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The Fractal Geometry of Flow Paths in Natural Fractures
in Rock and the Approach to Percolation

D. D. NoLTE!, L. J. PYRAK-NoLTE? and N. G. W. Cook?

Abstract—The distributions of contact areas in single, natural fractures in quartz monzonite (Stripa
granite) are found to have fractal dimensions which decrease from D = 2.00 to values near D =196 as
stress normal 1o the fractures is increased from 3 MPa up to 85 MPa. The effect of stress on fluid flow
is studied in the same samples. Fluid transport through a fracture depends on two properties of the
fracture void space geometry: the void aperture; and the tortuosity of the flow paths, determined through
the distribution of contact area. Each of these quantities change under stress and contribute to changes
observed in the flow rate. A general flow law is presented which separates these different effects. The
effects of tortuosity on flow are largely governed by the proximity of the flow path distribution to a
percolation threshold. A fractal model of correlated continuum percolation is presented which quantita-
tively reproduces the flow path geometries. The fractal dimension in this model is fit to the measured
fractal dimensions of the flow systems to determine how far the flow systems are above the percolation
threshold.
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1. Introduction

Whether for the recovery of oil, or for the isolation of nuclear or toxic wastes,
it is essential to be able to predict the rates of flow and the flow patterns of fluids
in bulk rock. Substantial research has been carried out on flow through porous
media, for which permeability constants are well defined. However, the case for
fractured rock is not nearly as well understood. In addition to the usually isotropic
permeability of the bulk rock, directional permeability must also be assigned
because of the flow through fracture networks (ROBINSON, 1983). Lately, there has
been special interest in fracture networks caused by the need for nuclear waste
isolation, especially for the case of isolation in impermeable, crystalline rock in
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Figure 11
Approximate total area fraction as a function of AFpT for a | tiered, 3-ticred, and 5-tiered stratified
continuum percolation plot. The total area fraction is clearly a function of the number of tiers (resolution).

area fraction is the variable parameter which defines the percolation threshold and
the percolation exponents. However, the total area fraction of the stratified plots is
a function of the number of tiers (or the cut-off), and therefore the total area
fraction is not uniquely defined. For this reason, the total area fraction of a fractal
percolation model cannot be used as the critical parameter. The fractal dimension
is well defined but the percolation threshold again does not occur at a uniquely
defined fractal dimension: the fractal dimension can be used as an indicator of the
nearness to threshold, but cannot be used quantitatively. On the other hand, the
computer simulations do indicate that all the systems (for varying fractal dimension
and scale factor b) have a threshold at AFpT =~ 0.7, which 1s the percolation
threshold of the standard model. A well defined percolation threshold can therefore
be identified for the stratified percolation simulations which use AFpT as an input
parameter.

Defining the percolation threshold is of great importance for helping understand
the flow properties of a random system. Near the threshold, the flow equation
should be

Q Fs Q-“f: =C- (dmax o d)m ) (AFPT e 0"‘?)I (8)

where ¢ is the flow percolation exponent. Extensive Monte Carlo renormalization
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Questions about the effect of changing contact area and increasing tortuosity on
fluid flow fall under the realm of percolation theory. This theory takes as its input
the results of the topography of the flow paths, including both aperture and contact
area distributions. The main goal of this paper is to directly image the changing
contact area under applied stress and extract the effect of changing contact area
alone on the fluid flow rate by relying on the results of two-dimensional percolation
theory. In Section 2, we present direct measurements of flow path patterns in
natural fractures. We also provide data of the fluid flow rate through the fracture
as a function of the fracture closure in order to correlate flow rate with the flow
path patterns. The flow path geometry is defined through the distribution of contact
area, which is describable by fractal dimensions, discussed in Section 3. The flow
area fractions and fractal dimensions are used to construct a two-dimensional
correlated continuum-percolation model in Section 4.

2. Experimental Data

We studied the deformation and flow properties of fractures in three separate
core sections of quartz monzonite (Stripa granite (OLKIEWICZ et al., 1979)) which
were 52 mm in diameter by 77 mm in height. These cores were obtained from
extensometer holes from a waste isolation experiment in a drift in Stripa, Sweden,
340 meters below the surface. The fractures are orthogonal to the core axis. The
core samples are labled E30, E32, and E35, corresponding to the extensometer holes
from which the cores were derived. The closure of the fractures under applied stress
was measured by linear variable differential transformers (LVDT’s). The mechani-
cal deformation data for the samples are given in Figure 1. The stiffnesses of the
fractures are defined from the inverse tangents of the deformation curves. At
20 MPa normal stress, the stiffnesses are: E35, 3 x 10'2 Pa/m; E30, 7 x 10'?> Pa/m;
and E32, 15 x 10'2 Pa/m. The stiff fracture in E32 deforms to a value of 4 =5.5
microns, while the compliant fracture in E30 deforms considerably more to 4 =9.5
microns at normal stresses of 85 MPa. The fluid flow data through the fractures as
a function of the fracture closure are presented in Figure 2. There is a clear
correlation between fracture stiffness and fluid flow in that the stiffer fractures
support less flow. Under even the highest stresses, there remains an irreducible flow,
denoted as Q.. By analogy with the cubic law described by eq. (1), we fit the flow
data to the equation

Q 5 Q.c o C'(brnc-'.:h)‘.ﬂ (2)

where b4, = (dyax — d) is called the mechanical aperture. The quantity d is the
measured closure for a given applied load, and » is the flow exponent. The
maximum mechanical closure of the fracture is d,,,,, which can be understood as the
average aperture which results when there are only three points of contact between
the two fracture surfaces at zero normal load. The values for d,,, are fit from the
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Figure 1
Mechanical closures of three fractures as functions of applied stress. The stiffnesses of the fractures are
equal to the tangent slope of the deformation curves.
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Figure 2
Hydraulic flow per unit head as a function of mechanical fracture closure for the three fractures. The
compliant fractures support greater flow than the stiff fracture, as expected. The irreducible flow, Q.15
that flow which remains when the fracture is hydraulically closed. The solid lines fit eq. (2) to the data
for the given exponents, n. All exponents are much greater than cubic.
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data: for E35d,,.. =46 microns; for E30 d,,, = 12.5 microns; and for E32d,,,.=
6.6 microns. The quantity Q.. is the irreducible flow, defined as that flow which
remains when the maximum closure d,,,, has been reached. We consider this flow
to result from permanent conduits carved in the fracture surface which are virtually
unaffected by applied stress. This flow therefore occurs in parallel with the flow
occurring over the fracture surfaces. Even parallel plates could have irreducible flow
if there were small interconnected grooves in the plate surfaces. Experimental data
for flow between ground quartz surfaces under high stress does, in fact, show this
(ENGELDER and ScHoLz, 1981).

Although eq. (2) is reminiscent of the cubic law, there is no reason, a priori, to
believe that the exponent n should have a value near 3. Part of the difficulty in
applying the cubic law to fracture lies in the problem of how to define an
appropriate average aperture. The mechanical aperture defined above for the
mechanical closure of a fracture under applied stress is likely to differ from an
average hydraulic aperture defined by a weighted average over directly measured
aperture profiles. In fact, mechanical aperture may not even be linearly proportional
to hydraulic aperture (PYRAK-NOLTE et al., 1987), and this could influence the
exponent n measured for mechanical closure. Despite these difficulties, we empha-
size and use mechanical aperture over aperture distributions obtained from profile
or thin-section measurements because of the ease with which this data is obtained
(requiring only a single deformation experiment compared to multiple profiles or
thin-sections). Furthermore, the mechanical closure of a fracture is measured
unambiguously, while aperture profiles require complicated statistical analyses in
order to predict their effect on fluid flow. The use of the empirical eq. (1) should
therefore simplify the process of fracture characterization, and speed up the
prediction of flow properties in the field based on core samples measured in the
laboratory. What remains is to explain the exponent n. The values of # in eq. (2),
shown for different fractures in Figure 2, are found to lie near n ~ 8, much larger
than cubic or even quartic (which holds for flow in a tube). Such strong deviations
from the cubic law imply that the flow properties of these natural fractures must be
heavily influenced by the effects of the flow path topology.

Despite the fact that changes in the contact area as a function of stress can have
a pronounced effect on the flow properties of the fractures, fracture contact area has
been an elusive and very difficult parameter to measure and image. Various indirect
means have been tried previously to observe the contact area (DUNCAN and
HANCOCK, 1966; Iwal, 1976; BANDIS ef al., 1983), with varying degrees of success.
We have used a new technique (PYRAK-NOLTE er al., 1987) developed to make a
direct measurement of the contact area of fractures. This technique involves
injecting molten Wood’s metal into fractures which are initially evacuated. During
the injection, stress is maintained on the fracture through a servo-controlled,
stiff-testing machine. The pore pressure of the molten metal was maintained at
2 MPa through the injection and cooling of the cast in the fracture. The effective
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stress on the fracture is calculated by subtracting this confining pressure from the
applied load. After the metal cools, the fracture is taken apart, revealing a direct
metal cast of the fracture void space. The metal adheres to either one or the other
surface of the fracture, tearing along lines of contact between the rock surfaces. It
was observed that the metal on one surface does not overlap with the metal on the
other at the same location. The damage inflicted on the metal cast by tearing was
observed under an electron scanning microscope to be limited to only several
microns at most. In fact, SEM micrographs of the separate surfaces, probing
sections 0.25 mm on a side, could be superposed with high accuracy, fitting together
with minimal overlaps or gaps between the metal patterns on the two surfaces.
Images of the metal casts of the void spaces for E30 and E32 under 3 MPa,
33 MPa, and 85 MPa are shown in Figure 3. A computer enhanced composite of

Approwmate Scale

Figure 3.1
Contact area composite images for sample E30 for (a) 3 MPa, (b) 33 MPa, and (c) 85 MPa. The black
portion is the flow path geometry; the white areas are the contact area. The resolution of the patterns
is about 3% of the diameter.
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Figure 3.2
Contacl area composite images for sample E32 for (a) 3 MPa, (b) 33 MPa, and (c) 85 MPa.

scanning electron micrographs of the two fracture surfaces of sample E30 under
85 MPa at 25 times magnification is shown in Figure 4. This figure represents an
area 2mm by 4 mm of the fracture. The error in this figure, caused by possible
misalignment of the SEM micrographs or damage to the metal cast, is less than 1%.
The hydraulic void space is black. while the contact area is white. As the stress is
increased, the amount of contact area increases, producing barriers to flow which
force the flow paths to become more tortuous. Large, single areas of contact are
observable for the compliant fracture in E30, but are absent for the stiff fracture in
E32. There is an important connection between the observed contact area and the
surface tension of the injected metal. Specifically, a fluid with a given surface tension
and at a given confining pressure can only enter into apertures larger than a certain
size. This, in fact, is the principle on which mercury porisometry is based: by
injecting mercury into porous or fractured media under different confining pressure,
one can measure pore and void space volume. Calculations for molten Wood’s
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XBL B611-4760
Figure 4
A computer enhanced composite image of SEM micrographs of E30 at 85 MPa under 25 times
magnification. The area of the figure is 2 mm by 4 mm. The fractal dimension of this section is D = 1.93.

metal predict that the metal, under 2 MPa confining pressure, can penetrate
apertures on the size of tenths of a micron. In the SEM micrographs, filaments of
the metal as small as 0.2 microns wide were observed. We consider this to be the
smallest aperture which the metal can penetrate. The ability of the metal to
penetrate small apertures is further borne out by the observation of areas in Figures
3 and 4 which are covered by metal, but which are surrounded entirely by contact
area (at least to the resolution of the figures). This is a good indication that we are
sampling nearly the entire void space of the fracture. The contact area fractions
were measured using a Zeiss image analyzer. The resulting area fractions of void
space are presented in Figure 5 as a function of stress. The error bars on the figure
represent the uncertainties inherent in the image analysis, related to the scaling
properties of the flow paths. In fact, fractal structures (we show later in this paper
that the flow paths are fractal) are not required to have well-defined areas, rather
the areas may depend on the resolution (or lower cut-off) of the pattern. This will
be discussed in more detail later. For our resolution (3% of the diameter for the
large composites), the void area fraction of the stiff fracture approaches a constant
value at fairly low stress, while the void area fraction of the more compliant fracture
continues to decrease up to 85 MPa. The void area fraction of flow of the stiff
fracture is substantially smaller than the area fraction of the compliant fracture
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Figure 5
The flow area fraction as a function of stress for the two samples at the resolution given in Figure 3. The
area fraction is usually one of the few directly measurable parameters which can enter into percolation
theory analysis. For fractal patterns, however, the area fraction may not be uniquely defined.

despite the absence of the large, bulky areas of contact which are present in the
pattern of the compliant fracture. This indicates that the areas of contact of the stiff
fracture are considerably more stretched out and filamentary than the areas of
contact of the compliant fracture. These differences between the two fractures are
likely to be a consequence of the low aspect angles of the void spaces in the stiff
fracture compared to the high aspect angles in the compliant fracture. It is
furthermore important to point out that the stiff fracture has greater contact area
than the compliant fracture, and has correspondingly less flow.

Perhaps the most interesting features of the flow path geometries, and the most
relevant to the flow properties of the fracture, are the distributions and shapes of
the contact areas and flow paths. While the patterns certainly appear random, they
have an unmistakable scaling structure which implies they might be fractal. This
possibility is explored in the next section, and the patterns are, in fact, found to
have fractal dimensions which vary with the applied stress.

3. Fractal Geometry of the Contact Area

There has been strong interest in the ability of fractal geometry to describe many
of the characteristics of seemingly structureless patterns (MANDELBROT, 1983).
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Much of this interest has come after the realization that an impressive number of
random systems exhibit scale invariance, also known as self-similarity; that is,
certain parameters describing the system (or pattern) remain the same regardless of
the scale of magnification. Scale invariance lies at the heart of the notion of fractal
dimension.

For a random pattern to have scale invariance, the distribution of the sizes of
the features which define the pattern must vary as a power law with some scale, b:
P(b) oc b=+ The exponent D is the fractal dimension of the object. As such, the
concept of fractal dimension is simply the consequence of power-law statistics
governing size distributions. Power-law statistics ensure scale invariance. Invariance
under transformation is a powerful and recurring concept in physics describing
widely different phenomena. In many of these phenomena, invariance under scale
transformation offers valuable insight into the physical origins of the phenomena
and often provides for the use of powerful analytic tools for describing their
structure. For instance, the scale invariance of fractal objects allows the analytic
results of renormalization group theory (DoMB and GREEN, 1976; MA, 1973) to be
used.,

In application, real systems rarely possess the same scaling properties for all
scales. Namely, there are scales above or below which the scaling properties change.
These scales are called cut-offs. Often the cut-offs can carry as much information
about the physical processes creating the pattern as the scaling properties of the
patterns. Typically, when a fractal dimension is assigned to a pattern, this dimen-
sion is only valid for scales above a lower cut-off and below an upper cut-off. In
fact, measurement of certain fundamental properties, such as contact area, depends
directly on the cut-offs. Also, the measurement of the fractal dimension can be
influenced by cut-offs when the measurement scale approaches the cut-off scale. For
these reasons, particular attention must be paid to the limits of the regimes of
scaling when attempting to define the physical properties of a pattern.

With the power of fractal description comes considerable complexity. Fractal
objects take on a tremendous variety of forms, and sometimes several fractal
dimensions can be defined for the same object. For example, a random percolation
network (in two dimensions) at its critical percolation threshold has a fractal
dimension of D = 1.89 (AHARONY, 1984; STANLEY, 1977). At the same time, the
fractal dimension of the backbone of the percolating cluster (the backbone is
defined as that part of the cluster which carries flow, i.e., dead-ends are excluded)
is D = 1.59 (AHARONY, 1984; SCHLIFER et al., 1979). Similarly, in the case of the
fracture flow paths, many fractal models can be used to describe the void-space
topology. Because the main goal of this paper is to understand the effects of the
two-dimensional contact area on flow through fractures, we only consider two-di-
mensional fractal models, neglecting for the moment possible fractal models for
aperture distributions. Although several different models could be considered, we
find one fractal model particularly relevant and easy to relate to the observed flow
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path patterns: the fracture contact areas can be viewed as random holes, or tremas
(MANDELBROT, 1983), which puncture a conductive sheet. Therefore the flow paths
can be modeled as lying on a random Sierpinski carpet.

A random Sierpinski carpet, shown in Figure 6, is constructed iteratively by
removing successively smaller squares (or tremas) from the original black square. In
the carpet shown, 8 out of 9 sub-squares, of scale b = 1/3, remain at each level. This
gives the carpet the approximate fractal dimension D = In 8/In 3 = 1.89. The fractal
dimension of a Sierpinski carpet can be measured, in principle, by counting the
number of tremas (single areas of contact) with area, a, larger than some set value,
A. In practice, the counting is carried out by superposing grids with successively
smaller spacings and counting the number of grid squares at each level which are
occluded more than 50% by a single trema. The fractal dimensions are derived from
the slope of In(h?> — N) vs. In b, where b is the scale size of the grid and N is the
number of squares occluded for that scale b. The quantity (b*> — N) is the number
of grid squares which remain uncut by tremas at this scale size. The fractal
dimensions for the large composites in Figure 3 of samples E30 and E32 are shown
in Table 1. The largest grid size was 32 mm, corresponding to the scale b = 1. The
resolution of this analysis for these large composites is | mm, corresponding to
scale b =32, Upper and lower cut-offs are defined as lengths above and below
which the pattern ceases to scale, and therefore appears homogeneous. SEM
micrographs of the flow patterns under 200 times magnification show a clear

XBL BG11-4762

Figure 6
A random Sierpinski Carpet with the approximate fractal dimension D = In 8/ln 3 = 1.89. In the limit of
true scaling, the black portion vanishes.
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Table 1

Measurement of fractal dimension of flow area. Area fraction (b> — N) as a function of scale size*

E30 E32

Scale
Iib 3 MPa 33 MPa 85 MPa 3 MPa 33 MPa 85 MPa
1 sample size 1 1 1 1 1 1
12 4 4 4 4 4 4
1/4 cut-off 16 14 14 16 16 16
1/8 64 59 59 64 59 60
1/16 253 233 225 255 234 229
1/32 resolution 1016 922 894 1014 916 925

= 1.996 1.975 1.964 1.997 1.955 1.955 + 0.01
* Scale b = | corresponds to 32 mm.

change in the void-space morphology. This is not surprising because at these
length scales the surface tension of the injected metal prevents the metal from
penetrating void spaces smaller than 0.2 um. Also, the grain size of the crystalline
quartz monzonite is comparable in size to, or larger than, these length scales.
Therefore the lower cut-off of the flow pattern may be expected to lie some-
what above 5 microns. Similarly, an upper, cut-off occurs at sizes comparable
to the size of the sample. This change in scaling behavior can be seen in Table
I to occur at a grid size of 4mm. For grid sizes larger than this, the
pattern appears homogeneous and has the corresponding fractal dimension D = 2.
For grid sizes smaller than this, the pattern scales with a characteristic fractal
dimension less than 2. The change in scaling between 4 mm and 8 mm is in
agreement with work that has found correlation lengths on the order of millime-
ters between the two surfaces of a natural fracture (BROWN er al., 1986). This
upper cut-off may be an artifact of the experiment related to sample size. To test
this, the scaling properties of metal injection in larger core samples should be
investigated.

The fractal dimensions of the samples (in the regime in which they scale) are
plotted in Figure 7 as a function of stress. The fractal dimensions clearly decrease
with increasing stress, and appear to approach a value near D = 1.95. It is likely
that the flowpath geometry in the fractures is only fractal to lowest order, and that
deviations from true scaling behavior may be anticipated. As a check of the fractal
dimensions calculated for the large composites (down to 1 mm length scale), the
fractal dimension was calculated for the SEM micrograph shown in Figure 4 of
Sample E30 at 85 MPa for 25 times magnification. We investigated a section of this
micrograph 2 mm on a side with a smallest resolution of 60 microns. These sizes are
substantially below the upper cut-off of 4 mm and therefore the fractal dimension
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at this scale should not be influenced by the cut-off. The results of the measurement
are shown in Table 2. The fractal dimension of this section was measured to be
D = 1.93. This value is smaller than the value D =1.96 measured for the same
sample at lower resolution. This error may be due to simple fluctuations from site
to site on the fracture, but may also be an indication that the fractal dimensions
calculated for the large composites are artificially increased by their proximity to the

Table 2

Measurement of fractal dimension of SEM micrograph.

Area fraction as a function of scale size*

Scale

1/h (> —N)
1 1
1/2 3
1/4 13
1/8 50
1/16 193
1/32 741
D= 1.93 +0.01

* Scale b = | corresponds to 2 mm.
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upper cut-off. However, the deviation is small, and to lowest order the flow pattern
does appear to scale.

Fluid flow in a single fracture has a complicated topology imbedded in three
dimensions. Any attempt to fully understand the flow properties of this topology
must therefore be based on fully three-dimensional models. While three-dimensional
information concerning the fracture surface may be obtainable through stereo
projection or profilometer measurements, currently no theory (other than numerical
computation) is available which can use such information. Therefore attempts to
define this topology must resort to projections onto lower dimensions. For instance,
our flow path data is the 2-d projection of this 3-d topology, while the effects of
changing aperture are contained in measurements of 1-d displacements across the
fracture. The simplest model which establishes the flow process in three dimensions
multiplies the 2-d flow area by the 1-d average aperture. This approximation is
equivalent to combining 2-d percolation theory with the cubic law. Such a model
must be considered as incomplete. For example, the flow-path data is presented as
a binary process in which regions either support flow or not. In fact, the flow
constitutes a continuum, and the flow area fraction is a function of the threshold.
In our experiment, that threshold is set ultimately by the surface tension of the
injected molten metal. In addition, the assumption of an average aperture can
grossly oversimplify the effects of changing aperture distributions. Changes in the
fracture aperture, even at relatively low stresses, can dramatically alter the critical
flows paths (defined as those paths which carry the bulk of the flow), changing the
flow substantially more than would be expected for the case of flow between parallel
plates. Despite these difficulties, the simple model provides a starting point for
deriving a general flow equation whose parameters can be established empirically.
To begin, it is necessary to separate the two-dimensional flow properties from the
effects of changing aperture. This is achieved in the next section.

4. The Approach to Percolation

In fitting the flow data of Figure 3 to eq. (2), all effects of the changing flow path
topology were implicitly included in the fracture closure. We now consider the
closure and the flow area fraction separately. To do this, we discard for the moment
the flow continuum, and consider only a binary process in which flow is either
present or not. The effects of 2-d flow path topology on flow properties can be
largely understood from percolation theory (KIRKPATRICK, 1973; STAUFFER, 1980;
Essam, 1980). Standard percolation theory is performed on a lattice of sites
connected by bonds. The number of bonds entering a site is called the coordination
of the lattice. The lattices can be two-dimensional or three-dimensional, or have
even larger integer dimensions. The two basic forms of percolation models are
site-percolation and bond-percolation. In site percolation, the sites are occupied
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with a probability, p,.. No flow can occur through an unoccupied site. In bond
percolation, the bonds are occupied with a probability p,, and no flow can occur
through an unoccupied bond. The fundamental property of a random flow system
is the existence of a critical probability, p,, which defines the percolation threshold.
For occupation probabilities below the critical probability, no connected path exists
through the random network and the conductivity is zero. At the percolation
threshold, only a single percolating cluster exists. This percolating cluster has a
fractal dimension of D = 1.89. For values of the occupation probability increasing
above the critical density more connected paths can be found, and the conductivity
increases sharply. The critical probability is a function of the lattice dimension, and
also of the specific model (site vs. bond). The qualitative trend of the conductivity
as a function of density is shown in Figure 8. The power of percolation theory
comes from its ability to define the critical threshold parameter (PIKE and SEAGER,
1974), as well as the functional form of the conductivity near the percolation

0.8 f—

0.6 }—

0.2 p—

Normalized Conductivity

Occupation Probability

Figure 8
Conductivity as a function of the occupation probability for characteristic percolation systems. The
curves represent the behavior for binary aperture distribution (a) and for continuous aperture distribu-
tion (b) (from SEAGER and PIKE, 1974). The region slightly above the percolation threshold, p, . 1s the
percolation regime in which the conductivity is described by a power law with an exponent. 1. The region
near unit occupation probability is the regime of the effective medium approximation (EMA) in which
the conductivity depends lincarly on the occupation probability p.
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threshold. Because of scale invariance at the percolation threshold, the conductivity
slightly above the critical threshold obeys a power-law-relation as a function of
density: o oc (p — p.)', where p is the flow path density, p, is the critical density, and
¢t is the conductivity exponent. As the system moves far above the percolation
threshold, the random flow network can be characterized by applying the effective
medium approximation (EMA) (KIRKPATRICK, 1973) from which a homogeneous
conductivity can be defined for the system. The EMA region of Figure 8 occurs near
unit density.

Under the application of stress, the fracture contact area increases, presenting
barriers to flow and forcing the flow paths to take on increasingly tortuous routes.
We first consider the effective medium approximation and its results for a general
flow law as a function of stress. We then turn to percolation in a continuum in order
to model the flow paths observed empirically. Developing a model which reproduces
the qualitative and quantitative features of the experimentally observed contact areas
should provide insight into the interplay between frature morphology and flow path
geometry. But most importantly, such a model can be used to quantitatively estimate
the critical threshold parameter for flow through the fracture.

A. Effective Medium Approximation and Flow

The effective medium approximation (EMA) was developed to describe flow
through a disordered system (KIRKPATRICK, 1973). In the EMA, the potential field
in a random flow network is broken into two parts: a uniformly decreasing
macroscopic potential field, and a random local field that averages to zero in a
sufficiently large region. The conductance of the medium is set to a constant value
such that the uniform macroscopic field is reproduced. The specific details of how
the conductance varies as barriers to flow are introduced into a flow network
depends on the details of the network. Different results are obtained depending on
whether sites or bonds in a lattice are occupied (site- and bond-percolation), and
depending on the coordination of the underlying lattice (number of connected
neighbors), as well as the dimensionality (two dimensions or three), and on the
details of the aperture distribution (SEAGER and PIKE, 1974). However, regardless
of the network model, all the conductances derived from the EMA vary linearly
with the occupation density (BOTTGER and BRYSKIN, 1985). All that changes from
model to model is the slope of the conductance.

The flow eq. (2) can now be expanded for the case when AF ~ 1 to include the
effect of changing area fraction:

Q—0y=C (dpax—d)" (r- AF+ (1 1)) (3)

where the second term in parentheses is the two-dimensional normalized conduc-
tance which depends linearly on the occupation probability (total flow area
fraction, AF) with the slope r. The quantity (1 —r) is the y-intercept, C is an
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arbitrary constant, and Q. is the irreducible flow. The physical content of the
above equation lies mostly in the exponent, m, and in the slope, r. We have
insufficient data to define the functional form of the flow area fraction in order to
fit either of these parameters accurately. However, the overall effect of including the
area fraction in eq. (3) is to reduce the values of the exponents m from the values
of n cited before. Rough estimates of m, however, indicate that the exponents are
only reduced from n = 8 in eq. (2) to m =7 in the above equation. In fact, the
effective medium theory neglects the true three-dimensional character of the flow
topology. The large exponents suggest that critical flow paths are changing more
dramatically, even at low stresses, than for flow between parallel plates. In addition,
it is clear from considering the tortuous flow paths in Figure 4 that under the
highest stresses the flow paths must be approaching the percolation threshold.
Therefore to characterize the flow properties of the fractures at all stresses it is
necessary to consider the results of percolation theory.

B. Continuum Percolation

In order to estimate the effects of percolation, it is essential to know the critical
area fraction for percolation. The most realistic percolation model should certainly
be a continuum model (PIKE and SEAGER, 1974; ELAM et al., 1984; PHANI and
DHAR, 1984) because there is no physical basis for assuming an underlying lattice
for the fracture. Continuum percolation is a fairly recent extension of the standard
lattice percolation models, and therefore its properties have not been as extensively
studied. However, continuum percolation is assumed to be in the same universality
class as lattice percolation (VICSEK and KERTESZ, 1981; GAWLINSKI and STANLEY,
1981: BALBERG et al.., 1983), so many of the standard results are expected to hold
for continuum percolation as well.

One possible model for the flow paths in the fractures involves randomly
distributing circles in the plane. The occupied area fraction in this model is (PIKE
and SEAGER, 1974)

AF(N) =1 — exp[ e i:a] 4

where r is the radius of the circles, and Area is the area in which N points are
placed. The quantity in the exponential is simply the mean number of centers that
fall within an area of radius r. The critical area fraction for the onset of percolation
has been determined to be AF. =0.688 (PiKE and SEAGER, 1974), which corre-
sponds to the mean value of 1.14 points per circle of radius r. A percolation plot
near the percolation limit with AF = 0.7 is shown in Figure 9.

Because continuum percolation is assumed to be in the same universality class
as lattice percolation, the mean size of the percolation clusters (correlation length)
is expected to be the same if the occupation probability of lattice percolation is
replaced by the area fraction (ELAM ef al., 1984; GAWLINSKI and STANLEY, 1981).
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Figure 9
A random percolation plof near the percolation limit with area fraction AF = 0.70. The pattern cannol
qualitatively reproduce the aggregated structures of the real flow path data in Figure 4. Specifically, the
fractal dimension of the percolation plot is D = 2.00 regardless of the arca fraction.

The conductivity exponent, 7, defined by ¢ ~(p —p,)', is a different matter. The
conductivity exponent in lattice percolation is the same for both electrical conduc-
tivity and for fluid conductivity because all the bonds have equal apertures. The
accepted value is 1= 1.2 for 2-d (BOTTGER and BRYSKIN, 1985). However in
continuum percolation the flow paths have different apertures, which affects the
flow of electrical and fluid currents differently. These differences were investigated
theoretically by HALPERIN et al. (1985) for a Swiss-cheese model in which circular
holes were randomly punched in a two-dimensional conductive sheet. They found a
substantial increase in the value of ¢ for fluid flow over the value from lattice
percolation. This was attributed to the cubic dependence of fluid flow on aperture
which caused the narrow flow necks to dominate the fluid flow properties. The
values of t were found to be model dependent, but the new estimates of  for fluid
flow in a two-dimensional continuum ranged from r ~ 1.7 to 2.7.

This critical exponent for flow could be used to model the flow for values of high
stress. However, several deficiencies exist in the random continuum percolation
model for the flow paths through a natural fracture. At the highest stress, the area
fractions of E30 and E32 are 0.69 and 0.59, respectively. From the random
continuum percolation model the critical area fraction is 0.68 which would imply
that E30 just barely percolates, while E32 is unable to support flow. Yet a cursory
inspection of the flow paths shows that substantial flow is present at these values of
area fraction. In addition, the random percolation plot of Figure 9 cannot qualita-
tively reproduce the large areas of contact in sample E30. Finally. for random



Vol. 131, 1989 Fractal Geometry of Flow Paths in Fractures 129

percolation, the fractal dimension of the entire pattern (percolating as well as
nonpercolating clusters) is equal to 2.00 (only the single percolating cluster at
threshold has a fractal dimension D = 1.89). However, we have already demon-
strated that the complete flow path patterns have fractal dimensions at all values of
stress.

C. Stratified Continuum Percolation

An improved continuum percolation model can be constructed by considering
the auto-correlation function of the percolation plots. For random percolation, if a
given site is occupied, the probability that a site which is a distance R away is also
occupied is independent of R. From an inspection of the contact areas of the
fractures, however, it is apparent that sites of contact have a high probability of
being immediately surrounded by other sites of contact. In other words, the contact
area is self- or auto-correlated. Correlation and fractal dimension are directly
related. The auto-correlation function of a distribution f(r) is defined by

F(R) = Jf’(r)_f"(r + Rydr (3

where F(R) is the probablity that a feature of f(r) present at site  is still present at
site ¥ + R. If f(r) represents a power-law probability distribution, then the distribu-
tion is fractal, and its auto-correlation function varies as F(R) ~ R™"™, where
m = E — D, and E is the Euclidean dimension. For the random continuum model,
the auto-correlation function is a constant, which gives a fractal dimension
D = 2.00. Therefore, a better model for the flow paths through the fractures should
be a continuum percolation model that possesses correlations. Aspects of correla-
tions in percolation models have been considered for nearly as long as percolation
theory itself (PIKE and SEAGER, 1974). But the assumed interactions have been
short-ranged, extending only to the first few nearest neighbors (KLEIN, 1982;
TuTtHILL and KLEIN, 1983). The correlation functions of these models do vary with
R, but they do not scale (except at the critical threshold), which is required for the
models to be fractal.

There are several ways to introduce correlations into percolation models. One
approach transforms an originally random distribution of sites into a new plot
according to defined rules that act to clump the occupied points. Different transfor-
mation rules produce different correlation functions, and the rules can be adjusted
to fit the empirical data. However, this procedure is not easily implemented for a
continuum model, and the properties of the resulting plots have no obvious
connection to the properties of the random model. We choose a different approach
which produces percolation plots that scale with adjustable fractal dimensions, but
which preserves some of the properties of the standard continuum percolation
model. This percolation model is a hybrid between a Sierpinski carpet and the
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random percolation plot, and is constructed iteratively, with the standard continu-
um construction applied at each iteration. The procedure begins by randomly
distributing N sites within a given square region, called a tier. Each site defines the
center of a new tier which is smaller, by a scale factor b, than the parent tier. Within
cach of the new, smaller tiers, N points are randomly distributed which define the
centers of yet new tiers that are again reduced in size by a factor of b from the
immediately preceding tier. The procedure continues for as many iterations as is
necessary, or possible, within the resolution of the graphics. At the last iteration, the
squares of size 1/b" are finally plotted, where n is the number of tiers. This model
is a stratified continuum percolation model.

The fractal dimension of the pattern is estimated by considering the area
fraction at each stage. Because the distributions are allowed to overlap, double
counting must be avoided in the calculation of the area fraction. Starting with a
given area fraction per tier, AFpT = AF(N) (defined in eq. (4)), the fractal
dimension is approximately

_In[AFpT + (1 — AFpTY(AFpT)’] e

il In[b] (6)

In the absence of overlap, the fractal dimension would be D =2+ In[AFpT]/In[b],
but the presence of overlap increases the apparent area fraction per tier, which is
reflected by the second term in the numerator of eq. (6). The overlap fraction per
tier is AFO = AF(N)*AF(N — 1) ~ (AFpT)>.

The total area fraction of the stratified percolation plots is not uniquely defined
for a given scale b and AFpT. Instead, it depends on the resolution and the upper
cut-off of the pattern: this is a fundamental property of fractals. For n tiers, the
total area fraction is given approximately by

AF, ~ AFpT[AFpT + (1 — AFpT)(AFpT)*" . (7

The results from eqs. (6) and (7) are plotted in Figures 10 and 11. Monte Carlo
computer simulations were run which measured the actual area fractions and
correlation functions for varying AFpT and b. The estimates of egs. (6) and (7) are
essentially correct up to around four tiers. Deviations of eq. (7) from the measured
area fraction occur for more than four tiers due to errors in counting overlap of
structures on different tiers. Likewise the fractal dimension given in eq. (6) is found
to underestimate the measured values (see eq. (9)).

Fractal stratified percolation plots are shown in Figure 12 with increasing fractal
dimensions. The fractal dimensions of the plots were verified by calculating the
auto-correlation functions using two-dimensional fast Fourier transforms (FFT).
Aliasing in the transforms was ecliminated by zero-padding, which removes the
effects of the artificial periodicity imposed by the FFT algorithm. It is interesting to
compare the real data of Figure 4 to the simulation in Figure 12b, both of which
have similar fractal dimensions: the qualitative match of the flow path patterns is
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Figure 10
Approximate fractal dimensions of stratified continuum percolation models as functions of area fraction
per tier (AFpT) for three values of scale parameter: b =2, b = 5, and b = 10. The percolation threshold
occurs near AFpT = (.7, independent of the resolution (number of tiers).

quite good. Overall, the results of the stratified percolation model match well with
the data of the compliant fracture E30, but do not match as well with the data of
the stiff fracture E32. The area fractions are substantially different, and the large,
bulky areas of contact observed in E30 do not appear in E32. Large areas of contact
are still present in E32, as they must be in order to produce the fractal dimension
of the pattern; however they are drawn out into thin strings and filaments with
coastlines of high fractal dimension. The stratified percolation model that we have
presented tends to produce bulky structures rather than filaments. This feature is
directly related to the lacunarity (MANDELBROT, 1983) of the patterns. Lacunarity
is a qualitative measure of the connectedness of the tremas. Large lacunarity
corresponds to large and bulky tremas as in sample E30, while small lacunarity
corresponds to small and fragmented tremas as in sample E32. Some additional
degree of freedom should therefore be introduced into our model that would
influence the lacunarity of the tremas. We do not attempt to expand the model in
the present work, but feel that the gross features of the flow paths through the
fracture are reasonably well explained.

The percolation properties of the stratified continuum model require some
discussion. The model is based on the standard continuum model, for which the
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Figure 11
Approximate total area fraction as a function of AFpT for a | tiered, 3-ticred, and 5-tiered stratified
continuum percolation plot. The total area fraction is clearly a function of the number of tiers (resolution).

area fraction is the variable parameter which defines the percolation threshold and
the percolation exponents. However, the total area fraction of the stratified plots is
a function of the number of tiers (or the cut-off), and therefore the total area
fraction is not uniquely defined. For this reason, the total area fraction of a fractal
percolation model cannot be used as the critical parameter. The fractal dimension
is well defined but the percolation threshold again does not occur at a uniquely
defined fractal dimension: the fractal dimension can be used as an indicator of the
nearness to threshold, but cannot be used quantitatively. On the other hand, the
computer simulations do indicate that all the systems (for varying fractal dimension
and scale factor b) have a threshold at AFpT =~ 0.7, which 1s the percolation
threshold of the standard model. A well defined percolation threshold can therefore
be identified for the stratified percolation simulations which use AFpT as an input
parameter.

Defining the percolation threshold is of great importance for helping understand
the flow properties of a random system. Near the threshold, the flow equation
should be

Q Fs Q-“f: =C- (dmax o d)m ) (AFPT e 0"‘?)I (8)

where ¢ is the flow percolation exponent. Extensive Monte Carlo renormalization



Vol. 131, 1989 Fractal Geometry of Flow Paths in Fractures 133

NBL 8611-4763

Fig. 12(a) Fig. 12(b)
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Fig. 12(c) Fig. 12(d)
Figure 12
Stratified continuum percolation plots for a succesion of fractal dimensions: (a) 5-tiers, b = 2.4, 7 points
per tier, area fraction per tier at the percolation limit: AFpT =0.70, D = 1.80; (b) 5-tiers, b =2.4, 9
points per tier, AFpT = 0.79, D = 1.94. This pattern should be compared with the real flow path pattern
in Figure 4; (¢) 5-tiers, b = 2.4, 10 points per tier, 4FpT — 0.89, D = 1.97; (d) 2-tiers, b =9, 250 points
per tier, AFpT =0.96, D = 1.99.
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group analysis (REYNOLDS et al., 1980) would be required to accurately determine
the value of the exponent, but arguments of universality between stratified percola-
tion and standard percolation behavior may provide an estimate for the exponent.
From Figure 11 it can be seen that the total area fractions of the stratified plots
depend linearly on the AFpT around the threshold. Therefore the conductivity
exponent of the standard model may carry over unmodified into the stratified
model. As stated earlier. estimates for ¢ in the standard continuum model range
from 1.7 to 2.7 (HALPERIN et al., 1985).

The conductivity of the experimentally measured flow-paths can now be
described semi-quantitatively by finding the values of AFpT for the various frac-
tures and loadings. We can calculate the area fraction per tier by defining a
standard resolution, or cut-off, for both the simulation and the real pattern. For
the given resolution, both the fractal dimension and the total area fraction can
be measured and matched to the results of stratified continuum percolation in
order to determine the AFpT of the measured pattern. Comparing the calculated
AFpT of the real pattern to AFpT, = 0.7 then gives a guantitative measure of
the separation of the real system from the critical percolation threshold. Defining
a set resolution for the patterns is paramount to setting the number of tiers used
in the stratified percolation construction. Due to this imposed cut-off, the pattern
no longer truly scales and measured fractal dimension is larger than the values
predicted by eq. (6). To correct for the finite number of tiers, eq. (6) must
be modified before the AFpT can be derived from the fractal dimension and total
area fraction of the pattern. For n tiers, the measured fractal dimension of the
pattern is

5 (n — DIn[AFpT + (1 — A_FpT}(AJ-pT)_-‘]

() In(b] +2. (9)

In the limit of many tiers, this expression reduces to eq. (6) which is valid for true
scaling. By plotting the fractal dimension in eq. (9) against the total area fraction
in eq. (7) for a given AFpT, we obtain a plot of isobars of constant AFpT. This is
shown in Figure 13 with the data of samples E30 and E32 for various loads. The
isobars are only plotted for n = 1 to n = 5 tiers because that is the range of validity
of egs. (7) and (9) (because of the neglect of higher orders of overlap). For n =1,
there is only one tier, and the fractal dimension D = 2.00 independent of the AFpT.
This is the expected result of standard continuum percolation. Under the highest
stress (85 MPa) the fracture in E30 has AFpT ~ 0.8 + 0.1 while the stiffer fracture
in E32 has AFpT =~ 0.7 + 0.1. This places the fracture in E32 right at the percolation
threshold. and the fracture in E30 within 15% of the threshold. Of course, the
errors in the values of both D and AF for these fractures are reflected in the errors
on AFpT.

For the fracture in E30 at the highest stress, the normalized conductivity from
eq. (8) should be reduced roughly by a factor
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from the maximum conductivity at unit area fraction. Here the exponent, 2.2, is
taken as a probable value for the conductivity exponent, r. This reduction in
conductivity is the result of only considering the changing flow path geometry. At
the same time, the aperture is decreasing, further reducing the flow. We can now
roughly estimate the exponent m in eq. (8) by comparing egs. (8) and (10) with eq.
(2) for which the exponents n ~ 8. For the fracture in E30, these are related by

0. l(bs_ql."lbn)m = {bss,"“bo]s ( 11 )

where the mechanical apertures at 85 MPa and zero load are bys = 3 microns and
ho = 12.5 microns, respectively, and the factor 0.1 is the reduction in flow from
increasing tortuosity from eq. (10). Solving for the exponent in eq. (11) yields
m = 6.4. Therefore, we find that the empirical dependence of flow on large
exponents of the mechanical aperture can be partially explained by explicitly
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Figure 13
Fractal dimension D from eq. (9) correlated against the total area fraction AF from eq. (7). The lines
are contours of constant AFpT and are only plotted for one to five tiers. The fractal dimension for one
tier is always D = 2.00. The data from the metal injection are also plotted.
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considering the effects of increasing tortuosity on flow through fractures, derived
from the principles of percolation theory. However, the dependence of flow on
mechanical aperture alone continues to have exponents larger than cubic, which
indicates that mechanical and hydraulic aperture are related in a nontrivial way.

An explanation of this remaining nontrivial relationship between mechanical
and hydraulic aperture requires a detailed investigation of the specific details of the
aperture distributions in the fracture and of the effect of mechanical deformation on
that distribution (PYRAK-NOLTE et al., 1988). In the presentation of the stratified
continuum model, the AFpT is not assumed to be a physical quantity in a real
system. However, the concept of tiers may in fact be related to the aperture
distribution. Also, the continuous dependence of flow on aperture has until now
been discarded in favor of a binary process in which flow is either present or not.
Even at low stress a percolating critical path must exist which is highly sensitive to
changes in aperture. In this sense, the effects of percolation are present at all
stresses, not only at the highest stress.

Finally, we must state that we do not claim that our fluid flow and contact area
data are universal properties for all natural fractures. Our core samples are
relatively small ( ~ 2 inches in diameter) and our fractures are well registered. These
factors allow us to obtain considerable amounts of contact area and therefore
approach the percolation limit. Larger core samples, or poorly registered fractures
may not produce either the fractal contact area patterns or the extreme flow
exponents that we obtained. More work needs to be undertaken to understand the
detailed effects of core size and the stiffness of the fracture on flow properties.

5. Conclusions

The use of fractal geometry to describe physical patterns has often remained at
the level of simple descriptive geometry, providing little insight into the physical
processes which formed the pattern. The essence of fractal geometry lies in scale
invariance, which seems to be a universal phenomenon in aggregation and fragmen-
tation processes. A clue to understanding this ubiquitous property may be found in
correlation. Microscopic correlations may well translate to scale invariant macro-
scopic geometry. In view of the pronounced interconnection between correlation
and fractal geometry, it is to be expected that many real random flow processes (as
through fractures in rock) should be highly correlated and in fact be fractal. While
random percolation theory was developed primarily because of its simplicity,
correlated percolation should probably be viewed as a more fundamental model of
real percolation processes.

Fluid flow through a fracture in rock is clearly a three-dimensional process of
high geometrical complexity. Significant simplification can be achieved by decou-
pling the two-dimensional effects from the effects of the third, perpendicular
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direction. We have described in this paper how the two-dimensional projection of
the void-space geometries can be obtained by making metal casts of the fracture
under varying stresses. This two-dimensional projection defines a nominal flow path
which can be analyzed using two-dimensional percolation theory. While standard
continuum percolation theory can define the critical area fraction for percolation,
the flow path areas of the natural fractures are found to be fractal, with no well
defined area fraction. A stratified, or correlated, continuum percolation model was
found to give semi-quantitative agreement with the observed flow path geometries.
The critical threshold in this new model was found to be related to the area fraction
covered by the flow path for a given level in the iterative procedure for modelling
the flow path geometry. This area fraction per tier (4FpT) was determined for the
measured flow paths by fitting the total area fraction (at a set resolution) as well as
the fractal dimension of the pattern. For this reason, the fractal dimension becomes
more than a mere descriptive value: it can be used directly to evaluate the physical
behavior of the flow through the natural fracture.
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