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Two-phase (air-water) flow experiments were conducted in horizontal artificial fractures. The 
fractures were between glass plates that were either smooth or artificially roughened by gluing a layer 
of glass beads to them. One smooth fracture with an aperture of 1 mm and three rough fractures, one 
with the two surfaces in contact and two without contact, were studied. For both types of fractures, 
the flow structures are similar to those observed in two-phase flow in a pipe, with structures (bubbles, 
fingering bubbles, films, and drops) depending on the gas and liquid flow rates. The pressure gradients 
measured for different liquid and gas velocities were interpreted by three models. First, using Darcy's 
law leads to relative permeability curves similar to conventional ones for porous media. However, 
these curves depend not only on saturation but also on flow rates. This effect is caused by inertial 
forces which are not included in this approach. Second, the standard approach for two-phase flow in 
pipes (Lockhart and Martinelli's equation) agrees with experimental results, at least for small pressure 
gradients. Finally, the best fit was obtained by treating the two phases as one homogeneous phase. All 
the properties are averaged, and the pressure drop is deduced from an empirical correlation between 
the two-phase Reynolds number and the friction factor. 

INTRODUCTION koKrG dPG 
•G dx 

Two-phase flow in fractured rocks occurs in several 
important applications: in oil or gas recovery, in exploitation 
of geothermal energy, in the storage of radioactive waste, 
etc. Models to predict two-phase flow in fractures are 
therefore of practical interest, although little is known of the 
laws governing such flows. In the subsurface environment, 
the fluids generally flow through a network of intersecting 
fractures. The study of two-phase flow in a single fracture is 
basic to understanding flow in complex networks of frac- 
tures. 

Fracture flow can be considered either as a limiting case of 
flow in a porous medium or as a limiting case of pipe flow. 
Historically, the porous-medium approach has been used for 
situations involving subsurface flow. This approach empha- 
sizes the importance of capillary and viscous forces, with 
negligible inertial forces. Under conditions of high velocity 
and relatively open fractures such as those intersecting a 
production well, the mechanisms may approach the limiting 
case of two-phase pipe flow. 

In the porous-medium approach, Darcy's law is written 
for each phase. For horizontal flow (no gravity effect): 

koKr L dP L 
VLs = (1) 

ix L dx 
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where subscripts L and G stand for liquid and gas, respec- 
tively; VLs and VGs are superficial velocities equal to the 
flow rate per unit cross-section area of the sample; P is the 
pressure;/x is the viscosity; k0 is the intrinsic (single-phase) 
permeability; and Kr is the relative permeability. 

The relative permeability accounts for the fact that each 
phase interferes with the flow of the other, and (at least in 
porous media) KrL and Kr• are highly dependent upon 
phase saturation. Owing to lack of data, it is generally 
assumed that in fractures, the relative permeability to each 
phase is equal to its saturation, i.e. that neither phase 
interferes with the flow of the other. Consequently, KrL + 
KrG = 1. This assumption is based on experimental work by 
Romm [1966], in which oil and water were confined in 
different stripes of a smooth fracture by controlling the 
wettability of the surfaces and also on analysis of field data 
from geothermal reservoirs [Pruess et al., 1983, 1984; Men- 
doza and Sudicky, 1991]. On the other hand, theoretical 
analysis and numerical simulations by Pruess and Tsang 
[1990] and Pyrak-Nolte et al. [1992] showed that significant 
phase interference would occur in a rough fracture. This was 
confirmed by experimental work [Persoffet al., 1991;Fourar 
et al., 1991, Fourar, 1992]. 

In this paper we present additional results concerning the 
pressure drops during liquid/gas flow in smooth and rough 
fractures and their interpretation by using three models 
available in the literature. The experimental setup is de- 
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Fig. 1. Experimental equipment. 

scribed in the first part of this paper. Then the results 
concerning the flow structures and the pressure gradients are 
presented. The data are subsequently analyzed using three 
different models: (1) relative permeabilities (porous-medium 
approach), (2) Lockhart and Martinelli's model (pipe flow 
approach), and (3) homogeneous model. The two first mod- 
els consider separate equations for the two fluids. The main 
difference is the role of inertial forces, which are neglected in 
the first model. On the other hand, the third model uses the 
standard approach of pressure drop in a rough tube for a 
single-phase turbulent flow, through the notion of friction 
factor. The artificial single-phase fluid is defined by averag- 
ing all the properties of the two fluids. 

EXPERIMENTAL SETUP 

The principle of the experimental setup is shown in Figure 
1. The fracture consisted of two horizontal glass plates 1 m 
long and 0.5 m wide. The plates were either smooth or 
artificially roughened. One set of experiments (S) was per- 
formed with the smooth plates. Three sets of experiments 
were performed with the rough plates: one with the rough 
surfaces in contact (R1) and two with the surfaces spaced 
apart (R2 and R3). The smooth fracture was assembled by 
placing l-mm-thick strips of stainless steel along the no-flow 
boundaries. Rough surfaces were made by applying a 0.3- 
mm-thick layer of transparent epoxy cement to the surfaces 
and gluing a single layer of 1-mm-diameter glass beads to 
each plate. Figure 2 shows a sample of the roughness 
pattern. For experiment R1, the two surfaces were placed in 
contact and silicone caulk was used to seal the no-flow 

boundaries. Two additional experiments, R2 and R3, were 
done by disassembling R1 and reassembling it with 3-mm- 
thick stainless steel strips and caulk along the no-flow 
boundaries. Therefore R2 had an approximately 1-mm clear- 
ance between the rough surfaces. R3 was prepared by 
disassembling R2, reassembling it with more silicone caulk 
along the no-flow boundaries, and increasing the clearance 
between the rough surfaces slightly (by about 0.1 mm). Steel 
bars were tightened in place to prevent the glass from 
bulging at high flow rates for all fractures. 

The injector consisted of 500 stainless steel tubes of 1-mm 
outside diameter and 0.66-mm inside diameter. Air and 

water were injected through alternating tubes to achieve 
uniform distribution of flow at the inlet. Air was injected at 
constant pressure, and its volume flow rate was measured by 
an in-line rotameter and corrected to standard pressure. 
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Fig. 2. Photograph of the rough surface used in the experiments (bead diameter equals 1 mm) 
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Fig. 3. Pressure drop in single-phase liquid flow plotted against 
flow rate. Parabolic curves for the rough-walled fractures indicate 
deviation from Darcy's law. Values of h and B are obtained by 
root-mean-square fit (4). 

Water was injected by a calibrated pump. At the outlet of the 
fracture, gas escaped to the atmosphere and water was 
collected in a decanter and recycled. 

Liquid saturation was measured by a volume balance 
method. The water volume in the decanter was measured at 

the beginning of the experiment with the fracture completely 
saturated with flowing water and again when steady state 
had been reached at each airflow rate. Changes in the water 
volume in the decanter were then used to calculate the liquid 
saturation in the fracture. A good agreement was found 
between this method and the saturation measurements ob- 

tained by the surface ratio of the fluids on the photographs. 
The volume balance method was used to measure liquid 
saturation in the rough fractures, which could not be esti- 
mated from photographs. 

Nine liquid-filled pressure taps were cemented into holes 
drilled along the centerline of the lower plate. Any pair of 
taps could be connected by valves to a differential trans- 
ducer. Since the pressure gradient fluctuates rapidly, only 
the time-averaged values were recorded. 

The fracture was initially saturated with water. Water was 
injected at a constant rate through the fracture before each 
experiment. Air injection was then started and increased 
stepwise. When steady state was reached for each flow rate, 
the pressure gradient and liquid saturation were measured. 
Then the fracture was resaturated with water, and the 
experiment was repeated several times at different liquid 
flow rates. Videotape and photography were used to record 
the distribution and motion of phases through the fracture. 

EXPERIMENTAL RESULTS 

Calculation of Hydraulic Aperture 

The hydraulic aperture h of each.fracture was calculated 
from a single-phase flow experiment. Laminar flow through 
a fracture with smooth parallel sides obeys Darcy's law with 
single-phase permeability ko [Witherspoon et al., 1980]' 

k 0 = h2/12 (3) 

The pressure drop for the gas flow was too small to be 
measured reliably. Pressure drop in single-phase liquid flow 
for the four fractures is shown in Figure 3. The smooth- 

fracture data plot as a straight line, while the rough-fracture 
data plot as parabolas. Deviation from linearity for rough 
fractures indicates deviation from Darcy's law but does not 
necessarily indicate turbulent flow. Such deviation has been 
observed in porous media (see reviews by Houpeurt [1974] 
and Temeng and Horne [1988]) and in rough fractures 
[Schrauf and Evans, 1986]. The deviation from Darcy's law 
is caused by inertial forces, which are proportional to the 
square of the filtration velocity Vi•s and the density p. The 
relationship between pressure gradient and flow rate is then 
written 

dP 12/x P Q2 dx - h 3 Q + B •-x (4) 
Q is the volumetric flow rate per unit width, and B is a 
dimensionless number function of the roughness of the 
walls. Values of h and B determined from the parabolas are 
shown in Figure 3. For the smooth fracture the value h = 
1.05 mm agrees with the real spacing of 1 mm between the 
plates. For the rough fractures the values are also in agree- 
ment with an estimate of the mean spacing between the 
plates. 

Hydraulic apertures found in the field are generally 
smaller than those in our experimental fractures. Romm 
[1966] states that most fractures are in the range of 0.015 to 
0.04 mm. However, Raven et al. [1988] inferred fracture 
hydraulic apertures from pumping tests and found many 
sizes to be in the 0.1- to 0.2-mm range. 

Flow Structures 

In two-phase flow, essentially the same range of flow 
structures was observed in both smooth and rough fractures 
with and without contact, as shown in Figure 4. These flow 
structures were constantly in motion, never stopping even 
momentarily. 

The flow structures varied over the range of liquid and gas 
flow rates studied as shown in Figures 5a and 5b. For the 
smooth fracture (Figure 5a) the different flow patterns can 
be observed at a constant liquid velocity (for instance, 
around 0.1 m s-l). At low gas flow rate, we observe gas 
bubbles dispersed in the flowing liquid. Increasing the gas 
flow rate increases the size of the bubbles, which start to 
become unstable by tip-splitting (fingering bubbles). For a 
gas velocity larger than 0.3 m s-•, the flow becomes chaotic 
with no apparent structures. At higher gas velocity, the gas 
occupies the main part of the fracture, the liquid flowing as 
unstable films along the walls. However, for low liquid 
velocities, the films are replaced by liquid drops dispersed in 
the flowing gas. The structures are similar for the rough 
fracture (Figure 5 b). 

The aforementioned flow structures show more similarity 
to the structures observed in pipe flow than to the structures 
expected for a porous medium. In a porous medium it is 
generally assumed (but not experimentally verified) that in 
Darcy's regime, the wetting phase occupies the smallest 
pores and the nonwetting phase occupies the largest pores. 
Accordingly, for any fixed value of saturation, each phase 
occupies its own network of pores, and each network is 
continuous from inlet to outlet. The phase occupancy of the 
pore space, which determines the relative permeability, is 
solely a function of the saturation. Fluids flow through these 
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Fig. 4. The five flow structures were observed in both smooth and rough fractures. Here, flow is from left to right. 
The liquid contained dye and appears dark in the smooth fracture, while the liquid contained no dye and appears light 
in the rough fractures. 
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Fig. 5. Flow structure maps with contours of pressure gradient 
and liquid saturation: (a) smooth fracture; (b) rough fracture R1 
with contact. 

fixed networks when the steady state is reached. However, 
when the flow rate is varied, these networks can change 
during a transient regime. In our experiments we see quite 
the opposite. Only one phase is continuous, with the other 
phase flowing as discrete drops or bubbles except perhaps in 
the chaotic-flow region. In general, no spot in the fracture is 
ever occupied continuously by either phase. The flow struc- 
tures are essentially similar whether the glass plates are 
smooth, rough with contact, or rough without contact. 

The formation of moving flow structures, rather than 
stable flow paths, appears to result from the nature of the 
artificial roughness and the velocities used in the experi- 
ments, both of which tend to make inertial forces large 
compared to capillary forces. In any rough fracture, natural 
or artificial, the aperture varies from point to point. Regions 
of small aperture attract the wetting phase, and regions of 
large aperture attract the nonwetting phase. If these regions 
are large enough, they tend to form flow paths for the 
respective phases. In our artificial fractures, these regions 
are much smaller than in real fractures. To this end, consider 
that in our artificial rough fractures the aperture varies from 
its local minimum (near zero for R1, near 1 mm for R2 and 
R3) to its maximum (approximately 2 mm greater than the 
minimum) over a horizontal distance of one bead diameter (1 
mm). By contrast, in a natural fracture the aperture varies 
much more gradually (see, for example, the data sets of Cox 
and Wang [1993] or the correlation deduced from power 
spectra on real fractures obtained by Brown and Kraus 
[1986]). If the natural fracture is discretized into 1-cm 2 
squares, some squares will be more attractive to the wetting 

phase and others will be more attractive to the nonwetting 
phase, but if the artificial fracture is discretized, then be- 
cause of an averaging effect, all the squares will be equally 
attractive to either phase. Under these conditions the capil- 
lary forces, which tend to hold the phases in stable paths, are 
outweighed by the inertial forces, which tend to cause the 
structure to move. As flow velocities decrease, capillary 
forces become relatively more important and inertial forces 
become less important; however, capillary forces are never 
dominant in any part of Figure 5. 

Two-Phase Pressure Drop 

The first observation is that the pressure difference is the 
same between any pair of adjacent transducers. Conse- 
quently, we can use only one pressure gradient for an 
experiment. The pressure gradients and liquid saturations 
are plotted as smooth contours in Figures 5a and 5b. We 
note that there is no sharp variation in the pressure gradient 
when the flow structure changes, unlike flow in pipes. That 
suggests that the same model may be adequate to describe 
flow in all regions from bubbles to film. 

INTERPRETATION 

Correlation of flow rates, pressure drop, and saturation is 
a major goal of this study. We have examined three models: 
(1) porous medium, (2) pipe flow, and (3) equivalent homo- 
geneous flow. 

Generalized Darcy Model 

Since the generalized Darcy model is based on viscous 
pressure drop, we expect only poor agreement. However, 
this model is generally used in the petroleum industry for a 
fractured reservoir, and it is useful to test it on these 
experiments. 

We suppose that the two-phase flow in a fracture is 
governed by the generalized Darcy law (1) and (2). In these 
equations, relative permeability expresses the degree to 
which each phase impedes the flow of the other. The 
capillary pressure (Pc = Pt - PL) is negligible in our 
experiment. Then, dP/dx = dPL/dX = dPG/dX, where 
dP/dx is the observed pressure gradient under two-phase 
flow conditions. Substituting (3) into (1) and (2) leads to the 
relative permeabilities, 

12/XLVL 
KrL = - (5) 

dP 
h 2 

dx 

12/XGVG 
Kr G = - (6) 

dP 
h • 

dx 

The calculated Kr L and Kr G are plotted as a function of the 
measured saturation in Figures 6a and 6b. In these figures 
(and the figures that follow), the different symbols represent 
individual experiments in which the liquid velocity VLS is 
held constant and the gas velocity VGS is increased. These 
curves are qualitatively similar to conventional curves ob- 
tained in porous media. However, a family of curves de- 
pending on VLs is found instead of the single curve found in 
porous media. Relative permeabilities are therefore not 
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Fig. 6. Generalized Darcy model: relative permeability as a func- 
tion of liquid saturation: (a) smooth fracture; (b) rough fracture. 
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solely functions of saturation under these conditions, and the 
sum of KrL and Kr o is less than 1 at all saturations. Thus 
significant phase interference occurs even in the smooth 
fracture, and relative permeabilities are not linearly depen- 
dent on saturation as is commonly assumed for reservoir 
simulations. 

Lockhart and Martinelli's Model 

The similarity of flow structures to those observed in pipe 
suggests the use of a model developed for two-phase flow in 
pipes (the Lockhart and Martinelli [1949] model; see also 
Perry and Chilton [1973] and Wallis [1969]). The advantage 
of this model is that it accounts for inertial forces. 

The two-phase flow pressure gradient dP/dx is always 
greater than the single-phase pressure gradients (dP/dx)[ 
and (dP/dx)• of each phase flowing at the same flow rate. 
The Lockhart-Martinelli model accounts for this property by 
introducing two factors, the gas and liquid multipliers tI) G 
and •L. For comparison with relative permeabilities, we 
modified the original definitions by using the gradients of 
pressure instead of their square roots: 

dP/dx 
(I) L -- (7) 

(av/ax)t 

dP/dx 
•G = (8) 

Instead of the saturation, a new variable X, the Martinelli 
parameter, represents the relative importance of the flow of 
the liquid to the gas flow: 

x = (dV/dx)• (9) 
These single-phase pressure gradients are calculated by 
using (4), which takes the inertial forces into account 
through the experimental h and B values (Figure 3). For the 
smooth fracture there are no inertial forces and X = •L VLS/ 
• VGS. When (7) and (8) are compared with (5) and (6) for 
the smooth fracture, it is apparent that 1/•L and 1/•G are 
analogous to KrL and Kr G. The Lockhart-Martinelli model 
can be seen as a generalization of Darcy's law for non-Darcy 
flows. 

The plot of 1/•L and 1/•G versus X/(1 + X), which 
increases from zero for gas flow to unity for liquid flow, is 
shown in Figures 7a and 7b. It appears that there is no 
unique relationship between 1/• and X and that the sum of 
1/•L and 1/•G is less than 1. Similar to Figures 6a and 6b, 
the data for each value of VLS fall on a different curve, 
although using the Lockhart-Martinelli model makes the 
data "nearly" collapse onto a single curve, especially for the 
rough fractures. 

Furthermore, the Lockhart-Martinelli model fits the data 
better when plotted as •G versus X (Figures 8a and 8b). 
Curves of the empirical Lockhart and Martinelli relationship 
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Fig. 8. Data fit to Lockhart-Martinelli model: (a) smooth fracture; 
(b) rough fracture. 

defined and the pressure gradient is calculated by using the 
friction factor, which is empirically related to an average 
Reynolds number. For two-phase flow in a horizontal pipe 
[Delhaye et al., 1981]: 

dP •r d 

dx = • rw + •xx [SLPLV• + $oPoV•] (12) 
where A and ½r represent the pipe area and perimeter, rw is 
the average wall shear stress, and VL and Vo are the local 
fluid velocities related to superficial velocities by VL = 
VLs/S L and Vo = Vos/So. The two terms on the right-hand 
side of (12) can be seen as frictional and accelerational 
components of the pressure gradient. 

The accelerational component of the pressure gradient 
cannot be calculated, because only average, not local, values 
are known for SL (hence for VL and VG). However, the 
accelerational component can be estimated in two limiting 
cases' (1) S L (and therefore VL) remains constant through 
the fracture, and VG increases as gas bubbles expand owing 
to reduced pressure; or (2) Vo remains constant through the 
fracture so that S L decreases as gas bubbles expand. The 
term (SLP LV• + SGPGV•) is evaluated at inlet and outlet, 
and the difference is compared to the observed pressure 
drop. This quantity is small under either assumption for all 
the experiments in the smooth fracture. We therefore disre- 
gard the accelerational component and attribute the pressure 
gradient to friction. 

We express the wall shear forces in terms of a friction 
factor Cf and a mean hydraulic diameter according to the 
standard definition for single-phase pipe flow. The average 
wall shear stress is 

are also plotted in Figures 7a and 7b and Figures 8a and 8b 
[Delhaye et al., 1981]: 

ß • = 1 + CX/• + X (10) 
C 1 

•L= 1 +•+-- (11) X 

where the value of C depends on whether each phase is 
laminar or turbulent: liquid laminar, gas laminar, C = $; 
liquid turbulent, gas laminar, C = 10; liquid laminar, gas 
turbulent, C = 12; liquid turbulent, gas turbulent, C = 20. 

Good agreement is obtained with smooth-fracture experi- 
mental data and with the • relationship for laminar-laminar 
flow (C = $, Figure 8a). This suggests that the Lockhart- 
Martinelli model might be useful for rough calculations of 
pressure drop although not for liquid saturation. In discuss- 
ing Lockhart and Martinelli's original model, Bergelin and 
Gazley [1949] presented two-phase pipe flow data that be- 
have similarly to our data in Figures 7 and 8. This observa- 
tion suggests that if the Lockhart-Martinelli model can be 
modified to better fit our fracture flow data, the same 
modification might also improve the value of the model in 
predicting pressure drops in pipe flow. 

Ic V 2 (13) Tw = • fPrn 

where V is the superficial velocity of the mixture' 

QL + QG 
v = (14) 

A 

and Pm is the mean density: 

PLQL + PGQ6 
Pm -- (15) 

QL+QG 

We can also define an average viscosity of the mixture. We 
use the definition adopted by Dukler et al. [1964], which is 
consistent with our definition of average density: 

/x LQL + /-• GQG 
/A, m '- (16) 

QL + QG 

The pressure gradient is obtained by substituting (13) into 
(12): 

dP V 2 

dx = 2Cfpm D (17) 

Homogeneous Flow Model 

Another empirical approach based on pipe flow models is 
to treat the two phases like a single homogeneous phase. In 
this approach, average values for the fluid properties are 

where D is the hydraulic diameter (defined as 4 times the 
hydraulic radius; in a fracture, D = 2h). 

We now define Re:, the two-phase Reynolds number, 
using the hydraulic diameter of the fracture and the average 
fluid properties: 
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Fig. 9. Friction factor Cf and two-phase Reynolds number Re: 
relationship: (a) smooth fracture; (b) rough fracture. 
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Fig. t0. Prediction of two-phase pressure gradient by the Lock- 
hart-Martinelli model (t0): (a) smooth fracture; (b) rough fracture. 

2hVpm 
Re2 = (18) 

/-1, m 

With the data from our two-phase flow experiments, we plot 
Cf against Re 2 for the smooth fracture in Figure 9a and one 
rough fracture in Figure 9b. The data for single-phase liquid 
flow and data reviewed by Romm [ 1966] are also plotted for 
the smooth fracture. Note that our values of Re are greater 
than those of Romm by a factor of 4 owing to the definition 
of the hydraulic diameter. 

Several features can be noted for these plots. The corre- 
lation is indeed better for the smooth fracture than for the 
rough fractures. First, we note that the data follow a line 
with slope equal to -1 at small Re2, the same as for 
single-phase flow. The line summarizing Romm's data shows 
a break in slope to -0.25 above Re = 2400; this marks the 
boundary between laminar and turbulent flows. Our data 
also show a slope break at Re2 = 1000. However, this 
change of slope does not correspond to a change of flow 
regime. For instance, bubble flow appears on either side of 
the break, and several experiments with different flow re- 
gimes have the same average Re2. Contrary to single-phase 
flow, the same value of the two-phase Reynolds number 
does not imply dynamic similarity of the flow. 

The coefficient CT is found to be greater for two-phase 
flow than for single-phase flow. A rough estimate of the 
pressure drop can be calculated by using the mean line 
drawn through the experimental points (in log-log scale, 
Figures 9a and 9b): For the smooth fracture (Re2 < 103), 

68.60 

Cf=Re•. 1 (19) 
for the smooth fracture (Re 2 > 103), 

0.75 

Cf = Re2O.45 (20) 
for the rough fracture (R 1), 

6.46 

Cf= Re2O.61 (21) 

Comparison of Models 

First, we can discard the relative permeability approach, 
because it cannot account for inertial forces, which are 
dominant in our experiments. However, this approach could 
be useful for flows at smaller Reynolds numbers. 

The two other models are predictive. That means that the 
pressure drop for any liquid and gas flow rate can be 
calculated by using the experimental law determined in the 
previous section. In order to compare these two approaches, 
we have plotted the calculated versus experimental values of 
pressure drop for the smooth fracture in Figures 10a, 10b, 
11 a, and 11 b. The fit is better with the homogeneous model 
over the entire range of pressure gradients. 

However, we should point out that these two models are 
able to represent different experiments but always with the 
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Fig. 11. Prediction of two-phase pressure gradient by the homo- 
geneous model: (a) smooth fracture (equations (19) and (20))' (b) 
rough fracture (equation (21)). 

same fracture. The main question is how to generalize these 
models so that our empirical results can be used for other 
fractures. 

CONCLUSIONS 

Two-phase (air-water) flow experiments were conducted 
in smooth and artificially roughened fractures with a hydrau- 
lic aperture of approximately 1 mm. Gas and liquid superfi- 
cial velocities ranged from 1.3 to 500 cm s -1 and from 0.4 to 
40 cm s-1 respectively. Under these conditions, the results 
of the experiments support the following conclusions. 

1. No static flow paths are formed for each phase; 
instead, moving flow structures in which generally only one 
phase is continuous are formed. These structures vary with 
gas and liquid flow rates. 

2. Contrary to what is commonly assumed, experimental 
data show that the relative permeabilities are not linearly 
dependent on saturation. The data cannot be correlated by 
using the two-phase Darcy model with relative permeabili- 
ties. The data fall on curves showing the same general 
behavior (phase interference) in both cases; however, differ- 
ent curves result from different liquid velocities. 

3. The Lockhart-Martinelli equation leads to a better fit 
with experiments, at least for the smallest value of the 
pressure drop. 

4. The best fit is obtained by using an empirical homo- 
geneous model in which all the fluid properties are averaged. 
The pressure drop is then calculated by using a correlation 

between the friction factor and the average Reynolds num- 
ber. 
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