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Hierarchical Cascades and
the Single Fracture

Percolation and Seismic Detection

Laura J. Pyrak-Nolte, David D. Nolte. and Neville G. W. Cook

9.1. INTRODUCTION

The growing scarcity of water and petroleum. as well as the critical importance of
establishing secure waste deposits that will not contaminate ground water, has focused
attention on the technological and scientific difficulties of quantifving How processes
through porous or fractured media. Fractures and fracture networks are often the majnrh
conduits through which fluids and contaminants flow. Fracture networks are composed of
associations of single fractures. In this sense, single fractures can be viewed as the primary
building blocks. Before tackling the complex problem of flow through fracture networks,
it is therefore essential to understand the physical properties of this basic unit, the single
fracture, especially with regards to the effect of external perturbations such as stress on the
flow properties of single fractures. Furthermore. it will be particularly useful if seismic
methods can be used to predict the flow properties of intact fractures, without the need for
expensive invasive coring and laboratory tests.

Fluid flow through a singie fracture is complex because of the complex nature of the
fracture void geometry. A natural fracture is composed of two rough surfaces in partial
contact. Between the points of contact exist voids of variable aperture and geometry. When
the fracture is subjected to stress, the fracture voids deform, resulting in an increase in
contact area with a reduction in fracture void aperture and fracture void volume. These
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changes in void geometry influence both fracture deformation and fluid flow through the
fracture.

Many investigators have attacked the problem of how the hydraulic and mechanical
properties of fractures depend on aspects of fracture void geometry, often with an emphasis
on the surface roughness of fractures. The roughness of fracture surfaces has been measured
by Swan (1983), Barton er af. (1985), Brown and Scholz (1985 and 1986); Brown er al.
(1986); and Brown (1987a,b). Methods that try to directly access the void space geometry,
rather than inferring it, include measurement of the contact area of fractures using
impression paper (Duncan and Hancock. 1966; Iwai, 1976; and Bandis er al., 1983):
measurement of the void space geometry using a metal injection technigue (Pyrak-Nolte
et al., 1987; Pyrak-Nolte, 1991); epoxy injection techniques (Gale, 1987; Gentier er al.,
1989); or a water drop technique for measuring size and distribution of apertures (Hakami,
1988). These technigues all yield the same basic result: Void geometry in a fracture is
variable in shape and size, and the geometry of the voids directly determines the
deformation and fluid flow properties of a fracture. Exactly how the void space geometry
influences fluid flow has been a point of much discussion.

Many investigators have modeled fracture void geometry and the relationship to flow
properties using non-fractal models (Gangi. 1978; Patir and Cheng, 1978; Neuzil and Tracy,
1981; Tsang and Witherspoon, 1983; Sato er al., 1984; Tsang, 1984; Schrauf and Evans,
1986; Muralidahr and Long, 1987; Rasmussen, 1987; Tsang and Tsang, 1987; Moreno
et al., 1988; Chen er al., 1989; Shapiro and Nicholas, 1989; Silliman, 1989; Tsang and
Tsang, 1989; Cook er al., 1990) and fractal models (Brown, 1987; Pyrak-Nolte et al., 1988;
Wang and Narasimhan, 1988; Brown, 1989: Yang er al., 1989). A fractal model of aperture
correlations is described by Wang er al. (1988). A standard but overly simplified approach
has been to model flow through a fracture as between parallel plates, that is, flow through
the fracture is proportional to the cube of the fracture aperture; hence the cubic law (Twai,
1976 Witherspoon et al., 1980). It has been widely considered that such a basic approxima-
tion falls short in practice, and that more information concerning the geometry of the
fracture is needed to better explain fracture flow properties. The key question is how to use
the information of fracture void geometry to understand the fundamentals of fluid flow
through fractures. Several investigators have used modified cubic laws to explain experi-
mentally observed deviations from cubic law behavior. Iwai (1976) added an empirical
factor to the cubic law to account for the effects of surface roughness. Engelder and Scholz
(1981) found that their data agreed well with a cubic law modified to account for variable
void cross-section as a result of applying stress. Several different investigators found that
flow through a single fracture under high stress often yielded a relationship between flow
and fracture aperture much greater than cubic (Iwai, 1976; Gale and Raven, 1980; Engelder
and Scholz, 1981: Pyrak-Nolte et al., 1987). Walsh (1981) concluded that flow rate depends
on two factors: fracture aperture and tortuosity. Tortuosity is the effect of increasing the
length of the flow path as contact area is increased. Examining the data of Kranz er al.
(1979) he observed that the effect of tortuosity could be neglected for fluid flow because
aperture is raised to the third power and therefore dominates the low properties. In contrast,
a computational study by Tsang (1984) concluded that tortuosity and surface roughness
greatly affect the flow, especially when contact area is greater than thirty percent. Based on
theoretical and experimental results, Cook er al. (1990) found that in-plane tortuosity
effects are greater than out-of-plane tortuosity effects.

In this chapter, we address these sometimes contradictory aspects of fluid flow in
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erns with our stratified

fractures by first modeling experimentally observed void space patt
theory to give physical

percolation construction, then using basic conclusions of percolation
Section 9.2. we describe the experimental data set consisting of hydraulic
and mechanical properties of single [ractures in several rock cores ( Pyrak-Nolte ef al..
1987). Of particular importance is the measurement of the paths through which fluid flows
through the fractures. A novel metal casting technique 18 employed that allows the void
space geometries (o be imaged and studied quantitatively. The void space patterns arc
fractal. In the following sections, we describe the stratified continuum percolation model
(Nolte et al., 1986; Pyrak-Nolte e al.. 1988; Nolte er al., 1989; Nolte, 1989) that generates
fractal void space geometries quantitatively similar to those observed in the experimental
data of Pyrak-Noite er al. (1987). We specifically use the concept of fractal dimensions
(Mandelbrot, 1983) to quantify the seemingly random structure of the measured void space
patterns. The fractal dimension measured in the laboratory is a parameter that must be fit by
the percolation model. In this manner, the fractal dimension is more than merely a
he fracture geometry, butis used explicitly to determine percolation

explanations. In

descriptive measure of t
and flow properties through fractures.

Once the model is established, mechanical deformation of the fractu
by assuming conservation of rock volume during fracture deformation. We find that the fluid
flow through fractures is strongly dependent on the nonlinear relationships between fracture
deformation and applied stress. Section 9.7 contains applications of the stratified continuum
percolation model to examine the interrelationships among the hydraulic, seilsmic. and
mechanical properties of a fracture. and to examine the apparent frequency dependence of
fracture specific stiffness. We find that the hydraulic and seismic properties of a single
fracture are linked through the specific stiffness of the fracture because fracture specific
stiffness depends on the geometry of the fracture. A mechanism for a frequency-dependent
stiffness is a simple consequence of the fracture void geometry because different frequen-

cies sample different subsets of fracture specific stiffness.

re is approximated

9.2. HYDRAULIC AND MECHANICAL DATA

Pyrak-Nolte er al. (1987) performed hydraulic and mechanical tests on three core
samples (E30, E32 and E35) of quartz monzonite measuring 52 mm in diameter by T
mm in height. Each sample contained a single natural fracture orthogonal to the long axis of
the core. These cores were obtained from extensometer holes from a waste isolation
experiment in a drift in Stripa, Sweden, 340 m below the surface (Olkiewicz ef al., 1979).
Hydraulic conductivity was measured for each of these samples as a function of axial
loading. and changes in fracture void geometry and contact ared were evaluated for samples
E30 and E32.

Figure 9.1 contains the mechanical deformation data for all three samples as a function
of stress. The measurements of fracture closure were made using linear variable differential
transformers (LVDTs). The displacement, also called the closure, of the fracture under
uniaxial stress is defined as the distance that LVDTs move for a given stress. [t must be kept
in mind that the LVDT displacement represents a far-field displacement, and not the local
displacement of the fracture surfaces. The relationship between this far-field displacement
and the actual change in the apertures of the fracture void spaces will be described later in
this chapter in Section 9. 5. “Conservation of Volume During Deformation.” Though the
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FIGURE 9.2, Specific stiffness for the three mechanical displacement tests shown in Fig. 9.1 {Pyrak-Nolte eraf_.
1987)

in all of the discussions in this article we refer exclusively to flow rates per unit head, to
avoid confusion from different possible definitions of permeability. Furthermore. we
consider only laminar flow. Figure 9.3 contains the fluid flow data of Pyrak-Nolte et al.
(1987) after values of irreducible flow were subtracted from the fHow data. Irreducible
flow is that flow that continues to flow even under the highest stresses. Pyrak-Nolte er al.
(1987) found that flow through the three different fractures had a power-law relationship
between flow and fracture displacement much greater than cubic: 8.3, 9.8, and 7.6,
for E30, E32, and E35, respectively.

To better understand the flow process through fractures and the departure from the
cubic law, Pyrak-Nolte ef al. {1987) made measurements of the fracture void geometry for
E30 and E32 as a function of stress. They used a metal casting technigue in which molten
Wood’s metal (at 90°C) is injected into the fracture to make casts of the fracture voids. The
fractured sample was placed under an axial load and evacuated to remove air from the void
spaces. Molten metal then was injected from the perimeter of the sample. All void spaces
that were connected to the sample perimeter were filled with the metal. It is possible that
some void spaces may have been inaccessible from the perimeter, and these void spaces
would appear as contact area. On the other hand, the injection pressure of the Wood's metal
was 2 MPa which enables the metal to penetrate apertures as small as 100 nm. Therefore,
we consider that the void spaces are faithfully being represented by the resulting metal
casts. Once the void space patterns have been measured in this manner, it still remains to
try to connect void space geometry with the flow path geometry. Voids filled by the metal

, : . - ; X FIGURE 9.4. S ; surface of :
e i e i i s phc\u.‘-gruphs of the e »::Pl:'_“P[rh]te‘ ?hr;tm_.mphu of_enme_rracture surface of sample E30 at three effective siresses: (a), 3
MPa; [ 1;811 ! ; and (c), 85 MPa. White regions are contact area, black regions are flow paths (Pyrak-Nolte
el al., [4 3 2 ; o -
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entire fracture surface of sample E30 for three different stresses. Areas of white are contact
area and areas of black are the void spaces along which the metal has penetrated. Figure
9.5 is a SEM (scanning electron microscope) composite micrograph of a small region of
sample E30 when the sample was injected while under an effective stress of 85 MPa. Atthis
high stress, there are still large areas of voids that remain open, thus allowing continued
mechanical closure with increasing stress. However, the large voids are connected by small
tortuous necks or channels which control the flow. Using a Zeiss image analyzer, measure-
ments of the percent void space area as a function of stress were made based on the
composite photographs. Figure 9.6 contains the graph of percent void space area as a
function of stress for E30 and E32. E32 had much more contact area than E30.

From the combined data certain implicit relationships between mechanical and
hydraulic properties are observed. First, flow through a fracture depends on the displace-
ment of the fracture: fractures with larger maximum displacements have larger flow through
the fracture. Second, a correspondence between contact area and fluid flow through the
fracture is observed; as contact area increases, some flow paths are obstructed, thereby
increasing the length of tortuous flow paths. Third, there exists a relationship between
contact area and fracture stiffness; as more and more asperitics come into contact with
increasing stress, the stiffness of the fracture increases. Finally, an important relationship
was observed in the data between fracture stiffness and fracture displacement [which is used
by Bandis er al. (1983) for characterizing fractures]. Based on mechanical measurements,

FIGURE 9.5. Composite micrograph from a
partion of fracture surface of sample E30 for :
an effective stress of 85 MPa. White regions Approximate scale
are contact area, black regions are flow paths 1
(Pyrak-Nolte er al., 1987) 0.4 mm
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FIGURE 9.6. Percent flow path area as a function of stress for samples E30 and E32

it was observed that fractures with the smallest maximum displacement d_, (hence smaller
apertures) were the stiffest, while fractures which displaced the most were the most
compliant. This relationship between fracture stiffness and fracture displacement is also
observed in the data of Bandis et ai., 1983, and Gale 1987. These implicit relationships
between mechanical and hydraulic properties arise because fluid flow and mechanical
stiffness both depends on fracture aperture and contact area. This raises the possibility of
predicting hydraulic properties of fractures based on measurements of fracture stiffness,
obtained either from mechanical measurements performed on core samples, or by seismic
transmission (Pyrak, 1988).

9.3. FRACTAL FLOW PATTERNS

One of the striking observations about the void space patterns is that they possess
features on seemingly all length scales. The composite in Fig. 9.5 qualitatively retains
many of the tortuous void space patterns independent of the scale of view. A fractal analysis
reveals that the void space is self-similar. It is important to consider the usefulness of
characterizing the seemingly random void spaces with a fractal dimension. The fractal
dimension of a pattern gives a quantitative measure of the spatial correlations that exist
in the pattern. Spatial correlations, in turn, arise from the physics of the pattern formation.
In this case, the pattern formation originates with the fracture of the rock and the subsequent
influx of fluid. As an example of spatial correlation, consider the void space geometry of the
fracture. It is clear that a point of large aperture is surrounded by regions of large aperture,
while points of contact are generally surrounded by other points of contact or low aperture.
The void space patterns are therefore correlated. Mountains are another example. If a
geologist stands at the peak of a mountain, there is a high probability that if he takes a
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step, he will remain near the peak altitude. There is likewise a very low probability that after
taking the step he will be at <eal level. In the case of mountain ranges. erosion with gravity
provides the physics behind the spatial correlation. Mile-high escarpments do not exist on
Earth. because erosion and gravity pulls them down into talus slopes that lead more or less
gradually from the mountain heights. On the other hand. mile-high escarpments can and do
exist in weaker gravitational fields, such as on Miranda, one of the moons of Uranus.
because the force of gravity there is considerably less. In short. spatial correlation reduces
gradients and thereby reduces forces that form the pattern. It is theretore not surprising that
the void geometry of fractures have spatial correlations. The question of why the spatial
correlations should be scale-invariant still remains largely unsolved. However. it is now
well established that many patterns formed through fragmentation in fact have self-
similarity and therefore can be described by fractal dimensions. We will show shortly in this
paper that the fractal dimension of the void spaces provides an important quantitative value
which is used to generate percolation models to describe the effects of the fracture fractal
geometry on fluid flow through the fracture, We first describe the measurement of the fractal
dimension of the void space data.
The fractal dimensions of the void space composite photographs of specimens E30 and
E32 were measured for stresses of 3, 33. and 85 MPa. For the experimental void space
patterns. the contact areas were identified as tremas. and the distribution of trema sizes were
related to the fractal dimension of the carpet. To measure the sizes of the tremas, or contact
areas, a series of square grids were superposed on the void space pattern. The sizes of the
grid cells started with the largest single cell that was contained within the pattern. If a
contact area covered more than half of the cell, the cell was considered occluded. The cell
size was then reduced in linear dimension by a factor of (w0, vielding four cells that covered
the initial cell. Again, the number of cells that were occluded by a single contact area were
tabulated. The process continues iteratively by reducing the linear dimension of the cells
by a factor of two and tabulating the number of cells occluded. In this way the resolution of
the grid is graduaily increased., including progressively smaller areas of contact into the
tabulations of the number of contact area versus their linear size. By plotting the logarithm
of the number of cells which were not occluded (void space) against the logarithm of the
linear size of the cells, the fractal dimension was obtained as the resulting slope of the
plot. It should be noted that the above method is identical to the box-counting technique (see
Feder, 1988), except for the definition of occlusion. In the box-counting technique, a box is
occluded if it is entirely filled by a contact area, in contrast to out definition of at least fifty
percent filling. This difterence in definition only shifts the upper cutoff, but does not alter
the fractal dimension. We chose our definition for convenience during the counting of
boxes.
The fractal dimensions of the void space patterns as functions of stress are shown in
Fig. 9.7 for specimen E30 and E32. The initial decrease of the fractal dimension at low
stress is followed by an asymptotic approach to a fractal dimension near 1.95 at the highest
stresses. It is significant that several of the physical properties of the fracture, when
measured as functions of stress, yield asymptotic trends. An asymptotic relationship will be
shown 1o exist between the far-field displacement of the fractured specimen and the closure
of the void spaces in the fracture. This relationship is demonstrated through the develop-
ment of the self-similar percolation model called stratified continuum percolation. This
model also is successful in explaining the most sal ient features of fracture deformation and
fluid flow through the [racture.
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FIGURE 9.7, Fractal dimension of void spaces as a function of stress for samples E30 and E32

9.4, STRATIFIED CONTINUUM PERCOLATION

Percolut-ion studies have provided significant insight into the properties of flow through
random media. A large body of literature exists on percolation theory and its applicatiu;:s
[see S_tauffelr (1985) for a review]. Possibly the best understood percolation structures are
two-dimensional random percolation models. Continuum percolation is one example. A
standard random continuum percolation plot is shown in Fig. 9.8. This patlcm‘consl?stsl of
5000 squares plotted at random locations within the large square area. The pattern is said to
p'ercolal‘.e 1f acontinuous path can be found that spans the figure from top to bottom 0;1‘ liidf: to
side. Continuum percolation has a well-defined percolation threshold. This thresi;a.:-}d is
expressed as the amount of area that is occupied by the black squares when a ercolarin.
path fujﬁt can be found across the pattern. This threshold is A_ = 0.71 : )

Given the success and understanding of percolation propen‘ies, it wo.uld be a great hel
to relate the experimental void space geometry to percolation models. However, a com ariE-)
son betlwee‘n the standard random continuum percolation plot in Fig. 9.8 witt; the nuP-:rw
gra!:ahs in Figs. 9.5 and 9.6 points out a clear discrepancy. The experimental patterns are not
entirely random, but have a large degree of correlation. This correlation produces the
-:lun‘1ped structures in Fig. 9.5, as compared to the filamentary and homogeneous patterns
of I-:lg. 9.8. Stated another way, the experimental micrograph exhibits a fractal gc%mel‘r :
whl!e the random percolation pattern does not. To model the experimental data, and t):)
retaml:l percolation construction that will allow us to apply percolation theory rcs;.:lts we
combined standard random continuum percolation with a recursive construction to 1.:ield
fractal percolation patterns. We call the resulting hierarchical cascade stratified cumil;uum
percolation (Nolte et ai., 1989; Nolte, 1989). '

S[ratiﬁcr_l percolation patterns are constructed recursively as a hybrid between standard
randpm continuum percolation and a random Sierpinski carpet. The Sierpinski carpet
provides the correlated skeleton upon which successively smaller tiers of standard perc;ilj:l.-
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FIGURE 9.8. Standard random continuum percolation pattern. with 5000 squares plotted at random locations
within the large square area. This pattern is close to the percolation threshold.

tion patterns are applied. The stratified percolation construction is demonstrated in Fig. 9.9.
The construction begins by defining an initial large square region, called the first tier. This
is the largest square in Fig. 9.9. Within this tier, N squares, with linear dimension reduced
in scale by a factor b from the size of the first tier, are randomly laid down. These N smaller
squares constitute the second tier, and are the second largest squares in Fig. 9.9, Just as in
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standard random continuum percolation, these squares are allowed to overlap. as 1s seen
in Fig. 9.9 for several of the squares. The construction continues recursively with N
squares, reduced again by the scale factor b, placed within each of the squares making up the
second tier. The recursive construction is terminated when the size of the square regions
reaches a2 minimum cutoff. At this level, solid squares are plotted within the final tier. The
stratified percolation pattern is defined by the final set of plotted squares. On the first tier,
and only on the first tier, wraparound periodic boundary conditions are applied in which
points positioned beyond a boundary of the first tier are plotted within the opposing
boundary. The effect of this wraparound boundary condition is also seen in Fig. 9.9, where

FIGURE 9.10. Stratified continuum percola-
tion patterns for a different values of tiers and
number of points per tier; (a), 3 tiers, b=42,
30 points per tier, area fraction black = 0.81,
fractal dimension D = 1.984: (b), 5 tiers. b =
2.4, 7 points per Uer, &rei fraction black
0.64. D = 1.947; (c), 5 tiers, b = 2.4, 9 puints
per tier, area fraction black = 0.89, 0 = 1.990;

(d). 5 tiers, b = 2.4, 12 points per tier, area

b fraction black = 0.99, D = 2.000.
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FIGURE 9.10. (Continued)

one of the second-tier squares and two of the third-tier squares have overhung the hU'.l[JLJ.;:tJ.’_\.
of the first tier. Fig. 9.10 shows patterns generated from the stratified continuum percolation
model for different numbers of tiers and different numbers of points per tier. The fractal Lili]'l'lr.’.[]
sions of the resulting patterns were measured using the box-counting method ( l"-:.dcr_ '.L}HH.‘;.
As the model is presented this far, it is only a two-dimensional model in which a site 1s
either occupied or not. Yet fracture void spaces are three-dimensional. with the height of the

void space, the aperture, playing an essential role in fluid flow rates. To extend the stratified
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percolation model into three dimensions, we have made the following conjecture: The
aperture of the stratified percolation pattern is proportional to the density of sites. This
conjecture cannot be justified a priori, but is reasonable for the following reason. The
aperture distribution that results is explicitly correlated to the two-dimensional pattern:
Apertures near the center of void spaces tend to be maximum, while apertures near the
edges of the void space tend to be minimum. Furthermore, the distribution of apertures
qualitatively resembles experimental aperture distributions. Figure 9.11 gives the aperture
frequencies for the pattern in Fig. 9.10(d). The aperture frequency is approximately log-
normal which has been observed experimentally for fractures in rock (Tsang, 1984; Gale,
1987: Hakami, 1988). It is important to note that the midpoint displacement model, which is
also commonly used to obtain models of correlated terrain, does not yield a log-normal
aperture distribution (Voss, 1988). Figure 9.12 shows the aperture contour plot for Fig.
9.10(d). The contours were made by averaging the aperture of a 6 X 6 pixel area. The white
area represents contact area and increasing shades of gray to black represent increasing
aperture. The scale of contour in Fig. 9.12 is 20 units of aperture per shade. We see that the
patterns are highly clumped together and correlated.

The two-dimensional percolation properties of stratified continuum percolation have
been described elsewhere (Nolte et al., 1989; Nolte, 1989; Nolte and Pyrak-Nolte, 1991)
Pyrak-Nolte er al. (1988) determined that the strong dependence of flow on fracture
deformation could not be explained using only two-dimensional analysis. The role of the
aperture distribution, and changes in the aperture distribution during deformation, must
play an essential role in the dependence of fluid flow on fracture displacement. In
understanding fluid flow through fractures, it is important to know how the flow paths
will be affected as apertures are reduced by applied uniaxial stress. Figure 9.13(a) and (b)
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FIGURE 9.11. Graph of distribution of apertures for the pattern in Fig. 9.10(d)
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FIGURE 9.12. Apertere contour plot for pattern
shown in Fig. 9.10(d). White represents contact arca.
and increasing shades of gray to black represents
increasing aperture. Scale of contour: 20 units of

aperture.

show the aperture contours when the apertures have been reduced. Stress here is considered
only in terms of the reduction of aperture that is caused by an applied stress. The critical
path and the critical neck of the pattern can be determined in this manner. The critical path
is the path of highest aperture across the pattern. The critical neck is the smallest aperture
along the critical path. For a reduction of 74 units of aperture, the critical path is quite
evident and the critical neck can be seen in Fig. 9.13(b). The fractal dimension as a function
of closure of aperture was calculated and is shown in Fig. 9.14 for the pattern in Fig. 9. 10(d).

9.5. CONSERVATION OF VOLUME DURING DEFORMATION

Deformation of a natural fracture with applied stress is a complicated problem in
geomechanics. Investigators have modeled the mechanical deformation of fractures by
modeling the fracture as parallel plates separated by asperities of varying height (Green-
wood and Williamson, 1966; Greenwood and Tripp, 1971; Gangi, 1978: Brown and Scholz,
1985. 1986; Hopkins er al., 1987). To account for the deformation of the fracture, we
assumed conservation of rock volume to account for the presence of asperities (Pyrak-Nolte
et al.. 1988). In this assumption, the rock is considered as deformable yet incompressible.
To understand our approach to the deformation of a fracture, consider the void geometry
in Fig. 9.15. If the void space 1s reduced one unit of aperture, the asperities on either side
also close by one unit of void aperture. The apparent missing volume of the asperity is
distributed over the cross-section of the sample and added to the sample far from the
fracture. Therefore as the apertures are closed by compressive stress, the average far-field
displacement of the rock mass, d_ .. is less than the actual displacement of the void
aperture, d,_,. To develop the relation between far-field displacement and aperture closure,
expressions for the void and contact areas are first derived from the aperture distribution
as the void space is closed by the amount d, 4 The distribution of apertures, P(x), is defined
through the relation

P(x)dx = fraction of fracture area with apertures between x and x + dx.
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FIGURE 9.13. (a) Aperture contour for patiern
shown in Fig. 9.10(d), for an aperture reduction
of 40 units. Scale of contour: 20 units of aperture
(b) Aperture contour for patiern shown in Fig.
5 9.10(d), for an aperture reduction of 74 units
Scale of contour: 20 units of aperture.

The expressions for contact area and void area are

A (d )= .-I{Pﬂ]] + f P(x) ci'.r}

'lw\ldldl..-.,_:J = A _r P(x) dx (N
a4
vhere A is the cross-sectional area of the fracture plane, and P(0) is the zero-stress fraction

of the contact area Changes in the far-fi d displacement, & W b h h
g e -field placeme [ an change
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in the void aperture displacement, 8(d, ), reduced by the ratio of the area of the void space
to the cross-sectional area of the fracture plane:

2.0 ]

5 tiers . ' o
A b[dl'l'il.'l‘h} & ALEI:U[H-LHJ) b{a;md} (2)

12 points per tier

Equation (2) is the statement of conservation of volume. Integration yields the relationship
between far-field displacement and void aperture closure

d
g Lo
d . dia) = ' _[ A (Mdy (3)

void”

Fractal Dimension

In the limit of high stress, the mechanical displacement, d . approaches the
asymptote defined by d_,, = d, (=) = V. .gA. where d_  is the maximum mechanical
displacement of the fracture (measured from the far field) and V,_, is the zero-stress void
volume of the fracture. The relationship between apparent fracture aperture and the closure
of the void space apertures is shown in Fig. 9.16 for the pattern of Fig. 9.10(d). To generate
this curve, for every unit closure of aperture, the mechanical displacement at the far field
was calculated based on conservation of volume from Eq. (2). The straight line asymptote
denotes the case where d_ ., = d, ., There is clearly a nonlinear relationship between far-
field mechanical displacement and void space aperture reduction, which will be reflected in
the dependence of flow on mechanical displacement. The aperture of the critical neck is

1.4

1.2 T 4 g
0 210 40 60 80 100

Unit Aperture Closure

FIGURE 9.14. Fractal dimension as a function of unit closure of aperture for the pattern shown in Fig. 9.10(d).
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FIGURE 9.15. Application of principle of conservation of volume. For an incremental stress, the void space FIGURE 9.16. Mechanical displacement (apparent fracture aperture) versus aperiure closure of the void space for

closes by B(d,,,). The points of contact do not interpenctrate. but this mass is redistributed over the sample cross- pattern shown in Fig. 9.10(d). The nonlinear dependence is a result of the conservation of rock volume during
section far from the fracture. The increment in the far-field mechanical displacement 3(d_ ) 15 smaller than the deformation.

void closure. This principle includes the basic feature of fracture deformation.
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also shown in Fig. 9.16. This critical aperture is determined from the contours in Figs.
9 13(a) and (b) as the smallest aperture along the critcal path.

9.6. FLUID FLOW DEPENDENCE ON MECHANICAL DISPLACEMENT

As stated above in the introduction, several investigations of fluid flow through natural
fractures have found that flow depends on the apparent aperture of a fracture b raised to
exponents considerably larger than cubic. This behavior is described by

Q i Q-g. = (b)* = (dm.n o |:Jlmm.'h}r1 S0

where @ is the residual or irreducible flow. The effect of increasing contact ared with
increasing stress is implicitly included in Eq. (4) through the dependence of tortuosity on
apparent aperture.

From the application of the principle of conservation of volume, a nonlinear relation-
ship between mechanical (far-field) closure and void space closure was developed. The
use of far-field displacement in Eq. (4), though convenient, would not be expected to yield a
cubic law dependence of flow on mechanical fracture displacement.

Up to this point, we have made two simplifications. The first was the use of the
stratified percolation construction to simulate the experimental void space. The second was
the approximation of conservation of volume, applied to the stratified percolation patterns,
to obtain the essential features of fracture deformation. Now we make a third simplifying
assumption: flow through the fracture is determined entirely by the critical neck. This
assumption is certainly an oversimplification, but we are attempting to obtain the essential
behavior of the dependence of fluid flow on void space geometry. This assumption is
partially justified by percolation studies of networks of nodes connected with inhomoge-
neous conductances. Several researchers (Ambegaoker et al., 1971: Shklovskii and Efros,
1971: Pollak, 1972) found that the macroscopic conductivity is determined by the conduc-
tance of the elements that first create percolation across the distribution, i.e., the critical
neck. Because flow depends locally on the cube of the aperture, and the apertures vary
over an order of magnitude in the stratified percolation construction. the condition of strong
heterogeneity is obeyed by the stratified percolation patterns. To find the qualitative
behavior of the flow as a function of fracture deformation, we explicitly assume a cubic
relationship between flow and the aperture of the critical neck. We will show, that despite
the local dependence on the cubic law, the dependence of flow on mechanical displacement
can yield exponents arbitrarily larger than cubic.

The relationship for flow through the critical neck is

Q - Q. = (b (5)

where b_, is the aperture of the critical neck as a function of stress, and cubic dependence
on the critical aperture has been explicitly assumed. As stress is increased, b decreases
until it is closed completely at the critical mechanical displacement d_,,. We continue to
include irreducible flow Q because our assumption of conservation of volume is only an
approximate way to include the deformation properties of the fracture. In practice, the void
space will not close completely, even at high stresses (Hopkins and Cook. 1987) which may
allow some residual fluid flow.

The dependence of flow on apparent aperture (d,,, — dpecy) €N NOW be plotted. This

max

Ln{d_-d_.)

0 2 4 ] 8 10 12 14

Ln Flow

FIGURE 9.17. Log-log plot of apparent mechanical aperture (= o, ~ d, ey determined by the far-field
displacement) versus flow for pattern shown in Fig. 9.10(d).

is displayed in the log-log plot in Fig. 9.17. The straight line shows the dependence
expected from Eq. (4) for an exponent of three, labeled cubic law on the figure. At low
stresses, i.e.. high flow, the slope of the simulated curve approaches the slope of the cubic
relationship. However. at even moderate stresses, the exponent (slope) increases signifi-
cantly from cubic and can be arbitrarily large at high stresses.

The influence of each of our three assumptions on the results of Fig. 9.17 can now be
discussed separately. Assumption | is that the stratified percolation construction provides a
realistic representation of the fracture void space. The fractal dimension is adjusted to fit
experimentally measured patterns. Assumption 2 is that conservation of rock volume during
deformation is a simple yet important way to include the deformation mechanics of the
asperities and surrounding rock mass. Deviations from cubic law dependence at low and
moderate stresses result from the nonlinear relationship between far-field displacement and
the closure of the void space, expressed in Eq. (2). Assumption 3 is that cubic-law flow
dependence on the local microscopic aperture greatly simplifies the analysis and makes the
connection with laminar fluid transport. The bound on the slope in Fig. 9.17 for low stresses
is a direct consequence of this assumption. The dramatic deviation from cubic-law
dependence at high stress (neglecting irreducible flow) is a consequence of the dominance
of the critical neck on flow through the fracture. In conclusion, our three simplifications
provide a simple and direct means of explaining the experimental dependence of flow
through fractures on the mechanical deformation of the fracture, without reverting to heavy
computation of either mechanical or hydraulic properties. ¥ :
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9.7. APPLICATIONS OF STRATIFIED CONTINUUM PERCOLATION

In this section, we demonstrate the application of the stratified continuum percolation
model to examine (1), the interrelationship among fracture properties: and (2), the fre-
quency dependence of fracture specific stiffness. The first application uses a unique data set
collected for single natural fractures (Pyrak-Nolte ef al.. 1987 and 1990) that has allowed
interrelationships among the hydraulic, seismic, and mechanical properties of a fracture to
be observed. The most important relationship is the correlation between fluid flow througha
fracture and seismic attenuation caused by the fracture. This special relationship may
enable seismic characterization of fractured sites to predict hydraulic response. Using the
stratified percolation model to simulate fracture void geometry, the correlations between
fluid flow and fracture specific stiffness were reproduced based on simple physical
assumptions. It is shown that this correlation arises from the void geometry of the fracture.
i e. the contact area of the fracture and the aperture distribution of the fracture.

The second application of the stratified continuum percolation model examines the
apparent frequency dependence of fracture specific stiffness. Fracture specific stiffness
is the ratio of the increment of stress to the corresponding increment in fracture displace-
ment produced by the closing of voids in the fracture. Static measurements of fracture
specific stiffness yield lower values than those determined from dynamic techniques. Using
the stratified continuum percolation model, a simple mechanism to explain the frequency
dependent stiffness is investigated based on the void geometry of the fracture. Fracture
specific stiffness can be frequency-dependent because different frequencies sample differ-
ent subsets of the inhomogeneous distribution of stiffness that occurs in a fracture.

9.7 . Interrelationships among Fracture Properties

Often a rock mass will contain fractures or sets of fractures that can be detected and
located using seismic techniques. A key question is how the seismic signature of a fracture
relates to its hydraulic properties. If there is a direct relationship between the seismic
signature of a fracture and its hydraulic properties, then remote seismic techniques can be
used to make hydrological assessments in the field without the need for expensive, multiple
boreholes. Recently, several investigators have characterized and predicted the hydrologic
properties of fractured rock masses from geological and geophysical data sets {Hesler et al..
1990; Long et al., 1991; Martel and Peterson, 1991: Martin er al.. 1990; Myer, 1991).
However, direct evidence for shared hydraulic and seismic behavior has been lacking. To
relate hydraulic and seismic properties, it is necessary to understand the role that fracture
geometry plays in the hydraulic, seismic, and mechanical properties of single fractures. In
the past, investigators have examined partial relationships between the mechanical and
hydraulic properties of fractures, or between the mechanical and seismic properties of
fractures. These studies have included the effects of fracture aperture and contact area on
fluid flow through a fracture (Iwai, 1976; Engelder and Scholz, 1981; Walsh, 1981; Barton
et al., 1983; Tsang and Witherspoon, 1983; Brown, 1987b: Gale, 1987; Pyrak-Nolte e al..
1987: Hakami, 1988; Chen et al., 1989; Cook et al., 1990), the effect of asperities or surface
roughness on mechanical deformation (Greenwood and Williamson. 1966: Greenwood and
Tripp. 1971; Gangi. 1978: Bandis et al.. 1983: Swan, 1983; Brown and Scholz, 1985 and
1986; Hopkins and Cook, 1987: Hopkins et al.. 1990: Yoshioka and Scholz, 1989), and the
effect of fracture mechanical properties on wave propagation across a fracture (Morris
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et al.. 1964; Yu and Telvord. 1973: Kleinberg er al., 1982: White, 1983; Medlin and Marsi,
1984: King er al., 1986; Pyrak-Nolte er al., 1990). Cook (1992) examined the hydraulic,
mechanical, and seismic properties of joints by analyzing the deformation of ﬂsp;!rilics of
contact and the voids between the asperities, i.e., the fracture geometry. Deformation of
the asperities influences the joint closure. the fracture specific stiffness, and the aperture
;li:atribution in the fracture, and hence controls fluid flow and wave propagation across the
fracture.

[n this section, the relationships among fracture specific stiffness, fluid flow through
the fracture, and apparent wave attenuation are investigated and compared with expcrime-n-
tal data. The model used to examine the experimentally observed interrelationships among
fracture properties (specifically the correlation between the hydraulic and seismic pmpert
ties of natural fractures) consists of two parts. The stratified continuum percolation model is
used to generate fracture void structures used to model the fluid flow through a fracture, the
m‘cchanical displacement of a fracture, and the fracture specific stiffness. A displacement
discontinuity model is used to simulate the effect of a fracture on compressional and shear
wave transmission (Pyrak-Nolte er al., 1990). Fracture specific stiffness is identified as the
primary link between the hydraulic and seismic characteristics of single fractures.

9.7.1.1. Experimentally Observed Interrelationships. The unique data set collected

from single natural fractures (Pyrak-Nolte er al., 1987 and 1990) in cores obtained at the
Stripa site (Olkiewicz er al., 1979) has made it possible to simultancously correlate
mechanical, hydraulic and seismic behavior among the fracture properties. The three quartz
monzonite samples discussed in Section 9.2 were used in this investigation. The details of
the experimental procedures can be found in references Pyrak-Nolte et al. (1987 and 1990).
Mechanical displacement of the fractures (Fig. 9.1) and fluid flow through the fractures
were measured for normal stresses ranging from 1.4 MPa to 85 MPa. For each sample, static
fracture specific stiffness (Fig. 9.2) was determined from the stress—displacement data. The
three fracture samples had differing static fracture stiffnesses (Fig. 9.1) and flow rates (Fig.
9.3). For the same range of normal stresses, compressional and shear wave transmission
data across the fractures were measured and used to determine the dynamic stiffness of the
fracture. In this analysis, the amplitudes of the transmitted signal from the fractured
samples were normalized with respect to an intact specimen from an adjacent section of the
drill core. The observation of the interrelationships among fracture properties was possible
because the effect of the bulk rock, i.e. of the intact portions of the sample, was removed by
the normalization. The interrelationships would be difficult to assess if the effect of bulk
matrix porosity, bulk compressibility, and bulk seismic wave attenuation were present in the
data sets.

The experimentally observed interrelationships among the hydraulic, mechanical, and
seismic properties of a fracture are illustrated in Figs. 9.18-9.20. The observed relation-
ships between fluid flow through the fractures and fracture specific stiffness (measured
mechanically) for each sample is shown in Fig. 9.18. Significantly, the data from the three
fractures fall near a single curve despite the differences in the mechanical and hydraulic
properties among the fractures (Figs. 9.1-9.3). A clear systematic trend in the data is
observed, i.e., compliant fractures support more fluid flow than fractures with a higher
stiffness. A similar experimental relationship is observed between fluid flow lhmuat; the
fracture and the amplitudes of the transmitted compressional and shear waves, as shown in
Figs. 9.19 and 9.20. Fractures with low attenuation exhibited a low flow rate. Again, the
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FIGURE 9.20. Relationship between shear wave amplitude ratio and fluid flow through a fracture observed
experimentally and determined from Egs. 6. 8, and 13.

data from the three fractures fall near a single curve. This suggests common statistical
properties for the three samples which may reflect their common origin in the tectonic
environment at Stripa.

9.7.1.2. Modeling Fluid Flow. To understand the empirical relationship between
fluid flow through the fracture and wave propagation across the fracture, the stratified con-
tinuum model described above was used to generate fracture topologies. For this analysis,
five-tier models were used with the number of points per tier (ppt) ranging from 7 ppt to 12
ppt. To simulate stress on a fracture, the number of points per tier is reduced which is
equivalent to reducing the volume of the fracture. Low numbers of points per tier
correspond to small fracture void volume. Conversely, high values correspond to large
fracture void volume.

For a fracture with a variable aperture distribution, the critical neck dominates the
macroscopic flow properties of the fracture, described in Eq. (5) of Section 9.6. The critical
aperture, b, (critical neck) of a fracture is the smallest aperture on the path of largest
apertures (critical path). Fluid flow through a critical neck is modeled as flow between
parallel plates

Q=C b (6)
where
W AP
= —_—— 7
€ 12n AL ™

for rectangular flow. In Eq. (7), AP/AL is the pressure gradient across the critical neck, p
is the viscosity, and W is the width of the critical neck through which fluid is flowing.
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TABLE 9.1. Aperture of Critical Neck (),
Maximum Displacement (8__ ). and Standard Deviation
of Asperity Height (o) of Simulated Fracture Topologies

for a Range of Number of Points per Tier (ppt)

ppt ,f)_ :fm_u L ppt f'-'\ 'fm.-u T

7 H 4.1 6.4 10 B5- G T
] b 8.3 9.3 I1 41, 43,5, 333
9 i6 15.5 15.3 12 2k 67.9 442

“This data is used o produce the mudel curves in Figs. 9.18-9 2l

Table 9.1 lists the critical apertures of the different stratified continuum patterns based on an
average of five simulations for each number of points per tier. Equation (6) is used to
calculate fluid flow through the simulated fracture using the values of b_ in Table 9.1. The
constant C, in Eq. (6) was fit to the data and found tobe €| = 2.89 10716, These values of
flow are used to construct the model curves in Figs. 9.18-9.20.

Static Fracture Specific Stiffness  The specific stiffness of a fracture is defined as the
ratio of an increment in stress to the increment of displacement caused by the deformation
of the void space in the fracture. Fracture displacement and fracture specific stiffness
depend on the surface roughness of the two fractures surfaces (Greenwood and Williamson,
1966: Brown and Scholz. 1985; Walsh and Grosenbaugh, 1979; Yoshioka and Scholz, 1989)
and on the void geometry of the fracture (Hopkins and Cook, 1987 Hopkins et al., 1990)
when the two surfaces are in partial contact. In this analysis, fracture specific stiffness is
taken to be inversely proportional to the maximum closure of the fracture, 8, ata given
Sress

K=—- (8)

max

)

where

Volume of voids (ppts)
B pax(PPY) = ®

Cross-sectional area

and where C, is a constant of proportionality, and §___ is a function of stress. Reducing the
number of ppt of a pattern reduces the volume of the voids in the fracture and hence
increases the stiffness of the fracture, Eq. (8). The maximum value of closure, & ., was
determined using the principles of conservation of volume (Pyrak-Nolte er al., 1988). Other
investigators (Greenwood and Williamson, 1966; Greenwood and Grosenbaugh. 1979
Brown and Scholz, 1985: Yoshioka and Scholz, 1989) assume that fracture stiffness is
inversely proportional to o, the standard deviation in asperity height. The fracture stiffness
determined from the asperity distribution is approximately linearly proportional to the
fracture stiffness determined from the void volume, Eq. (8).

Relationship berween Fluid Flow and Static Fracture Stiffness  For fluid flow through
the fracture to be related to the specific stiffness of the fracture. the critical aperture of the
fracture, b_, and the displacement 8 must be related. Fracture stiffness is a function of
far-field displacement, while flow depends on the actual apertures of the voids. Using the
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stratified continuum model, the critical aperture was found to be approximately cqual to

Eimx of the fracture.

b, = d(ppy),,, (1)

Eq. (11) is true for lognormal. Gaussian, and uniform distributions of apertures. Through

this relationship. fracture specific stiffness and fluid flow through a fracture can be related.

Substituting Eq. (11) into Eq. (8) and using Eq. (6) yields the equation relating fluid flow Q

to the fracture stiffness K (Eq. 12).

- C?
Tor,

This relationship exists because fluid flow through the fracture and fracture stiffness
both depend on fracture aperture. [n addition, a power law relationship exists between fluid
flow through the fracture and fracture stiffness. Fluid flow through the fracture is found to
depend on the cubic power of fracture stiffness.

Table 9.1 lists the values of 8., o, and b, that were used to fit the experimentally
observed relationship between fluid flow through a fracture and fracture specific stiffness
(Fig. 9.18). The adjustable parameters arc: aumber of points per tier (ppt): and C,, C,, and
C, which are independent of ppt. The solid line in Fig. 9.18 is the fit to the data assuming C,
= 9].4 % 102, The fit to the experimental data (Fig. 9.18) suggests that Eqg. (12) is valid.
The results from the model characterize the basic trends observed in the data, i.e., fractures
which support large values of fluid flow are more compliant. In addition, the curve is fit to
the three different rocks, all from the same tectonic environment, and suggests a universal
behavior for fractures in Stripa granite. Alternately, the common curve represented by all
three fractures may signify that the three fractures obey subsets of a common fracture
statistics that is applicable to all fractures in the Stripa waste isolation drift.

A comparison was made of the flow-stiffness relationship [using Eq. (8) for fracture
stiffness] to the value of fracture stiffness determined from Equation (10). To use Eq. (10),
it is necessary to calculate the stress, p, for each pattern. Increasing the stress on the fracture
reduces the volume of the voids in the fracture. C, was fit to the data and assumed to be C; =
30 % 10'2. In Fig. 9.18, the dashed-line curve represents the fit to the data using Eqg. (10).
This result fits the data at high stresses (large value of stiffnesses) but deviates at very low
stresses.

Relationship berween Fluid Flow and Seismic Behavior The displacement discon-
tinuity model for wave propagation across a nonwelded interface has been used to simulate
the seismic response of fractures and to predict dynamic fracture specific stiffness (Myer
et al., 1985; Pyrak-Nolte er al.. 1990). In this model, the fracture is represented by the
following boundary conditions: (1), the stress across the fracture is continuous; and
(2), displacements across the fracture are discontinuous. These boundary conditions were
used by Mindlin (1960) and other investigators (Kendall and Tabor, 1971; Kitsunezaki,
1983; Murty, 1975; Pyrak-Nolte and Cook, 1987; Schoenberg, 1980) to study nonwelded
contacts or fractures. The equation for the transmission coefficient for a wave propagated at
normal incidence to a fracture is

K (12)

I = — (13)
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the hydraulic, mechanical, and seismic properties of all of the fractures in the extended rock
mass. For Stripa granite it 1s observed that a cubic relationship exists between fluid flow and
fracture stiffness. Whether this dependence is true for fractures in other rock types and
tectonic environment needs to be explored. While the results are for single fractures, all
oriented perpendicular to the direction of stress and to the seismic wave front, and at the
laboratory scale. these results should be extendible to fractures off-angle or fracture
networks on the field scale.

9.7.2. Frequency-Dependent Fracture Stiffness
{ ] P L

In modeling the interrelationships among fracture properties (Section 9.7.1.), the
constant used to model static fracture stiffness had to be increased to match the dynamic
response of the fracture. Jaeger and Cook (1979) have noted that static moduli of rock
determined by static stress—strain measurements are lower in value than dynamic moduli.
Frequency-dependent dynamical effects. such as frictional slip along internal interfaces
(Walsh, 1966) have often been attributed to the observed difference in magnitude of the
dynamic and static moduli. Pyrak-Nolte et al. (1990) observed that dynamic fracture
specific stiffness of single natural fractures was greater in value than the statically
determined values of fracture specific stiffness. Static specific stiffness of a fracture is
determined from far-field displacement measurements as a function of static stress (Good-
man, 1976; Bandis et al.. 1983). To determine dvnamic specific stiffness of a fracture, the
theoretical frequency-dependent transmission coefficient of the fracture is matched against
experimentally measured transfer functions (Pyrak, 1988). From work performed on single
natural fractures in the quartz-monzonite cores from the Stripa site, dynamic stiffnesses
were determined to be typically three times larger than static stiffnesses (Pyrak-Nolte et al.
1990). As in the case of bulk moduli. this difference between static and dynamic fracture
stiffness has been attributed to dynamical effects. Such explanations are potentially
important because they may be used to make conclusions concerning physical properties of
fractures at the microscopic scale.

In this section, an alternate simple explanation for the larger values of dynamic
stiffness compared to static stiffness is given, which demonstrates that the general
frequency dependence of fracture stiffness can be related directly to an inhomogeneous
distribution of stiffness across the fracture. This mechanism for frequency-dependent
fracture stiffness is a simple consequence of the fracture void geometry. It is shown that
fracture stiffness can be frequency dependent because different frequencies sample differ-
ent subsets of fracture stiffness.

9.7.2.1. Theoretical Assumptions. The transmission coefficient for seismic wave
propagation across a fracture from the displacement discontinuity model (see Pyrak-Nolte
er al., 1990, for a literature review) is given by Egs. (13) and (14). The frequency
dependence of the transmission coefficient arises from the inertia of the rock mass in
response to the stress transmitted across the fracture through the fracture stiffness. If the
fracture stiffness k — ==, then 7' — | and the fracture behaves as a welded interface. In the
other extreme, as k — 0, then T — 0 and all of the wave energy is reflected off the free
surface. In general, the fracture acts as a low-pass filter, passing only those frequencies of
the wave that are lower than the characteristic frequency w, = 2k/Z. Clearly, fractures with
different stiffnesses will have different characteristic frequencies.

The formulation of the transmission coefficient given by Eq. (13) assumes a uniform
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where
wpe
e (14)

-

w is the angular frequency, p is the density of the rock, and c is the phase velocity of the
rock. The values used to calculate y for compressional and shear waves are listed in Table
9 2. The transmission coefficient is a function of the frequency and of the specific stiffness
of the fracture. As the stiffness of the fracture increases, the amount of energy transmitted
across the fracture increases.

Because fluid flow through the fracture is related to the stiffness of the fracture
(Eq. 12), fluid flow through the fracture is related to the tran?;m?ssion tl:ur:fﬁ-_:icm of a wave
propagated across a fracture. Equation (15) gives the form of this relationship by substitut-
ing Eq. (12) into Equation (13).

l

\/1 T
a

To fit the experimentally observed relationships of fluid ow as a function of I-‘-wulw
amplitude and S-wave amplitude, the mode! values of b_and o, (Table 9.1) are u§ed with
the values of w, p, and c listed in Table 9.2. The model results were calculated using Egs.
6, 8, and 15. :

In Figures 9.19 and 9.20, the fluid-flow-amplitude dependence for all of thfe samples 15
compared to the results from the stratified percolation model and the dnsplaccm-:m_
discontinuity model. Both the experimental data and the model resuits show a trend of
decreasing fluid flow with an increase in the P-wave amplitude and S-wave amplitude. ’Fu
obtain the best fit to the experimental results, it is necessary to increase the value of C,. This
is justified because dynamic stiffnesses are larger than static stiffnesses ( Jaeger and C‘ook.
1979). The model curves in Figs. 9.19 and 9.20 assume C, = 366 x 1012 for compressional
waves and C, = 114 x 10'2 for shear waves. Based only on the geometry of the voids in the
fracture, the models produce a good fit to the experimental data.

The correlation between fluid flow and fracture stiffness makes it possible to d_c_ter-
mine the hydraulic properties of a rock mass from seismic amplitudes and velocities.
Fractures with a high apparent attenuation allow more fluid to flow than fractures lh':il
transmit more of the wave energy. For a constant stress, fractures with different hydraulic
properties can be identified by their seismic signature. : ,

The observed universal behavior of the experimental data leads to the interesting
concept that data from a single core sample with a fracture contains all the information about

n = (15)

TABLE 9.2. Parameters for Modeling
Wave Propagation across a Fracture

Density 2600 kg/m?
Compressional wave velocity 5600 mis
Shear wave velocity 3B00 mv's
Frequency for shear wave 0.36 MHz

Frequency for compressional wave 0.46 MHz
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stiffness for the fracture. Real fractures, however, are strongly inhomogeneous and have
complicated geometries. The asperities. points of contact. and apertures in a fracture
consist of many different sizes and are distributed inhomogeneously over the interface. The
spatial distribution and aperture of the voids control the stiffness of the fracture, and
different regions of the fracture will have different stiffnesses. These local stiffnesses cach
define a different characteristic frequency . Some parts of the fracture will pass higher
frequencies, while other parts will pass lower frequencies. This distribution of stffnesses
must be taken into account in the analysis of transmission of seismic waves across real
fractures.

The following approximations are made to average over the transmission coefficients
of different parts of a fracture: (1), the local transmission coefficient depends on the local
static stiffness; and (2), regions of different stiffness transmit independently. The first
approximately assumes that the local stiffness is defined as an average over length scales
comparable to the wavelength. This assumption is valid if the asperity separation is smaller
than the wavelength. Typical wavelengths for 10 MHz are 0.6 mm. compared to typical
asperity separations of 0.5 mm (Brown et al.. 1986) for some fractures. Therefore the first
approximation is valid tor frequencies below 10 MHz. Also implicit in the first approxima-
tion is a local stiffness that is varying slowly with respect to d wavelength. Otherwise, the
transmitted signal will experience attenuation by scattering. This additional assumption is
plausible because real fracture asperity distributions arc spatially correlated, meaning that
there exist extended regions of similar asperity heights. The second approximation assumes
that the total transmission of seismic wave amplitude is the incoherent sum of the
transmitted amplitudes of individual regions. With this assumption, the forward transmis-
sion amplitude is calculated explicitly.

The transmission of seismic amplitudes is averaged over the fracture surface to cal-
culate dynamic fracture stiffness. An integral-kernel equation is used to express the
averaging process

s

Tik(w).w) = | [ T(x(x.y)w)dxdy (16)
00

where L is the length of a side of the fracture and the kernel T(k(x,y),w) is given by Eq. (16)
with k replaced by the spatially varying stiffness x(x,y). This expression implicitly defines
a frequency-dependent fracture stiffness k(w) through

[T(x(w).)| = {———-—mz ‘ (17
! o J!:".K(uﬂl
and is easily inverted to yield
ZI
k(@) = _ogll - (18)
2V1 - T2

where |T] is the magnitude of the averaged transmission coefficient given by Eq. (13).
9.7.2.2. Modeling of Frequency-Dependent Fracture Stiffness. The frequency de-
pendence of fracture stiffness is investigated for stiffness distributions k(x.y) from the
stratified continuum percolation model (Nolte er al., 1989; Nolte and Pyrak-Nolte, 1991).
For uniform and bimodal distributions of fracture stiffness see Pyrak-Nolte and Nolte
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(1992): In the stratified fracture model, the local stiffness is assumed to vary inversely with
the height of the asperities b(x,y), i.e., k(x,y) = a/b(x,y). This assumption is not crucial
but roughly reflects stress-displacement behavior for fractures. The dynamic fracture stiff:
n?ss‘frm:n Eq (18) is shown in Fig. 9.21 as a function of frequency for the stiffness
distribution given by the stratified continuum percolation model for an & = 1.0 x 1012, A
strong dependence of dynamic stiffness on frequency is observed for the stratified fractilre
model. The. dyparnic stiffness is equal to static fracture stiffness at low frequencies, but
increases with increasing frequency. The increase in dynamic stiffness with frcqucnc;f for
the stratified aperture distribution reflects the change in the subset of stiffnesses sampled
Larger stiffnesses are sampled for higher frequencies. +
9.7.2.3. Experimental Evidence of Frequency-Dependent Stiffness. To test this
model for frequency-dependent fracture stiffness, compressional wave amplitude data are
used from Pyrak-Nolte er al. (1990). Compressional waves with 1 MHz center frequency
were propagated normal to the fracture plane. The experimental spectra in Fig. 9.22 show
the trnnsmiuefi amplitude as a function of frequency for a fracture. The experimental data
were fit by simulating the fracture aperture distribution with the stratified percolation
mudf.:l. In the model, fracture apertures at different stresses are modeled by stratified
c.unllnuum percolation patterns with 5 tiers with two adjustable parameters: the points per
tier (ppt) and . A ppt value of 8 was used for the data under 20 MPa stress, and a value of 9

‘was used for the data under 10 MPa. The apertures from the stratified percolation simulation

are converted into specific stiffness values with a = 1.2 x 10" (fo

: : r 10 MPA) and an &« =
1.68 x 10" (for 20 MPa). The fits to the data are shown as the solid lines on Fig. 9.22. The
fits are nearly perfect. In earlier work based on a uniform stiffness Pyrak-Nolte ef al. (1990)
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FIGURE 9.22. Transmitted compressional wave amplitudes as functions of frequency. The data points represent
compressional wave spectral data from experiments on a fracture in granite (sample E30) subjected to stresses ol 10
and 20 MPa. The solid curves represent fits using the stratified model and the frequency-dependent stiffness.

fit a frequency-independent stiffness of 11 x 10'2 Pa/m for a stress of 10 MPa and a stiffness
of 24 x 102 Pa/m for a stress of 20 Mpa. The frequency-dependent stiffness provides a
significantly better fit to the data. The resulting dynamic stiffnesses from Eq. ( 18) are shown
in Fig. 9.23 as functions of frequency. The values of uniform stiffness from Pyrak-Nolte
eral. (1990) are the average of the stiffnesses predicted with the dynamic frequency model.
The use of the stratified percolation model was motivated by previous success of the model.
However, other possible aperture distributions cannot be ruled out based on the fit. The
point was simply to demonstrate a plausible origin of the frequency-dependent fracture
stiffness.

From this application of the stratified continuum percolation model. we have found
that the frequency-dependent nature of fracture specific stiffness may be a simple conse-
quence of the subset of apertures sampled by a given frequency. No additional dynamical
effects need be invoked. However, it must be expressed that this is only one possible
mechanism for a frequency-dependent fracture stiffness. It does not rule out additional
dynamical effects such as locking or friction. Another interesting aspect of this discussion is
the implicit relationship to scaling and fractals. For fractal or multifractal fracture to-
pologies, there are no intrinsic length scales. This allows the wavelength of the elastic wave
to define the length scale for the dynamic response of the system.

9.8. CONCLUSIONS

The scale-invariance of Aow paths and contact areas in laboratory samples of rock
fractures led us heuristically to propose a stratified continuum percolation model based on a
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hierarchical construction to simulate the topology of the void spaces between fracture
surfaces. This construction has replicated many of the features of real fractures, such as
correlated void spaces, characteristic log-normal aperture distributions, nonlinear stress-
displacement behavior, and the strong dependence of flow rates on far field displacements.
The attraction of the stratified percolation model is two-fold. First, it captures the essential
properties of the void space and contact area that result from the genesis and subsequent
evolution of fractures in rock. Second, it offers the prospect, through scale invariance, of
translating the results of a study on a laboratory scale to the field scale.

Changes in fracture aperture as a result of changes in effective stress have been shown
experimentally to have a profound and complex effect on fluid flow. Clearly, this derives
from changes in void space topology brought about by deformation of the rock in the
vicinity of the voids. In principle, for given mechanical properties of the rock, it is pos-
sible to calculate the changes in void geometry as a result of effective stress. In practice,
such a calculation would be both computationally intensive and require an unreasonably
detailed knowledge of the void geometry. Again, the question arises of whether or not a
more simple model might capture the essential features of the phenomena involved. The
essential process involved in the deformation is that the complex stress redistribution
adjacent to the voids as a result of this deformation does not involve changes in the net
volume of the rock in this region. Therefore. we chose to model changes in void aperture so
that the volume of rock would be conserved. The volumetric change in void space is
distributed across the whole projected area of the fracture to relate it to changes in measured
fracture aperture. The final essential abstraction in our discussion of the dependence of flow
on fracture void geometry derives from studies of percolation in networks of highly
inhomogeneous conductances. The simple result of percolation theory is that resistance to
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flow is dominated by the critical neck, the smallest aperture along the critical path of
highest aperture through the void space. : ; e

¥ Perhaps the most important conclusion in this article is our identification of a d:regt
relationship between seismic attenuation by a fracture and 1ts hydra.u]ic properties. T_hm
result has immediate potential for characterizing the hydraulic properuies of gcu[e_chmcul
sites using noninvasive seismic technigues. We were able to explain the trends using our
fracture void geometry simulated by a hierarchical cascade. We were also able to explain a
frequency-dependent fracture specific stiffness that is caused by sampling subsets of
fracture stiffness. . ;

Though the simple approach described here has been effective in smmiulmg the

behavior of some natural fractures in laboratory experiments, it remains to be established
whether or not it is sufficiently effective and robust to describe a wider range of laboratory
experiments and to form the basis for extending this work to the ﬁc}d. Clearly. the latter
requires measurements, on a field scale. of the geometry of the void spaces and.nh:nntact.
areas between fracture surfaces, of fluid flow through such fractures, and of the effects ol
stress or pore pressure on flow. Hopefully. it will be possible to characterize fra-:lturcs _in the
field in such a way as to enable the properties of these fractures to be analyzed with a simple
model described above.
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