonds: drainage

Comparison of Imbibition & Drainage Surfaces

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Micro-Models in this study

Sample s70 Channel Depth ~ 2 micron 600 microns

Sample s1

Channel Depth ~ 1 micron

600 microns

Porosity ~ 62.3%

Porosity ~ 72.9%

0.6 microns per pixel edge length

 $P_{cap} = \gamma^{wn} \kappa$ where k is curvature of the interface between phases $\alpha \& \beta$

 $\gamma^{\scriptscriptstylelphaeta}$ - interfacial tension between phases lpha & eta

- w wetting phase
- n nonwetting phase

Capillary Pressure from Interfacial Area per Volume

$$p^{c} = -s^{w}\rho^{w}\frac{\partial A^{w}}{\partial s^{w}} - s^{n}\rho^{n}\frac{\partial A^{n}}{\partial s^{w}} - \sum_{\alpha\beta}\frac{\gamma^{\alpha\beta}}{\phi}\left(\frac{\partial a^{\alpha\beta}}{\partial s^{w}}\right)\Big|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}}$$

(Hassanizadeh & Gray, Water Resources Research, 29(10), 3389-3405, 1993)

 p^{c} = capillary pressure

A = Helmholtz free energy

 $\gamma^{\alpha\beta}$ = interfacial tension between $\alpha \& \beta$

 $a^{\alpha\beta}$ = interfacial area per volume $\alpha \& \beta$

 $\phi = \text{ porosity}$

 s^{w} = saturation of the wetting phase

w, n, s = wetting, nonwetting, solid

$$P^{c} = -\frac{1}{\phi} \left[\gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

Measured
$$\begin{pmatrix} \theta = 4.1^{o} \\ \gamma^{wn} = 0.0247 \text{ mN/m} \\ \gamma^{ws} = 0.0406 \text{ mN/m} \\ \gamma^{ns} = 0.022 \text{ mN/m} \end{cases}$$
Fit from function of state

Definition: Micro-Ensemble

Micro-Ensemble: A moving window is used to obtain local parameters from one image, i.e. one image generates multiple data points. Globally, one image is at a constant pressure as measured externally.

p^{c} , $s^{w} a^{wn}$ as a function of window position

Direction of Interfaces

Gradients

$$P^{c} = -\frac{1}{\phi} \left[\gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \Big|_{energy} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \Big|_{energy} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \Big|_{energy} \right]$$

Sample s1

p^c from a & s data

Free Energy Contribution

$$P_{cap} - \left[-\sum_{\alpha\beta} \frac{\gamma^{\alpha\beta}}{\phi} \left(\frac{\partial a^{\alpha\beta}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right] = -s^{w} \rho^{w} \frac{\partial A^{w}}{\partial s^{w}} - s^{n} \rho^{n} \frac{\partial A^{n}}{\partial s^{w}}$$

$$P_{cap} = \gamma^{wn} \kappa$$

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Simple Wedge

Laser Written

Contact Lithography

Simple Wedge: Capillary Pressure - Saturation

Simple Wedge: Capillary Pressure - Saturation

Laser Written

3500

3000

2500

2000

1500

1000

500

0

0

Laser Wedge

0.2

0.4

Measured Capillary Pressure (Pa)

Contact Lithography

Laser Written

Contact Lithography

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Equivalent Capacitance

$$C_{equiv} = \frac{A}{d} \left[\left(\varepsilon_{do} + \frac{\partial \varepsilon_d}{\partial \rho} \bigg|_{\rho_o^d} \left(\rho_d - \rho_o^d \right) \right) S_d + \varepsilon_{no} \rho_n \left(1 - S_d \right) \right]$$

$$C_{equiv} = C_1 + C_2 = \frac{\kappa_1 \varepsilon_o A_1}{d} + \frac{\kappa_2 \varepsilon_o A_2}{d} = \frac{\varepsilon_o w}{d} \kappa_2 L + (\kappa_1 - \kappa_2) x$$

Equivalent Capacitance

$$C_{equi} = C_1 + C_2 + \left(\frac{1}{2}\frac{C_3C_4}{C_4 + C_3}\right)$$

$$C_{equiv} = C_1 + \left\{ \frac{C_5 C_6}{2C_6 + C_5} \right\}$$

Current Directions: Capacitors

*Does IAV lift the ambiguity in the P_{cap} - S relationship?

- * How is the P_{cap} S- IAV surface affected by porosity?
- * Do points collected from drainage scans and points collected from imbibition scans lie on the same surface?
- * Will the data satisfy the following equation:

$$P^{c} = -\frac{1}{\phi} \left[\left. \gamma^{wn} \left(\frac{\partial a^{wn}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ns} \left(\frac{\partial a^{ns}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} + \gamma^{ws} \left(\frac{\partial a^{ws}}{\partial s^{w}} \right) \right|_{T,\phi,\Gamma^{\alpha\beta},A^{\alpha\beta}} \right]$$

* Current Directions: Simple Wedge, Micro-capacitors, 3D

Towards Three Dimensional Micro-Models

Towards Three Dimensional Micro-Models

