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Scaling of fluid flow versus fracture stiffness
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[1] Seismic characterization of fluid flow through fractures
requires a fundamental understanding of the relationship
between the hydraulic and mechanical properties of frac-
tures. A finite-size scaling analysis was performed on frac-
tures with weakly correlated random aperture distributions
to determine the fundamental scaling relationship between
fracture stiffness and fracture fluid flow. From computer
simulations, the dynamic transport exponent, which pro-
vides the power law dependence, was extracted and used to
collapse the flow-stiffness relationships from multiple scales
into a single scaling function. Fracture specific stiffness was
determined to be a surrogate for void area that is tradi-
tionally used in percolation studies. The flow-stiffness scal-
ing function displays two exponentially dependent regions
above and below the transition into the critical regime.
The transition is governed by the stressed flow paths when
the flow path geometry deforms from a sheet-like topol-
ogy to a string-like topology. The resulting hydromechanical
scaling function provides a link between fluid flow and
the seismic response of a fracture. Citation: Petrovitch, C.
L., D. D. Nolte, and L. J. Pyrak-Nolte (2013), Scaling of fluid
flow versus fracture stiffness, Geophys. Res. Lett., 40, 2076–2080,
doi:10.1002/grl.50479.

1. Introduction
[2] A non-intrusive geophysical technique to probe the

hydraulic properties of rock fractures has long been sought
by scientists and engineers. Such a technique would provide
a new method to ascertain the effectiveness of subsurface
projects such as the extraction of drinkable water, produc-
tion of oil and petroleum, installation and monitoring of
subsurface infrastructure, and the storage of anthropogenic
byproducts (CO2, nuclear waste, etc.) in subsurface reser-
voirs. Extensive research has been performed on the labora-
tory scale to examine fluid flow through fractures, fracture
geometry, and deformation under stress as well as the seis-
mic response of fractures. However, one of the fundamental
tasks in geophysics is to relate fracture properties and pro-
cesses at one length scale to properties and processes at other
length scales. For example, in the laboratory, measurements
are performed on fractured rock samples that range in size
from 10–2 to 10–1 m with fracture apertures on the order of
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10–6 to 10–4 m using seismic wavelengths on the order of
10–3 to 10–2 m. Conversely, at field scales, seismic frequen-
cies from 1 Hz to 1 kHz illuminate regions on the order of
103 to 101 m. Thus, the development of seismic methods that
can delineate and characterize the hydraulic properties of
fractures requires a fundamental understanding of the rela-
tionship between the hydraulic and mechanical properties of
fractures and how this relationship scales with the size of the
sampled region.

[3] The ability to relate and scale the hydromechan-
ical properties of fractures requires that both hydraulic
and mechanical processes are controlled at similar length
scales associated with fracture geometry (e.g., size and
spatial distributions of aperture and contact area, surface
roughness, fracture length, etc.). There have been many
attempts to quantify the role of these geometric quantities
with regard to fluid flow and deformation as a function
of stress. For instance, Witherspoon et al. [1980] showed
that the flow rates associated with fractures under nor-
mal load have three distinct behaviors as a function of
stress. At low stresses, flow rates obey the “cubic” law.
However, as normal stress increases, the flow rate devi-
ates from the cubic-law aperture dependence. Deviations
from the cubic law were partially explained by using the
dominant surface roughness wavelength to approximate the
hydraulic aperture [Zimmerman et al., 1990; Zimmerman
and Bodvarsson, 1996]. Alternatively, a correction factor
was constructed from the ratio of the first and second
moments of the aperture distribution [Renshaw, 1995].
While these approaches focused on the void areas across the
fracture plane, the contact area provides another approach.
The fracture was modeled as a system of interacting circular
obstructions confined to a plane [Walsh, 1981]. The analytic
solution for the flow around a circular obstruction was used
to compute the total flow rate through the fracture. This
approach provided a stress-dependent flow rate, but the con-
tact area was assumed to increase linearly with stress [Walsh
and Grosenbaugh, 1979].

[4] It has been shown experimentally that, at high
stresses, the flow exponent deviates from the “cubic” law
due to the deformation of the fracture void geometry. Metal
castings of natural granite fractures were made at stresses as
high as 85 MPa. The castings showed large regions of void
space connected by narrow tortuous channels [Pyrak-Nolte
et al., 1987; Jaeger et al., 2007]. This experiment found
that the large void spaces deformed significantly as the nor-
mal load increased, while narrow channels remained open
because they were supported by adjacent contact area. From
these observations, the authors concluded that once the
narrow paths dominate the fluid flow, the flow becomes
approximately independent of stress. Following this study,
a more unified numerical approach was taken that included
both mechanical deformation and fluid flow [Pyrak-Nolte
and Morris, 2000]. Experimental flow-stiffness data for
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Figure 1. (a) An example of a simulated weakly correlated fracture with an average aperture of 20 microns. The lines
indicate the finite-sized subsamples. (b) Fluid velocity field at 0.6 MPa. (c) The same fracture fluid velocity field at 2.7 MPa
normal load.

fractures that ranged in length from 0.05 m to 0.3 m sug-
gested an empirical relationship between the hydraulic and
mechanical properties that appeared to be controlled by the
geometry of the void spaces and the contact area in the frac-
ture. A strong dependence of flow on stiffness was observed,
but the samples had different aperture distributions and
scale. An outstanding question is whether there exists a scal-
ing relationship between flow and stiffness when appropriate
geometric length scales are taken into consideration.

[5] In this letter, a finite-size scaling approach is pre-
sented that quantifies the scaling relationship between fluid
flow and fracture specific stiffness for single fractures with
weakly correlated random aperture distributions. The scale-
dependence is removed by finding the critical transport
scaling exponent that yields a scaling function.

2. Methods
[6] Fractures with edge lengths that range from 0.0625 to

1 m were simulated to span over an order of magnitude in
length scale. A larger range in scale would be preferred, but
is not computationally feasible at this time. By allowing the
fracture size to vary, the data were expected to display both
critical and effective medium regimes. A fracture is in the
effective medium regime when the scaling of fluid flow can
be described completely through the moments of the aper-
ture distribution. It is in the critical regime when flow paths
are tenuous, and flow is a non-trivial function of the scale
and topology. To quantify these two regimes, percolation
theory uses the void area fraction as the critical variable. In
the critical regime, the flow-stiffness relation can be written
in a finite-size scaling form as

q / L–t/�F[(� – �c)L1/�] (1)

where q, �, �c and L are the flow rate, fracture specific stiff-
ness, critical specific stiffness, and scale, respectively. The
exponents, � and t, are the 2D correlation exponent and
the dynamic flow exponent, respectively. The 2D correla-
tion exponent has a well-known value of 4/3 [Stauffer and
Aharony, 1985], but the flow exponent must be determined
numerically. The function F is possibly a scaling function
that also must be obtained numerically. The critical specific

stiffness is defined as the stiffness of a fracture when the nor-
mal load has reduced the void area fraction to the critical
area percolation threshold. If the sample size is at the infi-
nite limit, flow would reduce to zero at the critical stiffness.
For finite sample sizes, finite-size effects result in non-zero
flow at the critical stiffness. Flow has the form of a power-
law as the stiffness approaches the critical stiffness because
the function F approaches a constant.

[7] Three computational methods were used to study
the flow-stiffness relationship: (1) a numerical approach to
generate aperture-scale (10 to 100 microns) fracture void
geometry for fractures that span over an order of magnitude
in fracture length (0.0625 to 1 m); (2) a combined conjugate-
gradient solver and fast-multipole method for determining
fracture deformation; and (3) a flow network model for
simulating fluid flow, fluid velocity, and fluid pressures
within a fracture. To generate a fracture void geometry, the
fracture plane was defined as a 512 � 512 array of pixels.
Within this array, a “point” represented by 4 � 4 pixels was
randomly added to the array (incrementing aperture by 1).
Each pixel had a transverse scale of 1.95 mm. During ran-
dom placement of the points within the array, points where
allowed to overlap. The number of overlaps for each pixel
within the array was equated to the aperture at that pixel and
each unit of overlap was given a physical size of a micron.
This created a fracture void geometry with transverse cor-
relation lengths approximately equal to 7.8 mm and with
a log-normal aperture distribution [Nolte and Pyrak-Nolte,
1991]. The aperture distributions were used to study the flow
and deformation properties of the initial 512 � 512 aperture
array and then subsectioned (Figure 1) down to 32� 32 sub-
section (or scales from 1, 1/2, 1/4, 1/8, 1/16, and 1/32 m)
to study the effect of scaling on the flow-stiffness relation-
ship. One hundred fractures were simulated at each scale to
form the ensemble average values. The fluid flow calcula-
tions assumed the properties of water with the viscosity of
0.001 Pa s. The elastic properties of granite were assumed
for the bulk rock (i.e., a Poisson ratio of 0.25 and Young’s
modulus of 60 GPa [Jaeger et al., 2007]).

[8] The generated fractures were numerically deformed
under a normal load [Hopkins, 1990]. Each asperity was
modeled as a standing cylinder, and the normal load was

2077



PETROVITCH ET AL.: SCALING FLOW-STIFFNESS

Figure 2. (a) Raw flow-stiffness data, averaged for each scale. (b) A partial data collapse of the flow-stiffness relationship.
The flow rate was scaled by (L/L0)t/�.

applied to an infinite half-space. Both the cylinders and the
half-space were given the same material properties (that
of granite), and both were allowed to deform elastically.
Numerically, this system is represented by a set of linear
equations, with each equation computing the deformation of
a given asperity. The number of equations grows as the con-
tact area of the fracture grows. The method was improved by
iteratively solving the linear system and using the fast mul-
tipole method to speed up the matrix-vector multiplication
[Pyrak-Nolte and Morris, 2000]. The solver was modified to
use periodic boundary conditions [Lambert, 1994] to remove
edge effects. The deformation model provides the fracture
displacement as a function of stress. The ratio of the incre-
ment of stress to an increment of displacement defines the
fracture specific stiffness.

[9] Fluid flow rates were computed at each step in normal
load by converting the aperture distribution to a network of
elliptical pipes [Tran, 1998; Yang et al., 1989; Cheng et al.,
2004]. Ellipses were used to match the variation in aperture
(row-wise) and then connected in the direction of the pres-
sure gradient. The analytic solution to laminar flow in an
elliptical pipe was used to generate a system of equations
that represented the flow through the fracture plane. This
model is preferred over a bi-lattice grid method, because it
is computationally more efficient (run-times are 4–10 times
faster) and it was shown to model 2D micro-model experi-
mental data more accurately [Cheng et al., 2004]. Figure 1b
shows the fluid velocity field under a small load (0.6 MPa),
while Figure 1c shows it under a large load (2.7 MPa)
where the “critical necks” of the fracture geometry are
clearly apparent.

3. Hydromechanical Finite-Sized Scaling
[10] The computed flow-stiffness relationships are shown

in Figure 2a. Each curve represents a different physical scale.
The finite-size effects are observed as a fan of curves when
stiffness increases. The dynamic flow exponent, t, must be

determined to unravel the scaling function in equation (1),
because it plays a key role in the first stage of the data col-
lapse. This was completed by extrapolating the flow rate at
threshold to the infinite size limit [Reynolds et al., 1980]. To
extract the exponent, a power law is fit to the flow rate at
threshold for each scale as a function of scale and provides
the critical exponent. The flow exponent was determined to
be t/� = 2.38. In Figure 2b, the data are partially collapsed
by scaling the flow rate by (L/L0)t/�, reflecting the pre-factor
of the scaling function in Equation (1). This scaling also dis-
plays the fixed point near 5800 MPa/mm, where each of the
flow-stiffness curves cross at a single point, meaning that

Figure 3. Universal flow-stiffness function showing a full
data collapse. The solid line is provided to guide the eye. The
break in slope divides the effective medium regime from the
percolation regime.
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Figure 4. Width of the multifractal spectrum plotted
against the scaled fracture stiffness. Lines are provided to
guide the eye. The inset shows the extrapolation of the peak
location to the infinite scale. The symbols and line colors are
the same as those in Figure 3.

flow and stiffness are scale invariant at that point. The stiff-
ness at this fixed point is defined as the critical stiffness, �c,
used in equation (1) and is also the average stiffness at the
critical threshold. This value of critical stiffness is a key
parameter in the second and final stage of data collapse.

[11] To complete the data collapse, the stiffness axis was
shifted by �c and scaled by (L/L0)1/�, as shown in Figure 3,
while continuing to use q(L/L0)t/� as the scaled vertical axis.
With this scaling, all the data at all scales fall on a single
curve that has two clear regions with distinct slopes. The
solid line on Figure 3 is shown to guide the eye and repre-
sents the scaling function of equation (1). There is a clear
break in slope near the abscissa value of –1, with each region
above and below this value displaying an exponential depen-
dence. The curve has a slope of –2 for greater values of the
abscissa and a slope of –0.5 for lesser values.

[12] It was observed that the flow velocity field changed
its character from sheet-like to string-like patterns with
increasing stress. The break in the scaling function’s slope
was roughly associated wit this change in morphology. To
test this association, we performed a multifractal analysis
on the fluid velocity fields. A multifractal is a collection
of sets with differing fractal dimensions, and the width of
the multifractal spectrum captures the heterogeneity of these
sets [Feder, 1988]. To calculate the multifractal spectrum, a
box counting method [Feder, 1988; Nolte and Pyrak-Nolte,
1991] was used that depends on the scale and the mass
moment. At low stresses, the width �˛ of the fractal
spectrum is small, and the geometry of the fluid speeds
exhibits mono-fractal behavior because their statistical
moments are distributed nearly homogeneously across the
fracture plane. As normal stress increases, the width of
the spectrum increases as the moments become inhomoge-
neous up to stresses associated with the break in slope at

(� – �c)(L/L0)1/� = –10–5 MPa/mm. At stresses above
the break, the multifractal spectrum decreases because the
fractures enter the critical regime and the fluid speed is dom-
inated by the “critical necks.” The break in slope of the
scaling function occurs when the width of the multifractal
spectrum is at a maximum (Figure 4). The shift in the peaks
is a finite-size effect. The subplot of Figure 4 extrapolates
the inverse of the scaled stiffness, derived from the positions
of the peaks of the spectra, to the infinite size limit. The peak
extrapolates to –1.42 � 10–5 MPa/mm, which matches the
observed break in the scaling function.

4. Discussion
[13] The scaling of the data displayed in Figure 3 is

an important result that connects the hydraulic proper-
ties of a weakly correlated fracture (correlation length �8
mm relative to 1 m sample size) to the fracture spe-
cific stiffness; a property that can be probed using remote
seismic techniques. The local geometric properties of the
system, i.e. “critical necks,” were captured by a scal-
ing function that depends on the global transport critical
exponent, t, and the critical stiffness which allowed the sys-
tem to be written in a scale invariant form. Furthermore,
percolation theory was used to derive the geometric scal-
ing exponents from the static cluster statistics of generated
fractures. The normal load becomes a key control variable
in this study. When the load changes, contact areas are cre-
ated that alter the cluster statistics of the fracture under load.
Rather than the geometry of a fracture completely determin-
ing hydraulic properties, the deformation under load must
be considered. Thus, fracture specific stiffness can stand in
for the void/contact areas, because the stiffness reflects the
current state of the topology under the given load conditions.

[14] The system under consideration contains both
hydraulic and mechanical properties, and therefore possibly
two non-trivial scaling properties. It is well known that the
flow rate enters a critical scaling regime near the percolation
transition [Stauffer and Aharony, 1985]. Conversely, the crit-
icality of the mechanical properties were studied and found
to have simple scaling with void area fraction. Because of
this, a global mechanical scaling exponent is not required
to complete the full data collapse, leaving the entire system
dependent on the transport exponent, t. This also means that
the fracture specific stiffness can replace the void area frac-
tion as a surrogate, making a strong connection to seismic
monitoring techniques.

[15] The two exponential regions in the scaling function
were important results from this study. At low stresses, the
flow field across the fracture plane is homogeneous. For
example, by subsectioning the field in Figure 1b into smaller
regions, the fluid velocity profiles of each subsection will be
similar. This implies that the flow covers most of the void
spaces of the fracture and is more sheet-like. In the limit-
ing case, where the contact area fraction reduces to zero, the
flow rate returns to the “cubic law” and the deformation of
the apertures can be estimated by conserving the volume of
the bulk rock [Pyrak-Nolte et al., 1988]. As stress increases,
flow paths begin to close, leaving only the main backbone
of the original paths. At high stresses, many regions of
the void space are without flow leaving only narrow chan-
nels that contain flow. Therefore, the change in slope can
be understood as a transition from sheet-like to string-like
topology.
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5. Conclusion
[16] From this analysis, we conclude that the geometry of

a fracture provides all the necessary information to define
a scaling relationship between the fracture specific stiffness
and the flow rate for weakly correlated fracture aperture
geometries. By conducting a finite-size scaling analysis,
we were able to describe the localized fracture proper-
ties with a global flow scaling exponent, t. Incorporating
the fracture specific stiffness as a surrogate for void area
fraction within the framework of standard percolation the-
ory enabled us to describe the flow-stiffness relationship of
fractures with a single scaling function. We have demon-
strated that the change in slope in the scaling function is
related to the multifractal spectrum width of the flow speed
distribution. However, the values for the slopes of the effec-
tive medium and critical regimes remain to be explained.
Nonetheless, this scaling function provides a stepping-stone
to a non-intrusive method to probe the hydraulic properties
of single rock fractures in the subsurface. This could provide
new methods to determine the future success of subsurface
projects. Extending the results here and understanding how
stronger correlations affect the scaling is of utmost impor-
tant because correlated void geometries are often found in
nature [Brown et al., 1986; Pyrak-Nolte et al., 1997]. This is
a subject of continuing research.
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