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The Seismic Response of Fractures and
the Interrelations Among Fracture

Properties

L. J. PYRAK-NOLTEf}

INTRODUCTION

Fractured rocks often support open, biogeochemical
systems that play important roles in the production of
oil and gas, in the maintenance of environmental quality
and influence the geotechnical stability of a site. The
heterogeneity produced by discontinuities on multiple
length scales, such as fractures, joints and micro-cracks,
can vary in time because the discontinuities participate
in the hydrogeologic and tectonic cycles, or are altered
through man-made disturbances. Because the physical
characteristics of discontinuities can change in time,
active monitoring techniques need to be developed to
quantify the changes in fractured rock masses. Seismic
methods have the potential to become a quantitative
diagnostic tool for locating fractures and characterizing
the hydraulic and mechanical properties of fractured
rock masses, but progress has been hindered by the lack
of physical understanding of the interrelationships
among the physical properties of fractures. Usually on
the field scale or the laboratory scale an attempt is made
to measure several physical properties of fractures, such
as the fluid flow through a fracture, the mechanical
deformation of a fracture, the fracture geometry from
field mapping or borehole televiewers, and the seismic
response of a fracture in terms of attenuation and
velocity. Data from such investigations raise two key
questions: Should these properties be interrelated? And
if so, how are they related?

Over the past decade, I have been investigating the
interrelationships among the hydraulic, mechanical,
seismic and geometrical properties of single natural
fractures. In this paper, I will present a survey of our
current understanding of these interrelationships based
on experimental, theoretical and numerical modeling.
This is followed by a discussion of the methods that have
been developed to improve the measurement of fracture
geometry including the measurement of fracture specific
stiffness. which is the key link in interrelating the
physical properties of a fracture. A new approach for
determining fracture shear stiffness uses interface waves
that propagate along fractures.

tDepartment of Civil Engineering and Geological Sciences, University
of Notre Dame, Notre Dame, IN 46556-0767, U.S.A.

787

INTERRELATIONSHIPS AMONG FRACTURE
PROPERTIES

Samples

Three quartz monzonite (Stripa granite) samples
measuring 52 mm in diameter by 77 mm in height, each
with a single fracture oriented orthogonal to the long
axis of the core, were used to examine the hydraulic,
mechanical and seismic responses of a fracture, as well
as to measure the geometry of the connected void space
in a fracture [1, 2]. For the seismic measurements,
companion “‘intact” samples, taken immediately adja-
cent to the fractured samples from the same core, were
used as references and therefore had the same
dimensions.

Hydraulic and mechanical results
3"

Fluid flow as a function of uniaxial stress, applied
normal to the fracture plane, was measured for all three
samples (Fig. 1). The amount of fluid flow supported by
each fracture decreased with increasing stress. However,
the magnitude of the flow varied among the samples.
Sample E35 supported the most flow. Samples E30 and
E32 exhibited similar flows, with E32 exhibiting the
least.

Figure 2 shows the fracture displacement for each
fractured sample as a function of normal stress [1, 2]. As
stress on the sample increases, the fracture surfaces
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Fig. 1. Fluid flow per unit head as a function of stress for three
samples each containing a single fracture [1].
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Fig. 2. Fracture displacement as a function of stress for three samples
each containing a single fracture [1].

displace relative to each other as voids compress and
rock-to-rock contact is formed. Sample E32 exhibited
the smallest displacement, while sample E35 continued
to close with increasing stress. Sample E32 supported the
least amount of flow, while sample E35 supported the
most fluid flow. Therefore, a qualitative correlation
between fracture displacement and fluid flow through a
fracture is observed: the fractures which exhibit the most
displacement support the most flow.

From the displacement-stress curve, the specific
stifflness [2] of a fracture is determined by taking the
inverse of the slope of a line tangent to the curve (Fig. 2).
Figure 3 shows the fracture specific stiffness for the three
fractured samples. As stress on the sample is increased
the fracture specific stiffness increases as more contact
area is formed and voids are reduced in size. Sample E35
which supported the most fluid flow and exhibited the
most displacement, was the most compliant of the three
fractures. Sample E32 which displaced the least and
supported the least amount of fluid flow, was the stiffest
of the three samples.

Although these general trends are somewhat obvious,
the goal of this research is to determine the controlling
parameters that will allow us to make the connection
quantitative and predictive. Fracture geometry is the
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Fig. 3. Fracture specific stiffness as a function of stress for three

samples each containing a single fracture [2].
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most likely link between the hydraulic and mechanical
properties of a fracture.

Fracture geometry

The geometry of a single fracture derives from
two rough surfaces in contact. Between the points of
rock-to-rock contact are voids of variable shape and
geometry. Because rocks are part of the tectonic
and hydrogeologic cycles, the geometry of the voids
and contact area can be altered by shear displacement,
weathering, precipitation and dissolution. The fluid
conductivity of a fracture will depend on the size
and spatial distribution of the apertures of the void
spaces within a fracture [1, 3-6], while the mechanical
displacements will depend on the amount and spatial
distribution of contact area, as well as the aperture
distribution [3, 7-14]. Wood’s metal injection methods
have been used by several investigators to examine
the pore structure of sandstone [15, 16] and fracture
networks in coal [17-19]. It has also been used to study
fluid phase distributions in rocks [20, 21] and to study
the growth of cracks under uniaxial compression [22]. To
examine the distribution of contact area and void space
in a single fracture, a Wood's metal-casting technique
was developed to inject molten metal into a fracture that
is under an applied normal load [1, 23-25]. Once the
metal is injected it is allowed to solidify, after which the
fracture is taken apart. Using scanning electron (SEM)
photomicroscopy, composite images are made (Fig. 4)
that show the distribution of flow paths and contact area
within the fracture (sample E30) with a spatial resolution
of one micron. In Fig. 4, the black regions represent the
contact area between the two fracture surfaces and the
white regions represent where the metal penetrated, that
is, the flow paths (metal-filled void space) in the fracture.
Large regions of void space are observed to be connected
by narrow tortuous flow paths. From the image, the
flow-path geometry is observed to be highly correlated;
regions of large apertures have a high probability of
being surrounded by other regions of large aperture,
while regions of contact area (or small apertures) have
a high probability of being surrounded by other points
of contact (or small apertures). Using this injection
method on samples E30 and E32 we observed that the
amount of contact area increased with increasing stress
(Table 1). Sample E32 which exhibited the least amount
of displacement and supported less flow than sample E30
had the most contact area.

While fracture geometry controls the interrelationship
between fluid flow and mechanical displacements, it
would be beneficial to be able to access the fracture
geometry remotely, such as with seismic methods.

Seismic response of a fracture

A fracture in rock is composed of two rough surfaces
in contact. From elasticity, the mechanical stiffness of a
fracture depends on the spatial distribution and the
amount of contact area within a fracture [I, 3, 7-12].
Seismic wave propagation has been shown to be sensitive
to both the normal and shear stiffness across a fracture
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Approximately 0.4 mm

White - Contact Area

Black - Flow paths

Fig. 4. Composite photomicrograph of the void space (black) and contact area (white) of a portion of fracture from sample
E30. The photograph represents a 2 mm x 4 mm region [1].

and to be sensitive to the pore fluids contained within the
fracture [2, 26, 27). The appropriateness of the displace-
ment-discontinuity model for representing the seismic
response of a fracture has been thoroughly confirmed
through field [28] and laboratory experiments for waves
propagated perpendicular [2, 29, 30] and parallel to a
fracture [31]. This section describes aspects of the
displacement discontinuity model used in the analysis of
fracture properties. The full solution of the displacement
discontinuity model can be found in the Appendices of
this paper.

In Fig. 5, the effect of a fracture on seismic wave
propagation can be observed in data from controlled
laboratory experiments [2]. Figure 5 contains the
received waveform for a compressional wave propagated
through fractured sample E30 and its companion intact
sample, both subjected to a normal stress of 1.4 MPa. By
comparing the two signals, three effects of a fracture on
a propagating wave are observed: (i) the fracture delays

Table 1. Percent contact area for the single fractures in
monzonite samples E30 and E32

quartz

Stress (MPa) E30 E32
3 8% 15%

33 15% 42%

85 30% 42%

the signal; (ii) the fracture attenuates the signal; and (iii)
the fracture reduces the high frequency content of the
signal, which is observed as a broadening of the
waveform. Traditionally, wave propagation through a
fractured rock has been modeled using effective medium
theories that use a static approximation to develop
analytic expressions for the elastic moduli of a
distribution of microcracks [32-35] or planar fractures
[36-38]. The effective medium approach assumes that a
fracture will reduce the modulus of the rock, which in
turn reduces the seismic velocity. The effect of the
fracture is distributed throughout the bulk and the
discreteness of the fracture is lost. Hence, a seismic
reduction in velocity is observed, but the location and
cause of the reduction cannot be isolated. In addition.
these models do not predict attenuation that may result
from reflection and scattering losses, and can only
include intrinsic attenuation by assuming the cracks and
fractures are filled with a viscous fluid that produces
viscous shear losses [39]. Because effective medium
models employ a zero-frequency approximation. these
models may not be appropriate for field studies where
frequencies often are in the kilohertz range. Both field
and laboratory studies on artificially and naturally
fractured rocks have shown that they exhibit frequency-
dependent transmission losses [2, 40-44]. The field
measurements of King et a/. [44] and the laboratory
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Fig. 5. Comparison of a compressional-wave propagated through an

intact sample and a fractured sample both subjected to a stress of

1.4 MPa.

measurements of Pyrak-Nolte er al. [2, 26] show that a
fracture behaves as a low-pass filter that attenuates the
wave by removing the high-frequency components of the
signal and produces a frequency-dependent time delay.
Effective medium models also cannot predict the
existence of guided modes, such as the large amplitude
interface waves observed by Harris [45] in a 1-5 kHz
crosswell field experiments, and in laboratory measure-
ments of interface waves propagating along single
fractures [31, 46, 47].

The seismic response of a fracture is well-represented
by the displacement discontinuity model [2, 26, 48-52],
i.e. a non-welded contact which is assumed to have
negligible thickness compared to the seismic wavelength.
In the displacement discontinuity model, the compli-
cated geometry of a fracture is represented as a
non-welded contact between two elastic half-spaces with
equal seismic impedances (Z = the product of density
with phase velocity). A non-welded contact is described
by the following set of boundary conditions: (i) the
normal and shear stresses across the non-welded contact
are assumed to be continuous (g, = g;); and (ii) the
normal and shear displacements across the non-welded
contact are discontinuous by an amount inversely
proportional to the specific stiffness of a fracture
(4 — uy =o/x), where o is stress, u is particle
displacement and « is the specific stiffness of the fracture
[Pa/m], and subscripts 1 and 2 refer to the elastic media
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on either side of the fracture. A fracture has both normal
and shear components of specific stiffness, and as
mentioned earlier, the mechanical stiffness of a fracture
depends on the spatial distribution and the amount of
contact area within a fracture, and on the aperture
distribution of the void space in a fracture [1, 3, 7-14].
A physical analog of the displacement discontinuity
model is two elastic half-spaces coupled by springs, in
which the fracture specific stiffness is analogous to the
spring constant per area for a set of distributed springs.
These boundary conditions for a non-welded contact
have been referred to by several different names, such as
slip interface model [49], the displacement discontinuity
model [2, 26], or the imperfect interface model [5].

The displacement discontinuity model yields trans-
mission and reflection coefficients (equations | and 2), as
well as group time delays (equation 3) and group
velocities [26, ] that depend on the specific stiffness of
the fracture, k, the seismic impedance of the half-spaces,
Z and the frequency content of the signal, .

T({'U) = W (l)
=5
iwZ 2K
R@) =Tz 2
_ Ax/Z)
"= 0T+ ac/ZF ©)

Figure 7 shows the theoretical predictions of the
plane-wave transmission and reflection coefficients
(absolute values of equations 1 and 2) as a function of
normalized frequency from the displacement discontinu-
ity model. The frequency is normalized by the ratio of
the fracture specific stiffness to the seismic impedance.
Though a purely elastic model, a frequency dependence
of the transmission and reflection coefficient, as well as
the group time delay, arises because of the dependence
of strain on wavelength, while the displacement is
wavelength independent. From equations (1) and (2),
and Fig. 7, when the stiffness of a fracture approaches
zero (k—0), the transmission coefficient decreases to
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Fig. 6. Fracture shear specific stifiness determined using the slow
interface wave. Shown are stiffnesses for the case of normal stress only,
and for the case of both normal and shear stress applied to the fracture.
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normally incident upon a non-welded contact, ie. displacement
discontinuity [2, 26].

zero and the reflection coefficient increases to one; the
fracture is behaving as a free surface. Conversely, as the
fracture stiffnesses approaches infinity (k—oc), the
fracture behaves as a welded contact for which all of the
energy is transmitted across the fracture with no energy
partitioned into the reflected signal. For normal
incidence, the displacement discontinuity model predicts
a positive velocity dispersion, i.e. an increase in velocity
with increasing frequency [26, 54].

The displacement discontinuity boundary conditions
have been used to derive plane wave transmission and
reflection coefficients [26, 49, 50], group time delays
[26, 54], interface waves [51, 54], guided love waves [56],
wave transmission through granular media [57] and to
explore scattering and frequency-dependent fracture
stiffness [58, 59]. Laboratory confirmation of the
displacement discontinuity model was performed on
artificial fractures of calculable stiffness [30] and on
natural fractures in granitic samples [2, 51]. These
experimental investigations firmly established the val-
idity of the displacement discontinuity model for
representing the seismic response of fractures.

The full solution for a fracture represented as a
displacement discontinuity (spring only), or as a
displacement and velocity discontinuity (Kelvin ma-
terial—spring and dashpot in series; or Maxwell
material—spring and dashpot in parallel) for an
arbitrary angle of incidence can be found in the
Appendices of this paper, along with expressions for the
transmission and reflection coeflicients, and phase and
group time delay for waves propagated at normal
incidence to the fracture. Also given in the Appendices
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Fig. 8. Comparison of the theoretical spectra and experimentally
measured compressional-wave spectra for sample E30 [2].

are figures illustrating representative behavior for the
four different discontinuity models.

Seismic results

Pyrak-Nolte er al. [2] used the displacement
discontinuity model to fit a dynamic normal and a
dynamic shear fracture specific stiffness for each of the
three fracture samples based on measurements of
compressional and shear waves propagated across the
fractures. Figure 8 shows the theoretically predicted
spectra (based on equation 1) and the experimentally
measured Fourier spectra for compressional wave data
from sample E30 for three different stresses. As stress on
the sample is increased, the amount of energy transmitted
across the fracture increases, which is observed as an
increase in magnitude of the spectral peak. In addition,
the spectral peak shifts to higher frequency with
increasing stress. The theory captures the seismic response
of the fracture, i.¢., the increase in amplitude and change
in frequency content observed in the experimental data.
The only fittable parameter in this model is the fracture
specific stiffness. As stress on the sample is increased the
stiffness of the fracture increases, resulting in an increase
in transmission across the fracture. At very high stresses
the fracture behaves as if it were Intact.

Observed interrelationships among fracture properties

At the beginning of this article several interrelation-
ships among fracture properties were presented (Fig. 9).

Fluid Flow

s ™

Contact Area I Aperture

™ s

Fracture Stiffness

Seismic Velocity &
Attenuation

Fig. 9. Fracture stiffness and fluid flow through a fracture are

implicitly interrelated through the geometry of the fracture. Because

fracture stiffness can be determined from seismic wvelocity and

attenuation measurements, the hydraulic properties of a fracture can
be probed with seismic techniques.
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For instance, fluid flow is known to depend on the size
and spatial distribution of the apertures in a fracture. In
simple modeling are often assumed to obey a cubic
relationship. Fluid flow is affected by contact area
because the flow paths within the fracture become more
tortuous as the contact area in a sample increases. From
fundamental elasticity, fracture specific stiffness depends
on the amount and distribution of contact area in a
fracture. Experimentally, the fracture specific stiffness is
known to depend on the aperture of the fracture [1, 12],
with fractures with large apertures (displacement) being
more compliant. Because fluid flow and fracture specific
stiffness both depend on contact area and aperture, there
is an implicit relationship between these two fracture
properties. If remote sensing techniques, such as seismic
methods, could be used to measure fracture stiffness,
then these techniques could be used to predict fluid flow
through a fracture. In fact, fracture specific stiffness
can be determined from seismic measurements
[2, 29, 31, 46, 51, 60]. It should therefore be possible to
characterize the hydraulic properties of a fracture using
seismic methods because of the implicit relationship
between fracture specific stiffness and fluid flow.

An examination of the relationship between fluid flow
and fracture specific stiffness was made using phe-
nomenological modeling [23] and the experimental data
(Figs 1 and 3). A stratified percolation model was used
to generate spatially correlated synthetic aperture fields
[23-25, 61, 62]. To phenomenologically model fluid flow
through the fracture, flow was assumed to be dominated
by the critical path (path of largest apertures) and to be
controlled by the critical neck (the smallest aperture on
this path of largest apertures). Flow is assumed to
depend on the cube of the aperture of the critical neck.
Conservation of volume [61] was used as an approxi-
mation to simulate deformation of the synthetic aperture
field to calculate a fracture specific stiffness. The details
of the modeling of these interrelationships can be found
in Pyrak-Nolte er af. [23].

Figure 10 shows the interrelationship between fluid
flow and fracture specific stiffness from the experimental
data and the model. From the data it is observed that

UGFD : :
; ® E30
[ m ER
@ 10" L A E35 4
‘:g Model 3
®
2 o2 L 5
= i
2 [
3 JarE L E
[ :
]
1000 L v ) R O | N S | L .
0 5 10 15 20 25 30

Fracture Stiffness (10’ Pa/m)

Fig. 10. Interrelationship between fluid flow through a fracture and
fracture specific stiffness from experimental data and phenomenologi-
cal modeling [23]. Fractures with low stiffness support more flow.

1995 SCHLUMBERGER LECTURE AWARD PAPER

107 v T v T ¥ T v T

10-11 .« .

Flow/unit Head (m?/s)
})‘
/m

10-12 &

] 31
— Model P - ]
10 e E3 A 4
H m E3z2 f.i
4 E35 ]

10-1-1 L 1 " 1 i | M
0 0.2 0.4 0.6 08 1

Spectral Peak Amplitude Ratio

Fig. 11. Interrelationship between fluid flow through a fracture and

shear wave attenuation across a fracture from experimental data and

phenomenological modeling [23]. Fractures with low attenuation
support less flow.

fractures that support less flow have a higher specific
stifiness. The phenomenological modeling found that
fracture stiffness is inversely related to the cube root of
flow. This interrelationship arises from the geometry
of the fracture. Figure 10 shows data from the model
curve fit to the three different rock samples, all from the
same tectonic environment and all obeying a common
behavior. This suggests either a universal behavior for
fractures in general, or alternately, the common curve
represented by all three fractures may signify that the
three fractures obey subsets of a common fracture
statistics that are applicable to all fractures in the Stripa
waste isolation drift.

Because fracture specific stiffness can be determined
from seismic wave velocities and attenuation, it follows
that fluid flow and the seismic response of a fracture
should be interrelated through the specific stiffness of the
fracture. To examine this interrelationship, the displace-
ment discontinuity model and the phenomenological
model mentioned above were used to explore the
interrelationship between the hydraulic and seismic
properties of a fracture. Figure 11 shows the
interrelationship between fluid flow and shear-wave
attenuation from the experimental data and models.
Fractures which greatly attenuate shear waves support
more fluid flow. Because the transmission coefficients
depend on fracture specific stiffness, which has been
related to fluid flow, a relationship between seismic
transmission and fluid flow occurs. Again, the data
appear to fall on a universal curve suggesting that
fractures from the same tectonic setting may exhibit the
same behavior. This is an area for future research.

Interrelationship summary

The observed universal behavior of the experimental
data leads to the interesting hypothesis that data from
a single core sample containing a fracture may possess
all the information about the hydraulic, mechanical and
seismic properties of the fractures in the extended rock
mass. For Stripa granite, it is observed that a cubic
relationship exists between fluid flow and fracture
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stiffness. Whether this dependence is true for fractures in
other rock types and tectonic environment needs to be
explored. These results are for single fractures, all
oriented perpendicular to the direction of stress and to
the seismic wave front, at the laboratory scale. Whether
these results may be extendible to fractures off-angle or
to fracture networks on the field scale remains an open
question.

FRACTURE NETWORK GEOMETRY

Before further establishing the validity of the observed
interrelationships discussed in the previous section, it is
necessary to improve our understanding of fracture
geometry and our ability to experimentally measure
fracture properties. All the interrelationships described
above ultimately depend on the geometrical properties
of a fracture. The geometrical properties of a single
fracture include the aperture distribution, the spatial
distribution of the apertures, and surface roughness. For
a fracture network there are additional geometrical
properties such as fracture spacing, fracture orientation,
spatial correlation among fractures and interconnectiv-
ity of the fractures. In this section I present recent
findings on the geometrical properties of fracture
networks.

Samples

_ For this study, we used whole drill cores of coal from
a coal mine and a gas producing well in the San Juan
Basin to study the geometry of natural fracture
networks. Coal contains a naturally occurring network
of fractures known as cleats which provide the
permeability necessary for the flow of gas and water in
a coal seam reservoir. The San Juan Basin is the world’s
most productive coalbed methane basin [63]. In our
study, we have analyzed the three-dimensional geometry
of fracture networks in four intact bituminous coal cores
without destructive thin sectioning of the cores. The
dimensions of the cores are given in Table 2. From a
single block of coal from Seam # 1 in the Sundance Pit
at the La Plata coal mine, San Juan Basin, San Juan
County, New Mexico, Core AA was drilled perpendicu-
lar to the bedding planes, while Core BB was drilled
parallel to the bedding planes and parallel to the
dominant fracture set (face cleat). Whole drill cores from
the Intermediate (IC) and the Basal (BC) Fruitland
Formations were also used in this study. Cores IC2 and
BC7A were extracted from depths of 545 m and 582 m,
respectively, from the So. Ute #32-1 well, Valencia
Canyon, San Juan Basin, La Plata County, Colorado,
which is a gas-producing well. About 50 TCF of gas [64]

Table 2. Dimensions of coal samples AA and BB

Sample number AA BB
Length (mm) 44.1 112

Diameter (mm) 88.9 88.9
Bulk volume (cm?) 274 694
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is estimated to be contained in the Fruitland Formation
(Upper Cretaceous). Geometric fracture properties such
as interconnectivity, porosity, orientation and aperture
all play important roles in the recovery of methane at
these sites.

Fracture network imaging technique

To characterize and image the natural fracture
network geometry in the coal cores, a combination of
techniques was used: (i) a Wood’s metal injection
method: (i) X-ray computerized tomography; and (iii)
Digital image processing. The Wood’s metal injection
technique was adapted and combined with X-ray
tomographic imaging [17] to study the three-dimensional
geometry of fracture networks in the whole-drill coal
cores under in situ reservoir conditions. The high surface
tension of Wood’s metal enables the size of the invaded
fracture aperture to be controlled by the injection
pressure, and ensures that the injected metal conforms to
the geometry of the void space. In addition, the Wood's
metal in the fractures provides a large X-ray absorption
density contrast between the rock matrix and the
metal-filled fractures. X-ray computerized tomography
(CT) utilizes the density difference between the coal
matrix and the Wood’s-metal filled fractures to image
the three-dimensional geometry of the fracture net-
works. Details of the application of these techniques for
imaging fracture networks can be found in refs [17, 65].

The combination of the Wood’s metal injection
method with X-ray tomography yields information
on the aperture distribution, the porosity and the
geometrical properties of the fracture network (e.g.
length, orientation, spatial correlations). Gravimelric
measurements are used to determine the metal-filled void
volume and to calculate effective network porosity. The
porosity is determined by dividing the volume of metal
injected by the bulk volume of the sample. This effective
fracture network porosity represents the connected
apertures with a size greater than the minimum
aperture penetrated by the Wood’s metal. The minimun
aperture penetrated by Wood's metal for all of the
samples ranged between 2 and 3 microns. Computerized
X-ray tomography (CT) of the metal-filled coal
specimens provides information on the geometry of the
network, such as number of fractures and fracture
orientation.

Through image analysis of the X-ray tomographic
scans (CT scans), the aperture distribution of the
fracture network can be determined, along with the
variation of porosity with depth in the sample, as
well as spatial correlations of apertures [17-19, 66].
Image processing on the digital CT scans is necessary
because an artifact called beam hardening arises in
the images because of the selective attenuation of
photons of different energies. This causes the thickness
of the Wood’s-metal-filled fractures to be exaggerated.
Montemagno and Pyrak-Nolte [66] determined that the
fractures can be located to within a 0.3 mm pixel by
performing a morphological thinning transformation on
the raw CT data.
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Coal Core AA
Effective Network Porosity ~ 0.082 %

Depth =21 mm Depth = 31 mm

60 mm

Coal Core BB
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Depth = 30 mm Depth = 50 mm

Fig. 12. Fracture networks for cores AA and BB.

Fracture imaging results

Figure 12 shows the transformed geometry of the
fracture network at two different depths for coal cores
AA and BB. Both cores had an effective network
porosity of less than 1%. The porosities of the fracture
networks in the coal cores were determined by extracting
the aperture of the fractures from the CT data [17].

The natural log of the magnitude of absorption (or CT
number, CT#) of an X-ray beam is linearly pro-
portional to the thickness of the absorbing material.
Using this relation, a constant of proportionality was
calculated to relate the CT# to the volume density of
metal within a voxel using the bulk volume and the
volume of metal injected. Figure 13 shows the variation
in porosity with depth in the sample for several coal
cores. Ten millimeters from the inlet and outlet side of
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Fig. 13. Porosity as a function of depth in four coal cores [23].
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Fig. 14. Aperture distribution for the fracture networks in cores AA
and BB. The distribution is approximately gaussian for both fracture
networks.

the cores are not shown to exclude end-effects from the
Wood’s metal injection. For all of the cores, the porosity
is a function of position through the core. For coal cores
AA and BB, the aperture distribution of the fracture
network was found to be approximately gaussian
(Fig. 14) with maximum apertures occurring up to 170
microns.

Fracture network summary

Through the combination of Wood’s metal injection,
X-ray tomography and image processing, quantitative
values of fracture apertures inside coal cores were
obtained without destructive sectioning of the cores. The
data from these experiments provide a basis for
addressing many basic questions on the geometrical
properties of fracture networks, such as: Is the aperture
distribution of a single fracture the same as the
distribution of the entire network? Are the intersection
of fractures preferentially larger in size? Whether the
observed three-dimensional geometry of fracture net-
works in coal is applicable to fracture networks
contained in other rock types or under different stress
conditions, or on different scales is an open question.

INTERFACE WAVES

Determining the three-dimensional geometry of
fracture networks in the field often relies on geophysical
techniques such as cross-borehole seismic tomography
or ground penetrating radar. The resolution of such
techniques does not allow the extraction of aperture
distributions, which are important in determining the
hydraulic characteristics of a fractured rock mass. From
our study of the interrelationships among fracture
properties, fracture specific stiffness depends on the
geometry of the fracture (size and spatial distribution of
apertures and contact area), and can be determined from
seismic measurements of velocity and attenuation.

To improve our understanding of the measurement of
fracture specific stiffness using seismic waves, we have
investigated the fundamental behavior of interface waves
in both synthetic samples and in rock. Interface
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waves have previously been demonstrated to propagate
along macroscopic fractures in homogeneous solid
media [31, 51, 67, 68] and in rock [46,47]). These
interface waves may be regarded as propagating
eigenmodes generated by the interaction of Rayleigh
waves at the surfaces of two half-spaces, coupled by the
specific stiffness of the fracture. The displacement—dis-
continuity boundary condition [2, 26, 29, 48-51] that
describes the coupling of the two half-spaces introduces
a characteristic frequency into the dynamic response of
the fracture. Therefore, the originally non-dispersive
Rayleigh modes become dispersive when they are
coupled in the interface modes. Two interface waves
exist: a fast wave that depends only on the normal
fracture stiffness and a slow wave that depends only on
the shear specific stiffness. For both waves, as the
stiffness of the fracture increases, the velocity approaches
that of the bulk shear mode (Fig. 15), i.e. the fracture is
essentially behaving as a welded contact. For very low
fracture stiffness the velocities of the fast and slow waves
approach the Rayleigh velocity, i.e. the fracture behaves
as two free surfaces. In this study, the slow interface
wave is used to determine shear fracture stiffness of
fractures subjected to both normal and shear loading.

Experimental measurements of interface waves

Interface waves were investigated in fractures that
were mechanically induced through tensile stresses using
a method similar to Brazilian testing [69] in solid
cylinders of dolomite 5cm in diameter by 4.8 cm in
length [46, 70]. The seismic properties of the cores were
measured prior to and after mechanically inducing the
tensile fractures. Seismic transducers, containing
piezoelectric elements with a resonant frequency of
1 MHz, were mounted straddling the fracture. The input
pulse to the transducers consisted of a 300 V spike with
a 0.4 us duration and a repetition rate of 100 Hz. The
received waveforms were digitized and stored on a
computer for analysis. Arrival times were read to within
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Fig. 16. Slow interface wave for a fracture in dolomite subjected to (a)
normal loading, and (b) normal and shear loading, as illustrated in the
inset.

0.01 microsec.

Measurements of S, and S, (shear polarizations are
relative to the fracture plane) wave amplitudes and
velocities were made as a function of applied normal
stress (0—11.5 MPa). Stress was applied either normal to
the fracture plane or with the fracture plane oriented
at 30° to the normal to produce a shear stress on the
fracture plane (Fig. 16). The fractured sample was
confined to prevent slip along the fracture during the
application of shear stresses. Figure 16 shows the slow
interface wave for a low and high normal stress for the
case of normal stress only [Fig. 16(a)], and the case of
both a normal and shear stress on the fracture plane
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[Fig. 16(b)]. When only a direct normal stress is applied
to the fracture plane [Fig. 16(a)], a slight increase
in the slow interface velocity is observed. However,
as the shear stress is applied on the fracture, the interface
wave increases in velocity and undergoes dramatic
changes in phase [Fig. 16(b)]. To quantify the change
in group and phase velocity of the observed
slow interface wave, and the change in the spectral
content, a multiscaling wavelet analysis was performed
using a Morlet wavelet [71, 72]. The Morlet wavelet
uses a series of scaled and delayed oscillatory
functions to decompose a time-varying signal into its
non-stationary spectral components. A detailed descrip-
tion of the technique used in this analysis can be found
in ref. [60].

Shear fracture stiffness obtained from interface waves

Using the analytic solution for interface waves [51]
and the measured changes in phase and group velocity
from the wavelet analysis [70], the shear specific stiffness
of the fracture was determined from the seismic data. It
should be noted that the only fittable parameter is the
fracture stiffness; all other parameters are directly
measured [i.e. frequency, bulk shear and compressional
wave velocities, density (Table 3)]. Figure 6 compares the
effect of shear stress on the shear stiffness of the fracture.
It should be remembered that these are confined
fractures that are not allowed to slip. For the case with
only normal stress, the shear stiffness is observed to
increase with increasing stress, reflecting the increase in
the number of points of contacts between the two
fracture surfaces and the expansion of the contacts with
increasing stress. When an additional shear stress is
applied to the fracture plane, the shear fracture specific
stiffness increases at a faster rate than when only a
normal stress is applied to the fracture. These values of
fracture shear specific stiffness are consistent with static
and dynamic measurements of fracture stiffness from
other investigations using different measurement tech-
niques [2, 9, 12]. Pyrak-Nolte et al. [70] also observed
(on other dolomite samples and oolitic limestone
samples) that shear fracture stiffness increases at a faster
rate with increasing shear stress than for increasing
normal stress alone. For the data shown in Fig. 6, the
shear stress experienced by the fracture is approximately
half of the normal stress, but the rate of increase in shear
stiffness with normal stress is three times higher than
when only normal stress is applied to the fracture. Shear
fracture stiffness is therefore more sensitive to changes in
shear stress than to normal stress, suggesting that shear

Table 3. Measured density, dimensions, bulk wave velocities and
spectral peak of interface waves for dolomite sample

Diameter {cm) 5.05
Length (cm) 5.00
Density (kg/m?) 2701
Intact compressional wave velocity (m/sec) 5554
Intact shear wave velocity (m/sec) 3278
Frequency of spectral peak for fractured sample (MHz) 0.944
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stresses produce contacts along components of the
fracture surface profiles that are orthogonal to the
fracture plane.

Interface waves provide a remote technique for
monitoring changes in shear fracture stiffness that occur
from changes in stress conditions. Interface waves and
other guided modes [56] have the potential for becoming
a diagnostic tool for probing the physical characteristic
of fractures in rock masses. A full understanding of the
behavior and energy partitioning among body waves,
interface waves and guided modes in fractured rock is
needed to reach this potential.

CONCLUSIONS

Fractured rock masses are sensitive to local tectonic
stresses, chemical weathering or artificially induced
changes from mining, construction or pollution remedi-
ation processes. Seismic geophysical methods have the
potential for locating and characterizing fractures, and
fracture networks in the shallow subsurface. However, it
is important to understand the physical mechanisms that
interrelate the seismic response of a fracture to the
hydraulic and mechanical behavior of the fracture. In
this paper, I have presented a review of the progress we
have made toward understanding the interrelationships
among the physical properties of fractures. Three
fractured samples from the same tectonic setting
exhibited the same interrelationship between shear wave
attenuation and fluid flow. This relationship needs to be
further explored through experimental and numerical
investigations to determine if the observed interrelation-
ships are site or rock-type specific. In addition, the
scaling behavior of the interrelationships needs to be
determined to make these laboratory observations
applicable on the field scale. From our studies we have
shown that the detectability of a fracture is directly
linked to the frequency of the signal and the stiffness of
the fracture [54]). The frequency determines the scale
of observation, i.e. the range of fracture stiffnesses that
can be detected. Single phase and multiphase fluid
flow through fractures are also scale dependent
[25, 62, 52, 73] and the scaling behavior must be
included in the development of field-scale theories or
models for the interrelationships among fracture
properties. By developing and improving techniques for
characterizing fractures on multiple length scales we
have made progress toward the goal of remote
characterization of fracture properties.
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APPENDIX A: THEORY FOR WAVE PROPAGATION ACROSS
A NON-WELDED CONTACT

The interpretation of seismic data is often complicated because
waves propagating through the crust are affected by mineralogy,

— (K- — iewy-)cos 0 (k- — iwK-)sin ¢,

—(K: — iwH.)cos B + 1w, cos 2¢s

— (K — 1wy, )sin 6, — (k. — leon, )cos ¢y (k. — lwn,)sin 0 — iw 7 sin 20, (K. — . )cos ¢ — iwZa cos 2¢a
pl
—Zpicos 2gy Z, sin 2¢h, Zp2 cos 2¢p2 — Zsin 26
Zs sin 26, Z, cos 2¢h Z, sin 26- Z2C0s 2¢-

Zvl 7 p2

1995 SCHLUMBERGER LECTURE AWARD PAPER

lithology, structure, fluids and temperature. A great deal of
experimental and theoretical work has been done to understand this
topic. However, virtually all of it assumes that the contacts between
different lithologies are welded. This Appendix presents the full
solution for determining reflection and transmission coefficients, as
well as group time delays for non-welded contacts modeled as
displacement discontinuities and velocity discontinuities. Displacement
and velocity discontinuities can represent dry fractures, fluid-filled
fractures and mineralized fractures. The general solutions for a
fracture modeled as a Kelvin material or as a Maxwell-model are given.
Several figures are given to illustrate the basic behavior of the different
non-welded contact models.

A.1. Non-welded contacts

The rheological behavior of a fracture can be modeled as (i) a spring,
(ii) a dashpot, (iii) a spring and dashpot in parallel (Kelvin material),
or (iv) a spring and dashpot in series (Maxwell material). Several
investigators [2, 49, 50] presented the solution for a fracture
represented by a spring and having both a normal and tangential
fracture specific stiffness. Pyrak-Nolte et af. [2] presented the solution
for a Kelvin material assuming both a normal and tangential fracture
specific stiffness, but only a tangential specific viscosity. In the
following sections, the solution for a fracture with rheological behavior
represented by a spring and dashpot in parallel (Kelvin) for both
normal and tangential to the fracture plane is given, along with the
solution for a spring and dashpot in series (Maxwell material) for both
normal and tangential components of behavior. The solutions for a
spring only or a dashpot only can be obtained from the solution for
a Kelvin non-welded contact by setting the specific viscosity to zero
(n = 0) or the specific stiffness to zero (x = 0), respectively.

A.1.1. Kelvin non-welded contact. The boundary conditions for an
incident compressional wave (P-wave) impinging on a fracture
represented by a Kelvin model are:

Kz — wz2) + 1 (i) — th) = Ta: (A1)

Kot — Ma) + gao(tia — ) = T (A2)
ta=ta where .= i%% 4 (i+20) ‘:i (A3)
far =T where = u(‘?ﬂ‘ + (i,'fi)- (A4)

Equations (A1) and (A2) are the boundary conditions that describe a
fracture with both dispacement and velocity discontinuities in parallel
for the normal (z) and the tangential (x) components. In equations Al
and A2, x represents the specific stiffness of the fracture and n
represents the specific viscosity (viscosity per length) of the fracture,
subscript 1 represents the half-space for = >0 and subscript 2
represents the half-space z < 0. The exact meaning of a specific
viscosity for a fracture still needs further investigation. Pyrak-Nolte
et al. [2] found that the behavior of shear-waves propagated across a
dry fracture was better simulated by assuming a Kelvin model for the
tangential components of particle displacement. Suarez-Rivera [27]
investigated the influence of fluid viscosity on the specific viscosity and
determined that the specific viscosity is related to the adhesion or
cohesion of a fluid to a surface. The boundary conditions given by
equations (A1)}-(A4) are also applicable for an incident Sy-wave. For
an incident Su-wave, the boundary conditions are
5 : du,
Ko (tha — tha) + §o(th) — tha) = Top  To = T2, where 1. =g =

A.1.1.2. Solution matrices for the Kelvin model. The following
matrices (A5 and A6) give the complete solution for all angles of
incidences and different seismic impedances of the half-spaces (where
Z is the seismic impedance = density*phase velocity) for P-wave and
S.-wave propagated across a Kelvin non-welded contact:

(x: — iwn:)sin ¢ — iwZ. sin 2¢h

2
52
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for P-wave:
R, —(K; — lwn-)cos 0,
Ry (k. — lwn,)sin 0,
§ (AS5)
T Zy cos 2¢h
Tw ¥ sin 20,
for Sv-wave:
R, (K- — iwn.)sin ¢,
Ry (k. — 1w, )cos ¢
b (A6)
7, — Z, 8in 2¢hy
To Zy cos 2¢n

The solution for a Sh-wave incident on a Kelvin non-welded contact:

i) —iZacos ¢ || Ra | _ | (k0 — deom,
Z.: cos ¢ LT | Zacosdu |

(A7)

—(x, —iwn) (& —
Z, cos ¢y

A.1.1.3. Kelvin non-welded contact: normal incidence. Equations (AR)
and (A9) give the transmission and reflection coefficient for a
compressional wave at normal incidence on a Kelvin non-welded
contact. These coefficients depend on the fracture specific stiffness, x,
specific viscosity of the fracture/material in fracture, n, the frequency
of the signal, w and the impedances of the elastic half-spaces, Z, and
Z-. By setting n to zero, the coefficients revert to the solution for a
fracture represented by a spring only. If « is set to zero, the coefficients
given by equations (A8) and (A9) revert to the solution for a fracture
represented by only a dashpot.

2(K: — i)
AT Zy
J\_—(l + Zrl) 1(0[Zp; + n- (1 + Zpl)—|

(k: — 10)!;!_—)(an 1) + Ly

Zy . Z -
Ka (l + 'fm) lfx}[ln_ + n: (] + Zpu):|

A non-welded contact will produce a phase shift (@), as well as a group
time delay, t,. The transmitted and reflected phase shift for fracture
represented by the Kelvin model is:

Tiy(w) =

(AB)

Ro(w) = (A9)

@.}.P = tan+' 7@.’?21’3.. EER (A10)
L Ly
h_.(|+z )+wnZ|,«+wq(1 Zm)
th VA g
@, = tan™! - (Al1)

=202y — 07 + |:7 == l:|[(.r;3r;_5 + .U]J

The group time delays (equations A12 and A13) caused by a fracture
represented by a Kelvin non-welded contact for the transmitted and
reflected P-wave from an incident P-wave (where y = Z/Z,) are
determined from 46 /dw, that is the change in phase with change in
frequency [26, 54].

e

i 1) +7) — 0n:Zp — 20°n2(1 + 7)]
Lt =g [ww-Zn] +

l )+wr;iZ + wini(l + 7))

+ Wy
[ 3,
(Al2)

K:Zp[27(7° — DK = 2w'p2) + 2007 ,(2:} Zw + 73 )]
Ror-ZpnyF + [—w(20:Z0n + Z22) + (7 — Dk + w2

(A13)

Ier, =

Figure Al compares the transmission and reflection coefficients for
a compressional wave propagated at normal incidence (perpendicular
to the fracture plane) across a Kelvin non-welded contact with the
transmission and reflection coefficients for waves propagated across a
fracture represented by a spring only, and by a dashpot only. For these
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Fig. Al. Comparison of (a) transmission and (b) reflection coefficients
for a compressional wave propagated at normal incidence to a fracture
represented by (i) a spring, (ii) a dashpot, (iii) a Kelvin material (spring
and dashpot in parallel), and (iv) a Maxwell material (spring and
dashpot in series). The coefficients are plotted as a function of
normalized frequency. The frequency, @, is normalized by the specific
stiffness of the fracture, k. Z is the seismic impedance (the product of
the density and phase velocity of the intact medium). The ratio of
specific viscosity to seismic impedance is set equal to 0.5 and is used
in the dashpot, Kelvin and Maxwell models.

curves the density and compressional wave velocity of the two elastic
half-spaces on cither side of the fracture are assumed to be equal and
were taken to be p = p: = 2700 kg/m' and o = o = 5600 m/sec,
respectively. In Fig. Al the transmission and reflection coeflicients are
plotted as a function of normalized frequency, i.e. the frequency is
normalized by the ratio of fracture specific stiffness to seismic
impendance. The curves represent the response of a fracture assuming
the fracture is represented by a (i) spring (displacement discontinuity).
(i) dashpot (velocity discontinuity), (iii) Kelvin material (displacement
and velocity discontinuities in parallel), and (iv) Maxwell material
(displacement and velocity discontinuities in series, which will be
discussed in a later section).

The behavior of a displacement discontinuity (spring) was discussed
earlier in this paper. For a velocity discontinuity (dashpot), the
transmission and reflection coefficient are frequency independent. If
the specific viscosity of the fracture/fluid in the fracture approaches
zero (n—0), the transmission coefficient decreases to zero and the
reflection coefficient increases to unity, i.e. the fracture behaves as a
free surface. Conversely, as the specific viscosity approaches anfinity
(1 — ), the fracture behaves as a welded contact for which all of the
energy is transmitted across the fracture with no energy partitioned
into the reflected signal.

For a fracture represented by a Kelvin material, the transmission
and reflection coefficients are frequency dependent and depend on the
specific fracture stiffness and specific viscosity. For the curves shown
in Fig. Al, n/Z is a set equal to 0.5. Relative to the solution for a
displacement discontinuity only (spring), the transmission coefficient
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for a Kelvin non-welded contact is attenuated at low frequencies or
high fracture stiffness [Fig. Al(a)]. Conversely, at high frequencies or
low fracture stiffnesses, the transmission coefficient for a Kelvin
non-welded contact is enhanced relative to the spring model, but the
reflection coefficient approaches an asymptote defined by a dashpot
non-welded contact (velocity discontinuity).

A.1.2. Maxwell non-welded contact. The boundary conditions
for a Maxwellian non-welded contact (displacement and velocity
discontinuity in series, i.e. a spring and dashpot in series) for incident
P- and Sv-waves are:

Tie=

(th: — th:) = :T + g Tl T (Al4)
and
ity = dizy) = fh—+ B g, (A15)
where
= 2T
Tee -,4.“"‘-4—(114-2,(:) ,' r\—;z(‘alj‘+%)
and

. iETH q - ) u- ETh
foo=[ A == ) 2 { an _—
- ( drox T [%+2u] ar r?z) = ’”(0.’ ox tare:

and dot denotes a derivative with respect to time. For an incident
Sh-wave the boundary conditions are
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For SH-waves, the solution for a Maxwellian interface in the most
general form is:

— Z;) €S ¢ —Z2 08 ¢ R | _| =Zacos ¢
1 - — (1 = iwg)Zacos || Tw | - 3

(A19)

A.1.2.3. Maxwell non-welded contact: normal incidence. Equations
(A20) and (A21) give the transmission and reflection coefficient for a
compressional wave at normal incidence on a Maxwell non-welded
contact where Z, # Z, and 3 = Z»/Z,1. These coeflicients depend on
the fracture specific stiffness, x, specific viscosity of the fracture/ma-
terial in the fracture, n, the frequency of the signal, w, and the
impedance of the elastic half-spaces.

2n 2k
T, = - (A20)
L, £y Wy
(2 i zn;) ( 2
w1 Zp Zpn\  [(wip\ | lwZuy
ZIL 4 2y (]+2n) (21‘\'; * 2ic
o — (A2}

o, 1, ZuY | (0ZanY
(2 Ta o) T ok

Equations (A22) and (A23) give the phase for the reflected and

(thy — tiz) = oy = (Al6) transmitted compressional wave for a Maxwell non-welded interface
Ll Hx ' ) where Z, # Z:, and y = Z2/Z:
where
£k o Oy, =tan"’ 4 (A22)
Ty=pu=" and Ty =wrz2-. Ju el o LY
cz ot 0z IZa e e
A.1.2.2. Solution matrices Maxwell non-welded contact. The follow-
ing matrices (A17 and A18) give the complete solution for all angles )
of incidences and different seismic impedances of the half-spaces LYy
(Zi = Z>, where Z is the seismic impedance = density*phase velocity, © tan- 2x;
the subscript | represents the half-space for z > 0, the subscript 2 Bl Zy Z wZs |
represents the hall-space for z < 0, and the subscripts x and = represent 4 4y I+ .| 7| 2
the tangential and normal components, respectively) for P-wave and
Sv-wave propagated across a Maxwell non-welded contact (spring and (A23)
dashpot in series):
p : . 275 ., 3 . -
n: cos 0 ~n- sin ¢ n-cos th + (1 — 1mg_](5p~ - * sin’ U]) —n. sin ¢ + (iwg: — 1)Z;2 sin 20:
i ! 0 7 .
n. sin #, 1y COS neh —nsin 0 + (1 —1wg.) Z_ sin 26 — N, €os ¢ + (iwg, — 1)Z. cos 20:
n=
2Z; . . 275 .
-Zy Zml Z.isin 2¢h Zpy — 7o — Z.28in 2¢2
—Z4 gin 204 —Zq cos 2¢h =23 sin 20 —Z cos 2¢-
pl sz
P-wave The group time delays (equations A24 and A25) for the reflection and
transmission coeflicients for Maxwellian interface are determined from
R, n-{ cos 8 6 [S:
R —n.J sin 6,
A o (AL1T) K. | K | K
Tz 1l Z 2 gin? + +
» ( 7o l) e Za D TR (A24)
K- K-
o (Z Tzt ) e
Tw I(—-Zm sin 29&)
Sv-wave
Zoaa|'1 Zp: Zp [ayAS wZp
; i | L2 oy — L p Wepr f ., _ Wip
| | nrsne B [4( -G 5) (-]
R —n.f cos ¢ 18) T = ==
- X (A YA 2 Zn Zy wZn\ |
ey Z sin 2¢y 2,‘-_ ( -bh- 24. 1+ 2n. + 2kK.
T —1Z; cos 2¢h

where 7 = 5K in the matrix.
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Figure Al(a) and (b) compare the transmission and reflection
coefficients for a compressional wave propagated across a Maxwell
non-welded contact with the transmission and reflection coefficients for
waves propagated across a fracture represented by a spring only, by
only a dashpot, and a Kelvin rheology (spring and dashpot in parallel).
In Fig. Al(a) and (b) the transmission and reflection
coefficients are plotted as a function of normalized frequency, for
which the frequency is normalized by the ratio of fracture specific
stiffness to seismic impedance. The curves represent the response of a
fracture assuming the same seismic impedance for the two elastic
half-spaces.

For a fracture represented by a Maxwell non-welded contact, the
transmission and reflection coefficients are frequency dependent and
depend on the specific fracture stiffness and specific viscosity. For the
curves presented in Fig. Al, n/Z is set equal to 0.5. Relative to the
solution for a displacement discontinuity only (spring), the
transmission coefficient for a Maxwell non-welded contact is
attenuated at low frequencies or at high fracture stiffness [Fig. Al(a)].
Conversely, at high frequencies or low fracture stiffnesses, the
transmission and reflection coefficients for a Maxwell non-welded
contact approach the value of the spring model.

The effect of varying the ratio of n/Z on the transmission and
reflection coefficient for normal incidence as a function of normalized
frequency is shown in Fig. A2(a) and (b) assuming the densities and
velocities of the elastic halfspaces are equal (p, = p> = 2700 kg/m’ and
o = o = 5600 m/sec). Increasing n/Z increased the transmitted
amplitude of a compressional wave propagated across a Maxwell
non-welded contact and decreases the reflection coefficient. Relative to
the curve for n/Z = 0.1, the reflection coefficient is attenuated for low
frequencies (or high fracture stiffness) and enhanced at high
frequencies (or low fracture stiffness).

Figure A3 compares the transmission and reflection coefficients for
the converted waves for a compressional wave incident at oblique
angles to the four non-welded contact models presented here for
niZ = 1.0 and wZ/2x = 0.3, assuming the same seismic impedance

Transmission Coefficient

w//x
Normalized Frequency

Reflection Coefficient

0.0 1 I 1 | 1

0 1 2 3 4 5 6
wi/K
Normalized Frequency

Fig. A2. For a fracture represented by Maxwell non-welded contact,

the effect of varying the ratio of n/Z, that is the specific viscosity to

seismic impedance, on (a) transmission coefficient and (b) reflection
coefficient plotted as a function of normalized frequency.
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Fig. A3. Comparison of the magnitude of (a) transmitted P-wave, (b)

reflected P-wave, (c) transmitted Sv-wave, and (d) reflected Sv-wave for

a compressional wave propagated at oblique angles of incidence to a

fracture represented by (i) a spring, (ii) a dashpot, (i) a Kelvin

material—spring and dashpot in parallel, and (iv) a Maxwell

material—spring and dashpot in series. A value of wZ/2x = 0.3 and
n/Z = 1.0 was used.
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Fig. A4, Comparison of the magnitude of the transmitted P-wave, reflected P-wave, transmitted Sv-wave and reflected Sv-wave

for a compressional wave propagated at oblique angles of incidence to a fracture represented by a Kelvin material (a) and

(b) and a Maxwell material (c) and (d) for impedance ratios of Z,/Z> = 1.41 and Z\/Z, = 0.707, with @Z/2x = 1.0 and
NiZ =110,

on either side of the interface. The impedances of the elastic half-spaces
are based on a density, p, = p; = 2500 kg/m’, a Poisson ratio of
v =0.25, a shear modulus of p: =y = 20 GPa, and a shear-wave
velocity, f=fi = /ujp, and a compressional wave velocity,
tr=a = /E(l - v)/p(1 — 2v)(1 + v), where the Young's modulus is
E=2u(l +v). The spring and Kelvin non-welded contacts show
similar behavior, with the Kelvin contact vielding lower transmission
and reflection coefficients compared to the spring contact. In
comparing the dashpot and Maxwell non-welded contact models, it is
observed that the angle of incidence determines whether the
transmission or reflection coefficients from the dashpot model are
larger in value than those from the Maxwell model. For example, the
magnitude of the reflected Sv-wave from the dashpot model is lower
than the magnitude of the reflected Sv-wave from the Maxwell model
for angles of incidence less than 50°. Above 50°, a Sv-wave reflected
from a Maxwell contact will yield stronger reflections.

Finally, Fig. A4 illustrates the effect of an impedance mismatch,
ie. Zy# Z,, on the converted modes from a compressional-wave
at oblique angles of incidence for #/Z = 1.0 and wZ {2k =1.0
for Kelvin and Maxwell nonwelded contacts. The impedances of
the elastic half-spaces are based on a density, p, = 2500 kg/m’, a

Poisson ratio of v = 0-25, a shear modulus of p2 = py = 20 GPa, and
a4 Young's modulus £ =2u(l +v). The shear-wave velocities were
calculated from fi = ./p/pi, and f = Vefpa, with p2 = f*pl,
(f=0.5 or 2.0). The compressional wave velocities were calculated
from o = /E(l —v)/ipi(l —2v)(1 +v), and mx = VE( = v)
(1 =2v)(1 +v). When Z,/Z: = 1.41, both models show similar
behavior with a slight difference in magnitude. The critical angle for
the transmitted P-wave is 45” and is observed in Fig. Ad4(a) and (c) at
the sharp drop to zero. As the impedance mismatch decreases to
Z\{Z,=0.707 [Fig. Ad(b) and (d)], the partitioning of energy among
the different converted modes has changed from that observed for an
impedance mismatch of Z,/Z. = 1.41. For example, the transmitted
P-wave for a Kelvin non-welded contact no longer contains a
discontinuity because the critical angle is 90°, and the transmitted
P-wave magnitude approaches zero as the angle of incidence
approaches 90°. In comparing the Kelvin and Maxwell non-welded
models for a Z,/Z; = 0-707, only the magnitude of the transmitted
Sv-wave is similar between the two models. The magnitude of the
reflected P-wave is only similar at high angles of incidence, i.e. greater
than 70°. The energy partitioned into the transmitted P-wave is much
greater for the Kelvin model than the Maxwell model.




