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Abstract

This thesis studies the solid phases of two-dimensional electrons subject to a perpen-

dicular magnetic field (i.e., the “quantum Hall system”). Traditionally, such a solid,

known as “Wigner cystal” (WC), is believed to be the ground state of a two dimen-

sional electron system (2DES) when the Landau level (LL) filling factor ν=nh/eB (n

being the electron density and B the magnetic field) is sufficiently small (thus follow-

ing the termination of quantum Hall states). Due to disorder in realistic samples, the

solid is pinned, therefore insulating. Collective oscillation of crystalline domains of

the solid around disorder gives rise to a “pinning mode” resonance in the frequency

dependent conductivity, which we measure with rf/microwave spectroscopy.

The resonance has interesting behaviors in its dependence on samples, n, B and

temperature (T ) and contains valuable information about disorder. For example,

we are able to show that the most relevant disorder that pins the solid comes from

the interface that vertically confines the 2DES, with a (sample dependent) disorder

correlation length that can become shorter than 10 nm.

Most importantly, the resonance is a characteristic signature of pinned electron

solids, as well as a tool to study their physical properties. We show that many such

solid phases can exist, in different regimes of ν; and their properties also depend

largely on ν, which captures the quantum correlation between electrons.

Among the new solid phases that we have discovered in the state-of-the-art 2DES

samples are the Wigner crystal phases formed in the partially filled top LL around

integer Landau fillings. In high LLs, these “integer quantum Hall Wigner crystals”

(IQHWC) join with other phases, such as the bubble and stripe phases, to form a

rich array of charge density wave phases.

In the lowest Landau level (LLL), we have observed two distinct solid phases,

which we name as solid “A” and “B” phases respectively. The “A” phase is ob-

servable for ν<2/9 (but reentrant around the ν=1/5 fractional quantum Hall liquid
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(FQHL)) and transitions to the “B” phase which dominates at sufficiently low ν. The

two phases coexist in intermediate ν (0.18 >∼ ν >∼ 0.12). Moreover, the resonance of

“A” phase is found to show dispersion with respect to the size of transmission line,

indicating that “A” phase has a large correlation length. Many-body quantum cor-

relations appear to play an important role in giving rise to the different solids. In

particular, “A” phase appears to be a solid intimately related to FQHE. Possible in-

terpretations involving a composite fermion crystal and/or a FQHL-WC mixed phase

are discussed.

We have also studied the T -dependence of the pinning mode resonance of a Wigner

cystal (in high magnetic fields) and in particular its melting behavior. In a given

sample, the melting temperature (Tm) is found to be mainly determined by ν, in

contrast to the case for any other known solids (including, particularly, a classical 2D

electron solid) whose Tm is determined by the solid density n. This not only attests to

the quantum solid nature of the Wigner cystal in our samples; but also constitutes, to

our best knowledge, the only example of a solid whose Tm has been shown to mainly

depend on inter-particle quantum correlation (here through ν).

The appendices of the thesis contain more background/supporting material, as

well as some theoretical results. In one appendix we develop a model for pinned bi-

layer Wigner crystals, helped by the knowledge of pinning and disorder that we have

earlier learned from our experiments on single layer 2DES. We propose that pinning

mode resonance can distinguish a (pesudospin) antiferromagnetic WC (AFMWC)

from a ferromagnetic WC (FMWC), the latter of which can be viewed as a supersolid-

like phase. Our model shows that pinning is enhanced in a FMWC, which possesses

interlayer coherence (IC), compared to an AFMWC without IC and predicts a de-

creasing pinning mode frequency (fpk) with the effective layer separation in a FMWC,

opposite to the behavior in an AFMWC, and an abrupt drop of fpk at a FMWC to

AFMWC transition.
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　　　　道可道，非常道。（老子：《道德经》）

　　　　The Tao ("dao") that can be told of 

     Is not the Absolute Tao.

               ------Lao Tsu: "Tao Te Ching" (6th century BC)
                               

Chapter 1

Introduction

The stories that we are going to tell in this thesis are about the solid phases formed by

two dimensional electrons whose 2D motion is quantized by a perpendicular magnetic

field. Realized in semiconductor structures, these electron solids embody effects from

both electron-electron interaction and disorder, two of the fundamental themes in

modern condensed matter physics. Quantum correlations often reveal themselves as

the underlying driving force in forming a variety of solid phases as well as enabling

many of their fascinating yet intriguing properties.

1.1 Electron Solids: A Resume

1.1.1 Electron solid at zero magnetic field

The solid phase of electrons, also known as “Wigner cystal” (WC), was originally

proposed by Eugene Wigner (Wigner, 1934), who found that at zero temperature

(T=0), an electron gas1 of sufficiently low density n (that the Coulomb interaction

sufficiently dominates the kinetic energy)2 would crystalize into a solid, in order to

minimize the Coulomb interaction.

1in a background of neutralizing positive charges
2Detailed energetic analysis can be found in the review article by Fertig (1997).
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CHAPTER 1. INTRODUCTION 2

Such an electron solid had been sought after for years since its prediction. In three

dimensions, such a low3 n, strongly interacting electron system is quite difficult to

realize in real materials without having disorder effects overwhelm the interaction, and

a 3D WC (supposed to be a BCC lattice) of electrons4 has not been experimentally

observed (Ceperley, 1999; Young et al., 1999).

In two dimensions (2D), ultra low density and nearly defect-free 2D electron sys-

tem (2DES) can be realized by holding electrons with an electric field on liquid helium

surface, and an electron crystal was observed (Grimes and Adams, 1979) which had

the predicted triangular lattice structure (Bonsall and Maradudin, 1977). However,

the realized density n was so low in this system that the electron crystal is “classical”,

in the sense that the thermal energy corresponding to the experimental temperature

(kBT ) far exceeds the quantum kinetic (Fermi) energy5 (Ef ∝ n).

In the late 70s, it was suggested (Lozovik and Yudson, 1975; Fukuyama et al.,

1979) that Wigner crystallization can be greatly facilitated by applying a strong

magnetic field (B) perpendicular to a 2DES, even if the n is too high for the zero-B

WC (Tanatar and Ceperley, 1989) to form. This result, due to the magnetic field

suppressing the kinetic energy of electrons, opened up a road to observe “quantum”

WC in the high quality 2DES realized in semiconductor structures (see reviews in

Ando et al. (1982); Davies (1998)) which typically has relatively high n. Such a

magnetic field induced Wigner cystal (MIWC)6 and as we will see, many other related

solid phases in the “quantum Hall system” (QHS, a 2DES or 2D hole system (2DHS)

3More accurately, the relevant number is the dimensionless rs, defined as the mean separation
between electrons normalized by the Bohr radius in the system.

4“Classical” 3D WC formed with other, larger Coulomb particles have been realized (Murray
et al., 1990; Thomas et al., 1994; Tan et al., 1995).

5Such a classical WC differs qualitatively from a “quantum” WC. For example, a classical WC
melts at a higher T at higher n, whereas a quantum WC melts at a lower T at higher n (Fukuyama
et al., 1979). See alse Chapter 6.

6In recent years, zero-B 2D WC in semiconductor structures has also been discussed (for example
Yoon et al. (1999); Spivak and Kivelson (2004), particularly relating to the apparent metal-insulator
transition (MIT, see review in Abrahams et al. (2004)).
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subjected to a perpendicular B), will be the main subject of this thesis7.

1.1.2 Quantum Hall Effects

A particularly interesting aspect of MIWC is its intimate connection to the quantum

Hall effects (QHE), which were discovered in 2D systems before the MIWC. Excellent

reviews of the QHE are given in Prange and Girvin (1990); Das Sarma and Pinczuk

(1997); Girvin (1999) and Stormer (1999). Here we merely recollect a few aspects in

relation to the Wigner crystal.

Placed under a perpendicular B, 2D electrons are quantized into Landau energy

levels with occupancy given by the Landau filling factor ν = nh/eB. The integer

quantum Hall (IQH) effect (v. Klitzing et al., 1980), observed around ν=K (where

K is an integer), is commonly explained in terms of single particle localization. The

localization is due to disorder, which always exists in semiconductor samples. Later

in Chapter 4 we will see that in very low disorder samples, collective localization of

a many-body ground state such as a crystal, can give rise to the IQHE as well.

The fractional quantum Hall (FQH) effect (Tsui et al., 1982), observed for many

fractions ν=p/q, on the other hand, is strictly a many-body phenomenon due to

electron-electron interaction (Laughlin, 1983). It is established that, at certain frac-

tional values of ν , electrons can collectively condense into an incompressible quantum

liquid with fractionally charged quasi-particles. Much of the fractional quantum Hall

effects (FQHE) have been accounted for by the highly successful composite fermion

(CF)/composite boson (CB) model (Jain, 1989; Read, 1989; Zhang et al., 1989; Kivel-

son et al., 1992). CF/CB are electrons bound with even/odd number of magnetic flux

quanta and the FQHE correspond to the IQHE of CFs or to a Bose-condensate of CBs

(Girvin and MacDonald, 1987; Jain, 2000)8. Although the quantized Hall plateau in

7we will use the terms such as “(2D) electron solid”, “(2D) Wigner crystal/solid” and “MIWC”
rather interchangeably.

8Even in the lowest Landau level (LLL, ν <1) such that electron’s single particle kinetic energy is
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FQHE is given by quasi-particle localization by disorder, observation of the FQHE

generally requires much cleaner samples (compared to IQHE) so that the effect of

electron-electron interaction is manifested.

1.1.3 Magnetic Field Induced Wigner Crystal in the Lowest

Landau Level

Although it had long been believed that the ground state of a 2DES under sufficiently

high B (low ν) should be a Wigner crytal (MIWC), it was not until around 1990

that experimental evidence for the MIWC started to accumulate. This was partly

because the WC, an interaction driven state, also requires sufficiently clean samples,

otherwise single particle localization (magnetic freeze-out) occurs at high B instead

of Wigner crystallization. More importantly, WC is always pinned by disorder in

the sample (even for weak disorder), and is an insulator. Therefore, although DC

transport found that FQH states terminate into an insulating phase at sufficiently

high B (Willett et al. (1988)), it was not easy to distinguish a pinned WC from an

insulator due to, for example, single-particle localization, not mentioning the fact that

ohmic DC transport measurements become prohibitively difficult when the resistance

of the insulator becomes too large at high B. However, a combination of many

experiments (for example Willett et al. (1988); Jiang et al. (1990); Goldman et al.

(1990); Glattli et al. (1990); Li et al. (1991); Buhman et al. (1991); Williams et al.

(1991); Goldys et al. (1992); Paalanen et al. (1992a)) ranging from DC, nonlinear IV,

RF, noise to optical measurements jointly made a case for a MIWC (more complete

accounts of earlier works on Wigner cystal can be found in reviews of Shayegan (1997),

Fertig (1997), Chui (1994) and the theses of Y.P.Li (1993) and C.C.Li (1999)). It

has been generally believed that the high-B insulating phase (HBIP, by which we

quenched, CFs can acquire effective kinetic energy from many body and quantum correlation effects.
For example, at ν=1/2, Fermi surface of CFs have been observed (Willett et al., 1993)
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mean the insulator terminating the series of QH states at high B) observed in good

quality 2DES is a pinned electron solid with substantial WC order, although direct

measurements, such as imaging, of the WC periodicity are not yet available. As we

will show later, however, multiple solid phases, in the LLL (high B), are found in the

very low disorder samples available today (Chen et al., 2004c) and the microscopic

nature of those electron solids (which we still refer to as MIWC) is far from clear.

Experimentally, the transition to the HBIP has been determined to be near ν=1/5

(Willett et al., 1988; Jiang et al., 1990; Goldman et al., 1990) in high mobility 2DES

samples, following the termination of the FQH series (1/5 being the lowest ν FQH

state observable at low T in 2DES). This is in reasonably good agreement with

theoretical calculations9 for a FQHE to MIWC transition (Lam and Girvin, 1984;

Levesque et al., 1984; Zhu and Louie, 1995). It is worth mentioning that the Landau

level filling factor ν, which controls much of the quantum Hall physics, is a “quan-

tum” parameter and is a measure of inter-electron quantum correlation. Indeed,

ν = nh/eB = 2(lB/r)
2, where the magnetic length lB =

√
~/eB measures the size

of single-electron wavefunction in the LLL and r = 1/
√
πn is the mean separation

between electrons. Therefore, the transition from WC to FQH liquid can be viewed

as a quantum melting driven by quantum correlations between electrons. We will see

later that such quantum correlation (controlled by ν) is still important in the solid

phase.

1.1.4 Charge Density Waves in High Landau Levels

Rather recently, two types of states were discovered in DC transport (Lilly et al.,

1999a; Du et al., 1999) in the second excited LLs and above (ν >4): state with

highly anisotropic longitudinal magnetoresistance near the half filling (for example,

ν=9/2), and “reentrant integer quantum Hall” (RIQH) state near quarter fillings

9Considering the difficulties that theories have in accurately determining the ν boundary.
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(for example, 4+1/4 and 4+3/4) which is similar to IQHE with Hall quantization

occurring at the value of the adjacent IQHE. These states have been identified as

the “stripe” and “bubble” phases predicted earlier for the high LLs (Koulakov et al.,

1996; Fogler et al., 1996; Moessner and Chalker, 1996). The predicted “stripe” phase

is a uni-directional charge density wave (CDW) and the “bubble” phase is an isotropic

crystal with multiple electrons (or Landau holes) per crystal site. Later RIQH states

were also discovered (Eisenstein et al., 2002) in the 1st excited LL (2 < ν < 4), which

may be due to similar “bubble” crystals. Together with the Wigner crystal phase10

predicted (MacDonald and Girvin, 1986) and discovered (Chen et al., 2003) around

integer ν (=1,2,3,4...), they constitute a rich array of CDW phases formed in the

partially filled top LL, where the filled LLs is often treated as an inert background in

approximation11. The “bubble” crystals, as well as the Wigner cystals around integer

ν, are pinned electron solids. The “stripe” phase, has been discussed as an electron

liquid crystal (Fradkin and Kivelson, 1999).

One strong support for the pinned solids (both in the LLL and high LL) comes

from the observation of the so called “pinning mode” resonance, which is the main tool

used in this thesis and will be briefly introduced in the next section (and discussed

in more details later). Except for the “stripe” phase, we have observed pinning

mode resonances for all the above-mentioned isotropic, pinned 2DES solid phases in

quantum Hall systems.

1.2 Microwave Response of Electron Solids

AC electromagnetic response, from a general point of view, is a powerful probe of the

electronic state and dynamics of 2DES. This is particularly the case for the pinned

10WC with 1 electron per crystal site can be viewed as an 1-electron bubble and is a special case
of CDW.

11A pinned crystal in the top LL does not participate in the conduction and therefore manifests as
an RIQHE (in contrast to an insulator in the LLL), with the quantized Hall conductance determined
by the filled LLs.
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electron solid phases.

1.2.1 Disorder Pinned Wigner Crystal

As mentioned earlier, a WC is always pinned by disorder in real samples and is

therefore an insulator. Disorder12 has two other effects on a WC that are important

to us:

1. Disorder destroys the long range order of the 2D WC (Imry and Ma, 1975;

Chitra et al., 2002) and makes the WC break into multiple domains, i.e., to

develop a finite correlation length.

2. Disorder opens up a pinning gap in the otherwise gapless magnetophonon exci-

tation of a 2D WC in perpendicular B (Bonsall and Maradudin, 1977; Fukuyama

and Lee, 1978). This gapped excitation is also known as the “pinning mode”

and it gives rise to a resonance in AC absorption, or frequency (f) dependent

real diagonal conductivity (Re[σxx(f)]).

One can define various correlation lengths for a pinned WC (Fertig, 1999; Fogler

and Huse, 2000; Chitra et al., 2002) which turn out to be closely related to the

properties of pinning mode, as we will discuss in more detail in Chapter 3. The pinning

mode resonance corresponds to the collective oscillation of crystalline domains of the

elastic solid in the disorder potential and is experimentally excitable by microwaves13.

This resonance is a characteristic feature of a pinned electron solid, and as we will

later see, both properties of the crystal itself and of the disorder are important in

determining its behavior.

12provided it is not so strong as to destroy the WC order altogether
13In this thesis we use microwave in the broad sense to also include RF.
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1.2.2 Microwave Spectroscopy and Pinning Mode Resonance

The ability to meaningfully measure the microwave response of the electron solid is a

nontrivial task and took years of technological developments. Not only does it need

to deal with low temperatures and high magnetic fields, the real signal can also be

easily overwhelmed by instrumental response (for example that from the coaxial cables

used in the measurements, or due to poor impedance match). Some of the earliest

attempts (Andrei et al., 1988) to probe the magneto-phonon excitations of MIWC

suffered from instrumental problems and did not convincingly reveal WC resonances

(Stormer and Willett, 1989; Andrei et al., 1989; Glattli et al., 1990; Williams et al.,

1991; Stormer and Willett, 1992; Williams et al., 1992). Later experiments employing

surface acoustic waves (SAW, Paalanen et al. (1992a); Willett (1994)), lower frequency

(rf) measurements (Li et al., 1995a,b, 1996), or microwave strip-lines (with more

careful data extraction) (Glattli et al., 1990; Hennigan et al., 1998) found features

that can be attributed to a pinned WC.

The first cleanly-resolved, single-peak microwave resonance of MIWC (Engel et al.,

1997a; Li et al., 1997), was obtained from microwave transmission measurements using

coplanar wave-guide (CPW, Wen (1969); Engel et al. (1993)). In these experiments

the microwave signal was generated at room temperature, sent one-way into the

cryostat to the sample and detected in the cold space (Engel et al., 1993; Li, 1999).

Further developments combining high quality (low loss, low heat load) coaxial cable

and careful cold-sinking have enabled round-trip transmission of microwave signal (in

and out of the cryostat, with the signal both generated and detected at room T ).

This has greatly simplified the measurements of the full complex conductivity of the

2DES, allowing convenient microwave vector network analysis over a broad range of

frequency reaching from as low as ∼20MHz to as high as ∼20GHz.

Fig. 1.1 demonstrates an example of Re[σxx(f)] measured with such a technique on

one of the samples studied in this thesis (Sample P, a GaAs/AlGaAs heterojunction,
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Figure 1.1: Example of a WC pinning mode resonance measured on sample P (
n=5.3×1010cm−2) at ν=0.121 and T=50 mK (Ye et al., 2002b). The flat spectrum
(offset for clarity) measured at ν = 1/3 FQH liquid is shown for comparison.

see Chapter 2 for more details). The pinning mode resonance (near 1 GHz) is clearly

seen in the spectrum at 18T, in the Wigner crystal regime (Ye et al., 2002b). The

flat spectrum in a liquid state (at ν=1/3) is also shown as a comparison.

The basic experimental approach of this thesis is to utilize our broad-band mi-

crowave technique, especially its function of measuring Re[σxx(f)] (deduced from the

microwave power absorption due to 2DES), as a spectroscopy tool to study 2DES

solids. The pinning mode resonance is used in particular as a handle to reveal new

solid phases, to study physical properties of electron solids, and to learn valuable

information about disorder.
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1.3 Outline of the Thesis

The organization of the rest of the thesis are as follows:

Chapter 2 describes the 2DES samples used and the experimental methods, par-

ticularly the microwave measurements technique.

Chapter 3 discusses current understanding (or lack of it) of pinned WC’s and

the pinning mode and addresses the question “what pins the Wigner crystal?”. We

demonstrate the major properties of the pinning mode with our experimental data.

In light of recent theories, we discuss what our data may tell us about disorder.

Chapter 4 reports the discovery of “integer quantum Hall Wigner crystal” (IQHWC)

in partially filled top LL (around ν=1,2,3,4 etc.). We also briefly discuss other charge

density wave phases measured with microwave spectroscopy in high LLs and their

connection with IQHWC.

Chapter 5 reports the discovery of two distinct solid phases in the lowest LL

(high B) in very low disorder samples. We present data about the transition between

the two phases (“A” and “B” phases), the solid (“A”) to FQHE liquid (at ν =

1/5) transition and the dispersive behavior of the pinning mode of “A” phase. We

discuss physical insights our data give regarding the nature of these different solids,

particularly emphasizing the role of many-body quantum correlations.

Chapter 6 reports our studies of the T -dependence of the pinning mode of the

MIWC and focuses on the question “how does a WC melt?”. Our data, again reveal

the importance of quantum correlations in determining the WC melting temperature

and show that the MIWC is, in this sense, a unique quantum solid.

Chapter 7 is the concluding chapter and in particular, attempts to construct

an experimental “global phase diagram” of 2DES solid phases in the quantum Hall

system, from our microwave spectroscopy measurements on low disorder samples.

Further topics and directions related to each chapter (2-6) are discussed at the

section “Notes and Further Directions” at the end of the respective chapter, whereas
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only the more “global” future research prospectives are included in the concluding

chapter (7).

Some supplementary materials (additional sample information and data) are rel-

egated to the Appendices. Also included are a few theoretical notes. In particular in

Appendix. K, we present a model of pinned bilayer WC and propose that studying its

pinning mode may reveal the signatures of interlayer quantum coherence or different

quantum magnetism in bilayer systems.



Chapter 2

Samples and Experimental

Methods

2.1 Samples

We have used in this thesis high quality GaAs/AlGaAs-based 2DES samples fabri-

cated from the modulation doped wafers grown with molecular beam epitaxy (MBE,

see reviews in Ploog (1981); Einspruch and Frensley (1994); Pfeiffer and West (2003))

by Dr. Loren Pfeiffer in Bell Labs. Sample processing1 (most importantly, lithograph-

ically fabricating the CPW transmission line) procedures can be found in Appendix B.

Brief accounts on each sample/wafer and a preview of the specific physics (solid

phases) studied are given below in Table 2.1. Information about the individual pieces

of the samples are also described in later chapters when discussing the measurements.

More supplementary information (such as growth parameters and cool-down proce-

dures) are relegated to Appendix C.

In particular, the 2DES density n of Sample P can be tuned, by cool-down varia-

tions and backgating, in a large range (from ∼1×1011cm−2 to full depletion). Sample

1Done in the clean room facilities in Princeton

12
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wafer structure nominal nominal phases/phenomena observed
name n µ with microwave spectroscopy

P hetero- 6×1010cm−2 6×106cm2/Vs Chap. 3 & Appen. H:
junction High-B WC [ν <∼ 1/5];

(2-12 Chap. 4 & Appen. I:
-97-1) IQHWC [around ν=1]

R 30nm QW 3×1011cm−2 24×106cm2/Vs Chap. 4:
IQHWC [around ν=1,2,3,4];
“bubble” crystal

(7-21 and “stripe” phase [ν >4];
-00-1) N=1 LL RIQHE [2<ν<3]
WP 50nm QW 1×1011cm−2 10×106cm2/Vs Chap. 5:

“A” and “B” Phases
of high-B WC [ν <∼ 1/5];

(7-20 Chap. 4 & Appen. I:
-99-1) IQHWC [around ν=1,2,3]
QW65 65nm QW 5×1010cm−2 8×106cm2/Vs Chap. 5:
(8-30 “A” and “B” Phases
-99-1) of high-B WC [ν <∼ 1/5];
QW15 15nm QW 5×1010cm−2 1×106cm2/Vs Chap. 3:
(10-09 High-B WC [ν <∼ 1/3]
-01-1)

Table 2.1: Summary of 2DES samples studied. Under the name of each wafer, we
also give the corresponding Pfeiffer’s wafer number in the bracket. Each density (n)
and mobility (µ) are nominal as-cooled values. Also listed are the phases/phenomena
(highlighted with bold-face) studied on each sample, along with the relevant chapter
where the phenomena/data are discussed. Except for the “stripe” phase, all other
phases are pinned isotropic electron solids and show pinning mode resonances in
the microwave conductivity spectra. See text for more details and Appendix C for
supplementary information.
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QW65 and QW15 also have a moderate range of tunable n (∼2.5-6×1010cm−2 for

QW65 and ∼ 2-5×1010cm−2 for QW15). Samples P, QW15 and QW65 have been

used in the studying of melting of MIWC in Chapter 6.

For the purpose of studying the anisotropic stripe phase (Chap. 4.2), several pieces

of sample R were fabricated from the same wafer with CPW’s of different orientations

(and of various sizes).

Both samples WP and QW65 show two solid phases (“A” and “B” phases) in the

high-B WC regime. Several pieces of QW65 were fabricated from the same wafer

with CPW of various sizes to study the dispersion of “A” phase (Chap. 5).

QW15 only differs from QW65 in the width of the QW, thus together they give

an excellent opportunity to study the effect of vertical confinement (Chap. 3).

2.2 Microwave Measurements

2.2.1 Coplanar Wave Guide (CPW) and Microwave Trans-

mission

Essential in our microwave measurements is the coplanar waveguide (CPW) (Wen,

1969). CPW is widely used in the monolithic millimeter-wave integrated circuit

(MMIC) technology (Russer and Bieble, 1994). It has also been successfully em-

ployed to measure the microwave conductivity of 2DES (Engel et al., 1993; Li et al.,

1997; Ye et al., 2002b). To make the CPW, we lithographically deposited metal films

on the sample surface (see Appendix B for the fabrication process). A typical mea-

surement circuit is shown schematically in Fig. 2.1(A) and a local cross section shown

in Fig. 2.1(B). A network analyzer serves both as the generator and detector of the

microwave signal. The microwave propagates along the CPW, couples capacitively

to the 2DES, and drives the 2DES (mainly under the slot) with the AC electric field

( ~E, perpendicular to the propagation direction of CPW), at the microwave frequency
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f=ω/2π. In our experiments, we measure the relative power absorption2 (P ) by the

2DES. If the microwave frequency f matches that of some excitation mode in the

2DES (for example the pinning mode), a resonant absorption will be detected.

The CPW can be modeled as a transmission line and the 2DES as a “shunt” that

loads the transmission line (see Fig. 2.2). This allows one to relate the microwave

transmission of the 2DES to its diagonal3 conductivity σxx (more specifically, to first

order for small |σxx|, the transmitted power is related to Re(σxx) and the phase

shift related to Im(σxx). We mainly measures the power absorption for the work

in this thesis.). Here we make a few points most relevant to our experiments and

understanding of the data. More background information and technical details can

be found in Appendix D, and also in (Liao, 1990; Engel et al., 1993; Li, 1999).

We use below w to denote the slot width of the CPW (Fig. 2.1(B) ), l its total

length and Z0 its characteristic impedance (Liao, 1990). The CPW was designed

such that in the absence of 2DES, Z0=
√
L′/C ′=50 Ω, (where L′ and C ′ are the cen-

ter conductor inductance and the center conductor to ground capacitance per unit

length respectively, see Fig. 2.2). This matches Z0 to the standard 50 Ω character-

istic impedance of other parts of the microwave measurement circuits and reduces

the signal reflections (enhances the transmission and more importantly reduces the

influence of standing waves).

Under the following conditions (Engel et al., 1993):

1) at sufficiently high f and low 2DES conductivity (most importantly, this requires

ξ�w, where the microwave “penetration depth”4 ξ =
√
|σxx|/(Cgω), with Cg=ε0εr/d

being the geometric capacitance per area between the center conductor and the 2DES

(located at depth d in a material with dielectric constant ε0εr. For GaAs, εr=13.)

2) no reflections at the ends of the CPW and

2defined as Pin/Pout.
3It can be shown that the measurements are not sensitive to the Hall conductivity σxy (Li, 1993).
4This is the characteristic depth of the microwave electric field leaking under the CPW side plane.
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w

2DES

V(ω)

E E

backgate

(A)

(B)

Figure 2.1: (A) Scheme of microwave circuit used in our experiments. Sample size is
typically ∼3×5 mm. Dark regions on sample surface represent metal films deposited
to make the CPW (the one shown here has a meander shape). The geometry of the
CPW may vary from sample to sample, but have been carefully designed to match the
50Ω characteristic impedance. (B) Schematic local cross section (not to scale) of the
sample with CPW. w is the width of each slot region, separating the center conductor
(driver by microwave source V (ω)) and the side planes (grounded). ~E represents the
AC electric field in the slot region driving the 2DES, which is typically d∼ 0.2-0.5
µm below the surface. Sample substrate is GaAs, typically sitting on a backgate.
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dx

Figure 2.2: A simple transmission line model of using CPW to measure 2DES con-
ductivity. L′ is the inductance of the center conductor per unit length and C ′ the
capacitance between the center conductor to the ground (side plane) per unit length.
The 2DES constitutes a shunt admittance from the CPW center conductor to the
ground. C

′
c=sCg is the capacitance from the center conductor (of width s) to the

2DES (of depth d below the surface) per unit length, where Cg=ε0εr/d is the capac-

itance per unit area. If ξ=
√
|σxx|/(Cgω)=

√
|σxx|d/ε0εr� w, the microwave electric

field is mainly confined in the slots, and the shunt capacitance (C
′
c term) has negligible

contribution compared to that of the shunt conductance (G′ term, where G′=2σxx/w
is conductivity per unit length of the 2DES under both slots (thus the factor of 2) ).
In this case the CPW simply acts as contacts to 2DES.
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3) the 2DES is in its long wave length limit;

one has the following simple relation between the relative power absorption (P ) of

the 2DES and its real part of diagonal conductivity (Re[σxx]):

P = exp((2lZ0/w)Re[σxx]) (2.1)

In most of situations, the above conditions are satisfied and this allows Re[σxx]

to be readily extracted5. An exception is in Chapter 5, where as will be seen, the

2DES (in the “A” phase) is not in its long wavelength limit. However, even in such

situations we still cast our measured P , into a real diagonal conductivity which we

define Re[σc
xx]=(w/2lZ0) ln(P ). In this thesis we always present our data in the form

of Re[σxx] (or Re[σc
xx] ), with the understanding that it is the absorption P that we

have measured in our experiments.

In Fig. 2.3 we demonstrate representative CPW electric field profiles (see the figure

caption for more details). Under the condition ξ�w, the CPW confines the electric

field (E) mainly in each slot region, giving E a step function profile (neglecting edge

effects related to the 2DES, as seen in Fig. 2.3. See also Fogler and Huse (2000)).

This introduces a finite wavevector in the measurement through the dominant Fourier

component q∼π/w. However, if the correlation length6 of the WC is much smaller

than w, (which is often the case, except for the “A” phase introduced in Chap. 5)

the 2DES solid is effectively subjected to a uniform electric field, meaning it is in the

q∼0 limit.

The meander shaped CPW is commonly used to obtain larger geometric factors

(2l/w) therefore increasing the strength of absorption signal (P ), as seen from Eq. 2.1.

Straight line CPWs have also been often used in our experiments, mainly to examine

the effect of orientation of microwave field ~E, or to investigate dispersion (w depen-

5The accuracy is typically within 10-15%, by comparing with more elaborate numerical analysis
(Engel et al., 1993) or with known sum-rules of the pinning mode resonance (see Chapter 3).

6More specific meanings of the “correlation length” will be discussed in later chapters.
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Figure 2.3: Calculated CPW electric field profiles (data from L. W. Engel). (A):
Scheme of the electric field lines near the CPW. (B): An example of the spatial
profile of the electric field in the plane of the 2DES, when the CPW is unloaded
(i.e., with negligible 2DES conducvitity). The field is calculated for a meander CPW
(“M30”) and for the typical parameters of sample QW65 (see Appendix C). x is the
distance (along the direction transverse to the local CPW center conductor) away
from the center, as illustrated in (A). (C): An example of the spatial profile of the
electric field in the plane of the 2DES, calculated similarly as in (B) except that the
CPW is loaded by the 2DES (with 10µS of conductivity).
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dence)7 effects when the 2DES is not in the long wavelength limit. Various CPW’s

used for all the samples are summarized in Table D.1 in Appendix D.2 (specific CPW

information for each sample is also given when discussing the data later).

Since in our experiments, the analyzer measures the relative power transmission

Pt through the entire circuit (Fig. 2.1), proper normalization is required to extract

the contribution due to the 2DES. This is especially necessary when measuring the

f -dependence, because there is usually a significant f -dependence in the microwave

attenuation not associated with the 2DES, mainly that due to the coaxial cable. Thus

a “reference” transmission P0, is normally measured, in the limit of vanishing 2DES

conductivity (i.e., vanishing absorption due to the 2DES). Such a reference can be

obtained, for example, when the 2DES is depleted (other examples will be given in

Sec. 2.2.3 and later chapters). With the normalization, we simply have8 P=P0/Pt, or

if related to Re[σxx], Re[σxx] = − w
2lZ0

ln |Pt/P0|.

A picture of the sample mounted on a metal block is shown in Fig. 2.4. The

block is either immersed in the 3He-4He mixture in a dilution refrigerator (DF) or

kept in good thermal contact with the DF mixing chamber. Custom-made semirigid

SiO2 dielectric coax cables with low microwave loss and low thermal conductivity

were used to transmit microwaves between the top of the cryostat (300K) and the

sample (block). In typical measurements the microwave input is kept in the low power

limit, by reducing the power till the measured signal (P ) no longer changes. More

information can be found in Appendix E about the setup in the NHMFL, where

we have used three different cryostat/magnet systems: “C120”, a vacuum-loading

DF with sample base T∼ 35 mK and a 14 Tesla superconducting magnet (16T if

pumping a λ plate); “SCM1”, a top-loading DF with sample base T∼50 mK and a 18

Tesla superconducting magnet (20T if pumping a λ plate); and “PDF”, a top-loading

“portable dilution fridge” with sample base T ∼ 60 mK, placed in either a 33 Tesla

7For larger w, it is easier to fabricate straight CPW than the meander one.
8Note we have defined earlier P as relative absorption, which is the reciprocal of transmission.
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Figure 2.4: Picture of a sample mounted on a block. The sample is ∼ 3×5 mm in
size and is equipped with a CPW (“M60”) of l=15.5 mm and slot w= 60 µm. The
CPW on the sample is joined by “indium bridges” to the circuit-board CPW on the
block. The circuit board CPW further mates (mechanically via pressed pins) to the
semirigid coax at the side of the block (not shown). Also seen are (gold) DC wires
making connection to the (indium) ohmic contacts on the sample.

resistive magnet or a 45 Tesla hybrid magnet.

We typically perform two types of measurements:

1) Fix frequency f , sweep magnetic field B. This basically measures the AC magneto

conductivity and gives what we call a “B-trace” that is often analogous to the usual

quantum Hall trace.

2) Fix B, sweep f . This is the spectroscopy mode of the measurements and the

resulted spectra are also called “f -trace”.

Although both mode of measurements were routine and will be discussed briefly in

the next two subsections, the spectroscopy is our main tool, with which the majority

of the data presented in this thesis were measured.
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2.2.2 AC Magneto-conductivity

AC magneto-conductivity (B-traces) are mainly measured to provide “orientation”

for the broad-band spectroscopy studies on a sample. In particular, we extract the

2DES density n from the SdH oscillations or QHE minima in the measured B-trace9.

Fig. 2.5 shows an example of such AC magneto-conductivity measured on sample

R (30nm QW). Despite the relatively challenging environment of the hybrid magnet

cell in which the measurement was done, the trace clearly shows many FQH states.

A feature is even seen at ν=4/11, one of the high order FQH states10 so far only

identified in the best quality DC transport data (Pan et al., 2003).

Because the AC response of the coaxial cable has negligible B dependence, we

usually do not need to normalize the measured B-dependent “raw” absorption data.

This simply introduces a constant offset in the B-trace but does not affect the iden-

tification of physically significant features (such as QHE states) in it. Also, if we are

mainly interested in locating the quantum Hall states, B-traces are often measured

at slightly elevated microwave power, which gives better signal to noise ratio.

More examples of B-traces, measured on other samples, can be found in Ap-

pendix F.

2.2.3 Spectroscopy

The work in this thesis are mainly based on measurements of spectra, and we have

seen in Chapter 1 (Fig. 1.1) some examples of Re[σxx(f)].

As mentioned earlier, appropriate normalization of the “raw” transmission data

by a certain “reference” transmission (P0(f)) is usually needed in measuring the f -

traces (Re[σxx(f)]). The most obvious choice of the reference spectrum is measured

when the 2DES is completely depleted. If total depletion is not attainable, P0(f)

9We normally fit the QHE minima positions (B) against the expected 1/ν and extract n from
the slope.

10thought to be due to FQHE of composite fermions (CF)
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Figure 2.5: Representative B-trace measured from a piece of Sample R (30 nm QW).
The CPW used was a meander “M30” (Appendix. D). Selected filling factors are
labeled.
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Figure 2.6: Spectra measured in Sample P. Normalized by the reference transmission
obtained at full depletion of 2DES, the spectrum at ν=1/2 is nearly flat, and that at
ν=0.104 (WC regime) shows a clear resonance.

can be estimated from the transmission measured under condition under which the

transmission is expected to have a weak f dependence. One of the most commonly

used “reference” conditions is at ν=1/2, which typically has a nearly flat spectrum

relative to the depletion reference, as demonstrated below in Fig. 2.6 for Sample P.

Other possible reference conditions include that at IQHE minima, at other half

fillings such as ν = 3/2, at high power, or at high enough temperature (at which

electron solids have melted). Examples of references as such will be encountered in

later chapters. Obviously, what constitutes a good reference may very much depend

on the specific situation at hand. For example, ν∼1/3 may be a good reference for

the pinning mode resonance in WC (see Fig. 1.1). However, if one were to study the
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weak f dependence around ν=1/3 itself, other references at conditions sufficiently

different from ν=1/3 should be used (preferably a depletion reference). It is not

uncommon, especially for relatively weak resonances or f -dependent features, to use

several different references to check the consistency of the experimental findings.

2.3 Additional Notes and Further Directions

Many further developments in our CPW-based measurement technology can be imag-

ined (some are currently being implemented), such as extending the frequency range

(so far we have from ∼ 20 MHz to 20 GHz), extending the finite-q measurement

capability (so far we have successfully used slot width w ranging from ∼20 µm to

80 µm, where w defines a q∼ π/w), compatibility and more versatility with gates11,

improvement in the electron cooling and cold-sinking of coax center conductor, abil-

ity of rotating the sample/block etc. Some of these issues are breifly discussed in

Appendix D as well. Such technical developments may enable probing additional

new physics than presented in this thesis and we will make some “glimpses” in later

chapters on such opportunities.

In terms of measurements and data extraction, further improving the measure-

ment sensitivity and accuracy can have particular benefits for quantities such as the

resonance amplitude and integrated intensity (S). It can also be potentially interest-

ing to look at the imaginary part of σxx (also briefly discussed in Appendix D, see

also Li et al. (1995a)) jointly with Re[σxx] (on which we have so far focused).

11It is also interesting to perform the microwave measurements with CPW (used itself as front
gate) biased at a nonzero DC voltage relative to the 2DES (particularly when depleting the 2DES
under the CPW).



Chapter 3

Properties of the Pinning Mode

The kind of resonance (in Re[σxx(f)]) of which we gave examples earlier (Sec. 1.2.2,and

Sec. 2.2.3) is identified as the pinning mode of the WC (Li et al., 1997; Ye et al.,

2002b)1 and is our main tool in this thesis to study the electron solids. We give in

this chapter a brief account of current physical understanding of the pinning mode

and illustrate some of its properties with data in high-B WC. As will be seen, the

pinning mode, as a signature of a disordered WC, reflects both the electron-electron

interaction (which drives Wigner crystallization) and electron-disorder interaction

(which pins the WC). Studying the pinning mode may enable us to learn important

information about disorder, such as what actually pins the WC, and the characteris-

tics of such disorder. In the next three chapters (4-6) we will also employ the pinning

mode to study some more “intrinsic” physical properties of the electron solids2.

1See also Sec. 7.1 for a recollection of key features of the resonance supporting its identification
as the pinning mode.

2The “0th order” physics highlighted in these three chapters, in fact, mostly relies just on the
appearance and disappearance of the pinning mode resonance.

26
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3.1 Pinning Mode and Disordered Wigner Crystal

In this section we review some important physical concepts drawn from the ma-

jor theoretical developments over the past 20 years (Bonsall and Maradudin, 1977;

Fukuyama and Lee, 1978; Normand et al., 1992; Fertig, 1999; Fogler and Huse, 2000;

Chitra et al., 2002) relevant to the pinning mode. They will be discussed in the con-

text of our current experimental knowledge3, aiming for a coherent physical picture,

to understand the nature and behavior of the pinning mode, in terms of the static

and dynamic properties of a WC subject to disorder.

A more succinct summary of the major results relevant to the current understand-

ing of the pinned WC can also be found in Appendix K.2.

Of the properties of the pinning mode resonance, the peak frequency (fpk) is

particularly interesting to us. It is the quantity that can be extracted most accurately

in experiments and has been calculated explicitly by theories. As we will soon see, the

behavior of fpk can directly yield information about disorder. Other quantities, such

as the line width and oscillator strength (integrated intensity), also contain important

information about the pinned WC.

3.1.1 Magneto-phonon of WC

A pinning mode, in essence, is the collective oscillation of the pinned WC around

disorder. It can also be viewed as the disorder-gapped magneto-phonon excitation

of the WC, and the gap is simply the experimentally measured pinning mode peak

frequency in the long wavelength limit.

The following block diagram (Fig. 3.1) schematically illustrates the origin of the

magneto-phonon4. A clean 2D WC (Bonsall and Maradudin, 1977) has two phonon

3We will, however, refrain from a full-blown discussion of all related experimental details, since
the focus of this thesis is on the phases and physical properties of quantum electron solids (Chap. 4-6)

4Realistic, calculated curves can be found in Bonsall and Maradudin (1977); Fukuyama and Lee
(1978); Normand et al. (1992).
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branches, the longitudinal mode ωL(q), (basically the plasmon mode, which exists in

2DES in general), and the transverse (shear) mode ωT (q) (one of the main character-

istics of a solid). For the typical experimentally accessed q, ωT�ωL (see Appendix A

for representative values).

In the presence of a perpendicular B, the Lorentz force mixes the longitudinal and

transverse motion and gives rise to two hybridized branches: ω+(q) and ω−(q), given

by the following expression (Normand et al., 1992; Klironomos and Dorsey, 2005)

ω2
± =

1

2
(ω2

c + ω2
L + ω2

T )± 1

2

√
(ω2

c + ω2
L + ω2

T )2 − 4ω2
Tω

2
L (3.1)

The high-lying5 ω+(q) is gapped at the cyclotron frequency ωc, typically above

the microwave frequency range (see Appendix. A) and does not concern us in this

thesis. The low lying ω−(q), or the “magneto-phonon” mode, is gapless and at high

fields (ωc�ωL,ωT , which is easily satisfied in realistic situations), it has the simple

expansion

ω−(q) = ωL(q)ωT (q)/ωc (3.2)

which gives a q3/2 dispersion and clearly reflects the mixing of longitudinal and trans-

verse modes.

In the presence of disorder, this low lying magneto-phonon mode is gapped and

becomes the pinning mode6. The dispersion of magneto-phonon is now (Normand

et al., 1992)

ω−(q) =

√
(ω2

0 + ω2
L(q))(ω2

0 + ω2
T (q))

ωc

(3.3)

where ω0 is a phenomenological “pinning frequency” that reflects the strength of the

pinning disorder.

In the long wavelength limit (q∼0, the case most studied in theoretical calculations

5basically the magneto-plasmon mode
6Disorder also slightly modifies the gap of the ω+ (Chitra et al., 2002).
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Figure 3.1: Schematics (not real calculations) of phonon modes in 2D WC. (A) Zero-
B Clean 2D WC: Longitudinal phonon (plasmon) and transverse (shear) phonon
modes. The formula shown for the shear modulus (µT ) is based on calculations for
classical WC (Bonsall and Maradudin, 1977). (B) Clean 2D WC in perpendicular B:
magneto-plasmon (ω+(q)) and magneto-phonon (ω−(q)) modes. (C) Disordered 2D
WC in perpendicular B: gapped magneto-phonon mode (pinning mode). Magneto-
plasmon mode is not drawn.
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(Fukuyama and Lee, 1978; Fertig, 1999; Fogler and Huse, 2000; Chitra et al., 2002)

as well as experimental measurements7), the mode is at the gap frequency:

ωpk = ω2
0/ωc (3.4)

and manifests itself as a resonant power absorption (equivalently, a resonance in

Re[σxx(f)]) when the WC is subject to a spatially uniform AC electric field at the

mode frequency. In the “classical” theories of the pinning mode (Fukuyama and Lee,

1978; Normand et al., 1992), ω0 is a constant that models an effective8, harmonic

disorder potential9,10. This results in a ωpk∝1/B. Experiments on pinning mode

resonance have observed an fpk (=ωpk/2π) that increases with increasing B (Li et al.,

1997), in contradiction with the predicted “classical” WC behavior. To resolve this

issue (at least partially), one needs to consider the interplay (Fertig, 1999; Fogler and

Huse, 2000; Chitra et al., 2002) between the electron wave function in the WC with

disorder, as we discuss in the next subsection.

3.1.2 Interplay of WC and Disorder; B-dependence of fpk

The interplay of WC and disorder underlies the entire physics of the pinned WC.

From a “philosophical” point of view, when considering a quantum11 WC of density

n subject to a disorder V (r), and (as the default case for us) placed in a high B, we

have at hand three “intrinsic” and “microscopic” length scales12:

7The full dispersion of magneto-phonon (particularly at large wave vectors) is so far not accessible
in our experiments.

8Note this is an “collective” effective(a highly abused word!) potential that the WC feels, and is
not the same concept as the more “microscopic” effective disorder potential to be discussed in the
the next Subsection 3.1.2.

9As a matter of fact, one can show rather generally, using a simple classical mechanics model,
that 2D electrons in any harmonic potential (1

2meω
2
0r

2 per electron) placed in high B would have a
low lying collective mode at ω = ω2

0/ωc (Li, 1999).
10Another physical meaning of ω0 is that it corresponds to the pinning mode frequency at B=0

(note the high-B expansion 3.4 no longer applies there)
11by this we mean the constituent electrons have wavefunctions rather than being point charges
12not to be confused with the correlation lengths of WC, to be discussed in Sec. 3.1.5.
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1) the lattice constant (related to the separation between electrons) a∼1/
√
n;

2) the magnetic length (which is a measure of the single electron wavefunction size)

lB=
√

~/eB;

3) the disorder correlation length ξ0 (exact definition of ξ0 will be given shortly).

In principle, the interplay of WC and disorder involves all three quantities. We

note here that a (or n) reflects the electron-electron interaction, and lB is a single

electron quantum parameter. The ratio of lB and a, which is basically the Landau fill-

ing ν (ν∝(lB/a)
2), reflects many-body quantum correlation between electrons (Maki

and Zotos, 1983). We start here with the interplay between lB and ξ0, which is the

interplay of WC and disorder on a quantum single-particle level, as considered in

recent theories on pinned WC (Fertig, 1999; Fogler and Huse, 2000; Chitra et al.,

2002). In sec. 3.1.3 we will discuss interplay of n and disorder, an interplay which

can be understood classically, as due to effects of elasticity within a “weak pinning

picture” (Fukuyama and Lee, 1978; Chitra et al., 2002)). Later in the thesis we will

also see that many-body quantum correlation is still important in the high-B WC

(despite ν�1) from our experimental findings. However, quantum many-body effects

in pinned WC have so far remained largely un-addressed by theories.

The interplay between single electron wave functions and disorder, or between

lB and ξ0, can be understood qualitatively from Fig. 3.2, where locally, the disor-

der (of correlation length ξ0) is illustrated a “bump” of characteristic size ξ0. The

physical essence is that, the effect of disorder on the electron is sensitive to lB (elec-

tron wavefunction size) if lB>ξ0, in which case the overlap between the “bump” and

the electron wavefunction evidently increases if lB shrinks; however, in the opposite

regime (lB>ξ0), further compressing lB (increasing B) brings little change to the ef-

fect of the disorder on the electron. The above idea can be made more precise using

the important concept of “effective disorder” for electrons.
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Figure 3.2: Illustration of interplay of electron wavefunction (of size lB) and disorder
(with characteristic correlation length ξ0). Here the disorder is simply modeled as a
“pit” (bump) with length scale ξ0. (A) lB<ξ0: compressing lB does not change the
overlap between the electron wavefunction (ψ) and disorder, thus does not change the
effective disorder that electron feels. (B) lB>ξ0: compressing lB increases the overlap
between electron wavefunction and disorder, thus the effective disorder is stronger.
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Concept of Effective Disorder

Here we use V0(r) to denote the “physical disorder” that is independent of any elec-

tronic state (V0(r) is present in the sample even without electrons). It has been shown

that what determines the pinning of WC, is an “effective disorder” Veff(r) which de-

pends on the electronic state. More specifically (Fertig, 1999; Fogler and Huse, 2000;

Chitra et al., 2002), Veff(r) is defined as the physical disorder V0(r) convoluted with

the appropriate electron form factor (which is basically |ψ(r)|2, where ψ(r) is the sin-

gle electron wavefunction. In the LLL, this is simply a Gaussian with size lB). Such

convolution is essentially averaging the physical disorder V0(r) using the electron form

factor (|ψ(r)|2) as a “kernel” (Fogler and Huse, 2000). If lB<ξ0, the averaging results

in a Veff(r) that is essentially still the same13 as V0(r). However, if lB>ξ0, convoluting

V0(r) with ψ(r) tends to “smooth out” any short length scale (shorter than lB) vari-

ation in V0(r), and the resulted14 Veff(r) has its correlation length given by lB instead

of by ξ0.

The interplay of lB and disorder profoundly affects the B-dependence of the pin-

ning mode peak frequency (fpk). An analytic formula for fpk is derived in (Chitra

et al., 2002), assuming a Gaussian-correlated white noise15 disorder (V0(r)):

fpk = C
W

ξ6

1

µT

1

B
(3.5)

In the above equation, C is some constant involving only charge e, µT is the shear

modulus of the WC (at sufficiently small ν, it is thought to be close to the classical

value (given in Fig. 3.1, as calculated by Bonsall and Maradudin (1977)) and only

depends on n). W and ξ are disorder strength and disorder correlation length, defined

13This can be best understood in the limit of lB�ξ0, where ψ(r) acts like a delta-function to
V0(r), and recall that convolution with a delta function leaves any function unchanged (V ∗ δ=V ).

14Again, this is best understood in the limit lB�ξ0, where V0(r) now acts like a delta-function,
and δ ∗ ψ=ψ.

15We will come back to this point later in Sec. 3.1.4 and 3.2.2. The Gaussian white noise assump-
tion will be shown, in fact, likely to be incorrect in realistic samples.
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via the two-point correlator

〈V (~r)V (~r′)〉 = WDξ(|~r − ~r′|) (3.6)

where Dξ(r) is the correlation function with characteristic decay length ξ. In our case,

the Gaussian white noise simply means Dξ(r) is a Gaussian (∼e−r2/ξ2
). Most impor-

tantly, the V above should be understood as the effective disorder Veff . Therefore16:

ξ=max(lB,ξ0).

In the so called “quantum regime” (lB>ξ0, Chitra et al. (2002)), fpk is expected

to increase (the above formula 3.6 predicts fpk∝ B2) with increasing B , which is

also qualitatively consistent with the picture we had in Fig. 3.2. In the “classical

regime” (lB<ξ0), the above formula predicts fpk∝ 1/B, which is consistent with

earlier “classical” theories on pinning mode of the WC (Fukuyama and Lee, 1978;

Normand et al., 1992).

As will be seen later, the actual B-dependence of fpk found in experiments can

be quite complicated17 and it is possible that more than one type of disorder (with

more than one characteristics lengths) can be present in real samples (Appendix. H).

However, the idea of an interplay between lB and ξ0 gives a useful framework to

understand the data, and very importantly, allows probing the disorder from the

behavior of fpk vs B (see also Sec. 3.1.4). An example, for the case of a narrow

quantum well (QW15), will be presented in Sec. 3.2.2.

Comparing Eq. 3.5 and Eq. 3.4 shows that ω0 (the effective harmonic pinning

frequency of the deformed WC (Sec. 3.1.1) ) is ∝W/ξ6

µT
. The numerator represents

the effect of disorder and the denominator represents the WC stiffness (µT , the shear

modulus, which is larger for higher n, i.e, stronger Coulomb-interaction) and they

16One can show mathematically, that a Gaussian white noise disorder (with strength W and
correlation length ξ0) convoluted with ψ (also a Gaussian) is still a Gaussian white noise with
basically the same W . However the resulted ξ∼max(lB ,ξ0)

17Especially for the heterojunction sample P (Appendix. H). The cases for narrow (Sec. 3.2.2)
and wide quantum wells (Chap. 5, Appen. J) will be seen later in the thesis.



CHAPTER 3. PROPERTIES OF THE PINNING MODE 35

compete with each other in determining fpk. This leads to the concept of weak pinning,

discussed in the next subsection.

3.1.3 Weak pinning and n-dependence of fpk

At fixed B, if one lowers n, this reduces electron-electron interaction and makes WC

softer (i.e, reducing shear modulus µT ); thus electron-disorder interaction is rela-

tively promoted (electrons “fall deeper into the disorder”) and the WC becomes more

pinned, resulting in a increase in fpk. This phenomenon that softer crystal is pinned

more (and stiffer crystal is pinned less) is known as “weak pinning”18 (Fukuyama and

Lee, 1978) and is directly reflected by fpk∝1/µT seen in Eq. 3.5. For a classical WC

made of point charges (thought to be also a good approximation for MIWC at suffi-

ciently high B), its µT is calculated to be ∝n3/2 (Fig. 3.1, and Bonsall and Maradudin

(1977)) thus fpk∝n−3/2 is predicted (Chitra et al., 2002).

Experimentally, the n-dependence of fpk was studied earlier by Li et al. (2000a).

The fpk was found to increase with decreasing n (n is lowered by a backgate), which

we also found on our samples19. This is qualitatively consistent with the weak pinning

picture. However, so far various powers γ (fpk∝n−γ) have been observed and γ is often

seen to decrease with decreasing n (from closer to 3/2 at higher n to close to 1/2 at

lower n, see for example Li et al. (2000a) or our data for Sample P in Appen. H). No

definite explanations have been found for this. Possibilities include some n-induced

loss of pinning (at low n), crossover to strong-pinning20 at low n, or complications

related to µT .

18Meaning that the disorder is sufficiently weak so that it does not localize any individual electron,
but rather deforms the WC against its rigidity and localize electrons collectively.

19Preliminary data by G. Sambandamurthy et al. for sample P found fpk to decrease with de-
creasing n at extremely low n ( <∼ 0.9×1010cm−2). Further investigation is clearly needed.

20meaning part of the WC is pinned by disorder at certain spatial location (like being nailed) and
oscillate around it, in which case the WC elasticity acts like spring constant and fpk is expected to
decrease with decreasing n
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3.1.4 Effect of Disorder Statistics

There is no a-priori reason to believe, that the disorder in real samples would necessar-

ily obey the Gaussian-correlated white noise statistics (Sec. 3.1.2), which was assumed

in Chitra et al. (2002) to facilitate analytical derivations. In fact, Fertig (1999) pro-

posed that relevant disorder to pin the WC to be some dilute “pits”21 (roughness) at

the interface with typical size (ξ0) on the similar order with lB. With such disorder,

Fertig investigated (mainly through numerical simulation) the expected dependence

of fpk on B. For lB<ξ0 (the “classical regime”), one still expects fpk∝1/B on fairly

general grounds (when lB<ξ0, the microscopic effective disorder is the same as the

physical disorder, regardless of its statistics, and the only B-dependence in fpk comes

from the classical effect of Lorentz force, see also footnote 9) and is the same behavior

as in (Eq. 3.5); for lB>ξ0 (quantum regime), however, he found22 fpk to increase nearly

linearly with increasing B, different from the B2 dependence found in the white-noise

case (Eq. 3.5). Physically, the linear-B-dependence of fpk in the quantum regime can

be understood as follows (see also Fig. 3.2(B)): when the “pits” (bumps) are dilute,

the decrease of lB increasing the effective disorder (due to increasing overlap between

the electron wavefunction ψ and the disorder potential) would only occur if there is

an overlap between ψ and the pit to start with; so that the effective disorder strength

in Eq. 3.5 needs to be scaled with a factor that is proportional to l2B (the area under

the electron wavefunction) to account for the finite probability for the electron to

encounter a “pit” overlapping with its wavefunction. In constrast, for white noise

disorder, ψ is always subject to the disorder and the probability factor would be 1

(see also footnote 16). Therefore Eq 3.5 should be modified, such that now

fpk ∝
Wl2B
l6B

1

µT

1

B
∝ B

21More about this in Sec. 3.2.2
22See Sec. 3.2.2 for more details.
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in the quantum regime (lB>ξ0) for “dilute pits” disorder23.

Thus, although the qualitative features of the interplay of single electron wave-

function with disorder as illustrated in Fig. 3.2 are likely to hold quite generally,

specific disorder statistics can affect the B-dependence of fpk in the quantum regime

(lB>ξ0), due to the difference in how the physical disorder is averaged by the electron

wavefunction. This offers an opportunity to experimentally probe the disorder statis-

tics by carefully studying the pinning mode behavior. As we will see later (Sec. 3.2.2),

dilute disorder, mainly near or at the interface (like the “pits” proposed by Fertig

(1999)), is likely to be a picture closer (than the Gaussian correlated white noise) to

the actually disorder responsible for the pinning of the WC in a real sample (QW15).

3.1.5 Correlation lengths in WC

In the presence of any disorder24, a 2D WC will be deformed (from the ideal triangular

lattice) and lose the long range positional order (Imry and Ma, 1975; Chitra et al.,

2002). Thus the WC breaks into domains with finite correlation length (domain size).

One obvious correlation length is the “Fukuyama-Lee” length (Fukuyama and Lee,

1978; Normand et al., 1992), denoted as La, which is defined as the length scale at

which the average deviation25 of electrons in WC from their ideal positions (clean

WC) becomes comparable to the lattice constant a. Although La corresponds to the

intuitive WC “crystallite” size in the polycrystalline picture of a pinned WC, it is

in fact not the relevant correlation length for the pinning mode properties. Instead,

the Larkin length (Fertig, 1999; Fogler and Huse, 2000; Chitra et al., 2002) and

magnetophonon localization length (Fertig, 1999; Fogler and Huse, 2000), discussed

in the following, are now thought to determine fpk and linewidth (∆f) of the pinning

23The more precise formula Fertig (1999) derived is given in Sec. 3.2.2.
24We suppose it is not so strong that it destroy the WC order completely
25Here we imagine undeformed lattice points as ~Ri and the deformed lattice as ~R′

i. Fix one lattice
point (say ~R0) as the origin, as one moves outward, the average deviation <|δ ~Ri|>=<|~R′

i-~Ri|>
generally grows with increasing distance R=|~Ri|.
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mode respectively.

Larkin length (Lc)

The Larkin length (Lc) is a static correlation length of the WC, and is defined as the

length scale at which the average deviation of electrons in the WC from their ideal

positions (clean WC) becomes comparable to the effective disorder correlation length

ξ. It is a concept that had been well developed in the context of pinned vortices in

superconductors (Blatter et al., 1994) and physically, Lc represents the length scale

that the WC “ fully feels the effect of the disorder”, and reflects the balance between

pinning and elasticity (static deformation). One can show (Fogler and Huse, 2000;

Chitra et al., 2002) that Lc is directly related to fpk of the pinning mode as26

Lc =

√
2πµT

neBfpk

(3.7)

where µT is the shear modulus (Sec. 3.1.1).

In our samples, the typical Lc is on the order of 1 µm (see Appendix A). The

afore-mentioned Fukuyama-Lee length (WC domain size) La can be related to Lc

as La∼Lc(a/ξ)
3 (Chitra et al., 2002). Since in WC, typically27 ξ�a so we have28

La�Lc.

26This can be obtained by simply equating ωT (qc) and pinning frequency ω0, where qc=2π/Lc is
the effective wave vector set by Lc and ωT comes from the fact that the main static deformation
comes from the shear deformation, because the appropriate longitudinal (compressional) modulus of
WC is typically much larger than the shear modulus as a result of long range Coulomb interaction
(Fogler and Huse, 2000; Chitra et al., 2002).

27ξ=max[lB ,ξ0]. We have lB�a and also, as it turns out (Fertig (1999), and see Sec. 3.2.2), ξ0�a.
28This is in contrast to a conventional 2D charge density wave (Fukuyama and Lee, 1978; Grüner,

1994), where the charge modulation occurs sinusoidally on the length scale of the “lattice constant”
a (whereas for a WC, lB�a), so the effective disorder correlation length [recall that the convolution
of physical disorder (V (r)) with the sinusoidal form factor (e2πir/a) in CDW is the same sinusoidal
factor (e2πir/a) multiplied by the Fourier component of the physical disorder at 2π/a]. Hence ξ=a
and Lc=La.
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Magnetophonon localization length (LB)

The observed pinning mode resonance of MIWC can have quality factor Q (=fpk/∆f ,

where ∆f is the full width at half maximum) as high as 10 (Li et al., 1997). One

prominent question is: why is the resonance so sharp? Naively, one expects the mode

to be broadened by random disorder and to have Q∼1 (Fukuyama and Lee, 1978).

The reason for the observed sharp linewidth is now thought as a combined effect of

high magnetic field and strong Coulomb interaction (Fertig, 1999; Fogler and Huse,

2000; Fogler, 2004). The physical picture is the following: when the pinning mode

(magnetophonon) is excited, domains of WC all move in a circular fashion due to the

Lorentz force (the mechanism that mixes the longitudinal and transverse motions);

because the effective bulk modulus of the WC is very large (compared to the shear

modulus) due to strong Coulomb interaction (Fertig, 1999; Fogler and Huse, 2000),

all parts (domains) of the WC would prefer to move together coherently (in phase),

otherwise at times different parts would come closer to each other and cause a high

Coulomb energy cost. Thus the motional correlation length (the length scale at which

the magnetophonon propagates) can in principle become very large and far exceeding

the static correlation length Lc (or even La). The mechanism that actually makes

this length (denoted as LB) finite is magnetophonon localization, which consequently

broadens the pinning mode resonance. An estimate29 for LB, linking it to ∆f is given

in Fogler and Huse (2000) as LB∼ν(e2/h)(4ε∆f)−1. However, currently, theoretically

estimated ∆f is often significantly smaller than the observed ∆f (Fertig, 1999; Fogler

and Huse, 2000). Additonally, the observed ∆f also has a rather complicated B-

dependence that is not explained (Ye et al., 2002b). We still need a more complete

understanding of many aspects of the line width.

29One can obtain this by setting ω2
L(qB)/(2ωc)=2π∆f , where qB=2π/LB .
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3.1.6 Oscillator Strength of Pinning Mode

Another important quantity for the pinning mode resonance is its integrated intensity

(S, also called the oscillator strength). A sum rule has been derived30 by Fukuyama

and Lee (1978) as

S =
neπfpk

2B
=
νe2πfpk

2h
(3.8)

thus directly relating S/fpk to the participating density (or filling factor) of the WC.

Fig. 3.3 demonstrates the S/fpk measured from sample P (heterojunction. Sec. 2.1),

which enters the high-B WC phase with well defined resonance at ν <∼ 1/5. We see

that at sufficiently high B (ν <∼ 0.15 for this sample), the Fukuyama-Lee rule is well

satisfied31, within the experimental uncertainties32 (typically 20-30%) of S extracted

from the Re[σxx(f)] sectra.

The significant deviation from the Fukuyama-Lee result near ν=1/5 seen in the

figure is evidently an effect due to the 1/5 FQH liquid (while the WC is supposed to

“quantum” melt into the FQH liquid as ν→1/5), which we will discuss more later, in

Sec. 5.3.3.

We want to emphasize here that the n from the Fukuyama-Lee sum rule (3.8) refers

to the total density participating in the WC, not the total 2DES density (measured,

say from the SdH oscillation). This is important when only part of the 2DES forms

the solid33. For example, this is used, in the next Chapter, as one of the evidence for

top LL crystallization (the IQHWC).

30We have re-derived this sum rule in Appendix G to correct a factor-of-2 error in the result of
Fukuyama and Lee (1978).

31Although the Fukuyma-Lee sum rule was derived within the “classical” WC picture (Fukuyama
and Lee, 1978), it is found experimentally to be satisfied more generally, even when the measured fpk

itself (see Appen. H) does not actually follow the “classical” behavior (1/B dependence) predicted
in Fukuyama and Lee (1978).

32mainly due to the uncertainties/fluctuations in the background (reference) level in the microwave
transmission.

33In this case n should be understood as the (total number of electrons in the sample participating
in the solid )/(total area of the sample), i.e, it is proportional to the solid fraction in the system.
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3.2 What Pins the Wigner Crystal?

What (physical) disorder is actually responsible for the WC pinning has been a long

standing question, not mentioning that accurate knowledge about the disorder in

real samples is often very limited. Theoretical studies (Ruzin et al., 1992; Fertig,

1999) suggest that remote charged impurities, which could strongly affect the electron

mobility at B=0 and FQHE physics, are generally not effective in pinning the (weakly-

pinned) WC. Fertig (1999), as mention earlier, proposed some dilute, short-range

(comparable to lB) interface “pits” as a more possible source of disorder that pins

the WC. Particularly, Fertig’s interface pinning model predicted fpk that were on

the similar order of magnitude to experimentally observed values, and was able to

at least qualitatively account for the behavior of increasing fpk with increasing B

observed in the earlier experiments (Li et al., 1997), which was difficult to explain

with long range disorder and in the “classical” theories (Fukuyama and Lee, 1978).

Theories by Chitra et al. (2002), on the other hand, assumed the disorder to be a

Gaussian-correlated white noise, but without specification for the physical source for

such white noise disorder. The WC pinning mode resonance spectra data presented

in this section (particularly those measured from a narrow QW, which highlights the

effect of vertical confinement), as we will see, give valuable insight to the nature and

characteristic of the pinning disorder.

3.2.1 Effect of Vertical Confinement

Fig. 3.5 shows representative spectra measured from samples QW65 and QW15. They

were grown in the same way by MBE, with the only difference being the width of

the quantum well (65 and 15 nm respectively), thus allowing us to focus on the effect

of vertical confinement. As we see, the fpk of the resonance in QW65 is typically

∼100-200 MHz, whereas in QW15, fpk becomes ∼ 6-8 GHz, almost two orders of
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magnitude higher.

In QW15 (compared to QW65), electrons are subjected to a much narrower verti-

cal confinement and the electron wavefunction penetrates more into the barrier, thus

electrons are to a greater extent subject to any disorder at or near the interface34. The

significantly increased fpk in QW15, is therefore a strong indication that such disorder

is likely to be the important source of pinning, at least in the case of the narrow QW.

In other words, the proposed source of pinning of WC, by Fertig (1999), as coming

from the roughness and fluctuation (“pits”) in the interface, is not inconsistent with

our experimental findings.

3.2.2 Learning about Disorder

More information about disorder can be learned from in particular, looking at how

fpk changes as a function of B. From Fig. 3.4 we can already see that in QW65, fpk

at 18T is lower than fpk at a lower field (11T), whereas the opposite order occurs in

QW15. Later we will see (Chap. 5) that QW65 actually shows a more complicated

phenomenon with two resonances in its spectra (especially at higher n), interpreted

as coming from two LLL solid phases (“A” and “B”). Here we focus on the spectra

measured in QW15 and discuss characteristics of the disorder that may be inferred

from its B dependence of fpk.

Fig. 3.5 shows a so-called “carpet” or “waterfall” plot of a series of Re[σxx(f)] spec-

tra, measured at many B fields ranging from 5.3T to 18T (offset vertically from the

bottom to top). Likely because of the tight vertical confinement35 (which resulted in a

relatively low electron mobility ∼1×106cm2/Vs, see Sec. 2.1 and Appen. C), ν=1/3 is

the last (meaning the highest B) FQH state seen36 (whereas for high mobility 2DES

samples the last FQHE typically occurs at ν=1/5) and for ν <∼ 0.3, the resonance

34Note, for example, that the sub-band energy is much more affected for a given depth “pit” for
a narrower QW

35See also Yang et al. (2003).
36For a B-trace in Sample QW15, see Appenix F
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from pinned WC can be observed37.

Two important things that we can learn from the above data are:

1) The monotonic increase of fpk with increasing B, over the significant B range

observed, is consistent with the “quantum regime” (lB>ξ0) in the qualitative picture

of interplay of lB and disorder as discussed in Sec. 3.1.2. Since lB at 18T (the highest

B we measured; and fpk is still increasing with B at 18T) is 6nm, we infer that

the correlation length of the physical disorder in our sample ξ0 <∼ 6nm. This is in

fact, not inconsistent with the typical lateral size of roughness that can occur in the

GaAs-on-AlAs interface in MBE grown 2DES samples (Sakaki et al., 1987), nor is

it inconsistent with the “pit” size (∼3 nm) of interface disorder that Fertig (1999)

proposed in the analysis of the 2DHS data from earlier measurements (Li et al., 1997),

which also show similar increasing38 fpk with increasing B.

2) The increase of fpk with B, from ∼9T to 18T, is almost linear (the more dramatic

drop of fpk as B→5T is most likely an effect due to approaching FQHE (1/3 in

this case), which we will discuss more in Chap. 5). This is clearly inconsistent with

the Gaussian-correlated white noise model for disorder used by Chitra et al. (2002),

who predicted a much faster B2 increase of fpk, as discussed in Sec. 3.1.4. On the

other hand, with the dilute interface “pit” model, Fertig (1999) derived the following

formula for fpk in the “perturbative regime”

fpk ∼
Λ

4µT l2B
(3.9)

where the quantity Λ=V 2
0 ξ

4
0n

2
i characterize the disorder, and V0, ξ0, ni are the po-

tential depth, size scale, and density of the pits respectively. This predicts that fpk

increases linearly instead of quadratically with B, and is a direct consequence of the

37This is consistent with earlier work on low mobility 2DES samples, which show resonance for
ν <∼ 1/3 (Engel et al., 1997a; Ye et al., 2002a). It is also an empirical knowledge from experimental
observations, that the appearance of 1/3 FQHE is the minimum requirement on the quality of a
sample to show the high-B WC resonance.

38Also observed by Engel et al. (1997a) in earlier 2DES samples.
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disorder statistics having changed to dilute distribution of short range (ξ0<lB), local-

ized disorder (such as “pits”), as we discussed in Sec. 3.1.4. Further analysis by Fertig

(1999), mainly through numerical simulation39, introduced additional corrections to

fpk that predict it to grow with B sublinearly. This is in fact consistent with the

sublinear40 behavior41 of fpk vs B observed in Fig. 3.5. Another mechanism that can

also give rise to a sublinear fpk vs B, which we propose and discuss in more detail in

Appendix H, is the presence of at least two types of disorder of different correlation

lengths (one with a shorter ξ1<lB, which dominates the pinning and causes fpk to

grow with B; and another with relatively longer ξ2>lB (which on its own would cause

fpk∝1/B) that slows down the growth of fpk vs B and makes it sublinear).

In conclusion, we have demonstrated from our measured data, that the disorder

that dominates the pinning in QW15 is most likely some dilute disorder near the

interface with length scale below 6nm.

3.3 Additional Notes and Further Directions

In this chapter we have reviewed our present understanding of the disorder pinned

Wigner crystal and the pinning mode (resonance). Current theories have provided a

fairly appealing framework to connect properties of the pinning mode to those about

disorder. For fpk and oscillator strength S especially, even some more quantitative

understanding have been achieved. This framework also enables us to obtain impor-

tant insights about pinning disorder, as we have demonstrated particularly for Sample

QW15.

The important concept of electronic state-dependent, “effective” disorder dis-

cussed in Sec. 3.1.2 is based on single particle quantum effects (lB). Such a concept

39using “quantum harmonic approximation” and taking more careful account of the actual fraction
of electrons that are pinned.

40Also seen and evident in Li et al. (1997).
41In Fig. 3.5, between ∼9 to 18 T, we notice the slope decreases at higher B, and the line does

not actually pass the origin.
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can be quite useful in other regimes of the QH system (not only restricted to WC)

as well, for example, in the studies of effects of disorder on scaling and “QH phase

transitions” (Li, 2005). In Appendix K, we will also exploit the idea of “effective dis-

order” with many body quantum effects, in the context of a model for pinned bilayer

Wigner crystals.

We have mentioned in this chapter (and presented some data) about one of our

wide QW samples (QW65). In its case, not only is its fpk significantly lower than

that in QW15, its fpk (if sufficiently far away from the 1/5 FQHE as well as the “A”-

“B” phase-coexistence regime), as we will later see (Chap. 5 and Appen. J), typically

decreases with increasing B, suggesting that the dominant pinning disorder there

must have relatively longer ξ ( >∼ 10nm). Although the much reduced pinning (low

fpk) in QW65 corroborates the importance of interface disorder that we have stressed,

it remains an interesting question whether in such a wide QW, the main source of

disorder may still come from the interface (such as the “pits”) as in QW1542. More

accurate and quantitative analysis will likely require going beyond the infinitely-thin

2DES approximation in current theories, and considering the z-extent of the electron

wavefunction (form-factor)43. Studying effects of in-plane magnetic field (B||) could

be relevant to this question as well.

The disorder model discussed in this chapter is based on current theories, and

gives a good start for understanding the pinning mode. However, the disorder in an

actual samples could be more complicated. Appendix H contains data from sample P

(heterojunction), which are qualitatively difficult to explain with current theories. A

phenomenological model involving disorder of two different length scales is proposed

there.

42particularly in view of the fact that the only difference in QW65 and QW15 is the width of the
GaAs QW channel, see Appen. C

43It is also interesting to ponder the effect of convoluting such a form factor with a physical
disorder, which may also have some z-dependence (near the interface, for example), to construct an
effective disorder with (x, y, z) correlation
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The discussion of disorder statistics we give in this chapter are mainly based on

physical pictures. More rigorous treatment could be made using random field theory

(two dimensional random processes). Obviously, further theoretical development as

well as experimental work are needed to take full advantage of the exciting possibility

of performing “disorder spectroscopy” using the pinning mode resonance as a tool.

The pinning mode resonance is not expected to occur if disorder is too strong

(Wulf, 1999; Efros, 1985; Polyakov and Shklovskii, 1993). Experimentally, it was

found that for the high-B WC resonance to be observed, a 2DES sample must be of

sufficient quality to display 1/3 FQHE (Engel et al., 1997a; Ye et al., 2002a).

In this chapter we have not addressed the finite temperature (T ) effect on the

pinning mode. This will be discussed in Sec. 6.2, which as we will see, offers important

insight on the nature of the resonance as a collective pinning mode. T -dependence

of fpk and ∆f can also contain valuable information about disorder (Yi and Fertig,

2000).

Two general issues about the pinning mode, for which there are particularly se-

rious gaps between observation and understanding, are: the effect of FQHE and the

behavior of the linewidth.

Effects of FQHE concern the behavior of the pinning mode near a FQHE, or special

fractional fillings, and the influence of many body quantum correlations (dependent

on ν) on the pinning mode in general. Such effects have received very little treatment

in the theories on pinned WC (Fertig, 1999; Fogler and Huse, 2000; Chitra et al.,

2002), though it is likely to be important in understanding, for example, exactly

why experimentally observed resonance generally grows (increasing amplitude) with

increasing B, down to fairly small ν, whereas theories neglecting the FQHE (for

example, Chitra et al. (2002)) expect the amplitude to decrease with increasing B.

Also of great interest is the behavior of fpk when (the WC) approaching the FQHE

(the drop of fpk is very generally observed). In Chap. 5 we will discuss more about
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the influence of FQHE on WC from data measured on very low disorder (low pinning)

samples.

For ∆f , we have mentioned that although current theories (Fertig, 1999; Fogler

and Huse, 2000) have given important insights on the sharpness of the resonance and

developed a framework relating ∆f to magnetophonon localization, much remains

to be understood, particularly about the complicated behavior of ∆f found in ex-

periments (Ye et al., 2002b). More general questions include: how does many body

correlation affect magnetophonons (such as near rational fractional ν) ? What kind

of disorder are mainly responsible for the localization of magnetophonons (are they

the same kind of disorder that determine fpk)?

In the following we list some further experimental ideas, especially involving sam-

ples of “controlled difference” (like QW65 and QW15), to gain more insights about

disorder and the pinning mode include:

1) To study samples with different dopant layer parameters, or different (Al) alloy

concentration in the AlGaAs barrier, or even with a thin “buffer” layer (with dif-

ferent Al concentration) near the interface. Of particular interest also, are samples

with a small amount of Al alloy introduced in the GaAs QW channel. Comparing

the effects of such alloy disorder on FQHE (magnetotransport, Li (2005)) and WC

(pinning resonance) can be potentially illuminating.

2) To study samples with QW widths between 65nm (QW65) and 15nm (QW15)

but otherwise grown in the same way by MBE as QW65/QW15, potentially mapping

out disorder correlation length as a function of vertical confinement. It could also be

illuminating to compare with photoluminescence or mobility measurements in similar

structures that probe the interface roughness (Noda et al., 1990; Sakaki et al., 1987).

3) To connect measurements of the pinning mode with Poisson-Shrödinger-Hartree

simulations of the wavefunction to learn more about effects of vertical confinement

and wavefunction penetration into the barrier.
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4) To exploit alternative ways to change density n other than backgating, for exam-

ple through illumination44 or other effects of light (Appendix C). Also interesting

would be to have both a front gate45 and a backgate, giving more ability to tune the

wavefunction shape.

44Sample WP, whose as-cooled n can be significantly affected by LED illumination, would be a
good candidate.

45Such a front gate (compatible with CPW and acting on the area of 2DES being measured (i.e.,
under the slots)) have been tried by Z.H.Wang with some success.



Chapter 4

Solid Phases in the Top Landau

Level

4.1 Integer Quantum Hall Wigner Crystal (IQHWC)

4.1.1 Introduction

In this section, we report observation of a resonance in Re[σxx(f)] using our microwave

absorption measurements in a high quality 2D electron system near integer fillings.

The resonance is qualitatively similar to previously observed resonance of weakly

pinned Wigner crystal in high B and very small filling factor regime (Chaps. 1, 3).

Data measured in Sample R and around ν = 1,2,3 will be presented. We interpret

the resonance as the signature of a Wigner crystal state around integer Landau level.

We emphasize that each ν range where we see this resonance, indicating a WC

state, belongs to IQHE plateau regime seen in dc transport. Thus our finding indicates

that pinning of a many-particle ground state, such as Wigner crystal, can be relevant

even for IQHE, which has traditionally been explained by a disorder induced one-

particle localization mechanism (Prange and Girvin, 1990; Das Sarma and Pinczuk,

1997).

52
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The main references for this section are: Chen et al. (2003) and Lewis et al.

(2004a).

4.1.2 Sample Description and Overview

All data presented in this section were measured using Sample1 R, a very high quality

2DES in a GaAs/AlGaAs quantum well(QW) structure grown by molecular beam

epitaxy. The QW is 30 nm wide and located ∼ 200 nm beneath the surface. The

2DES has as-cooled density n = 3.0 × 1011cm−2 and 0.3 K mobility about 2.4 ×

107cm2 V −1s−1. The microwave measurements (Chap. 2) were done using a straight

line shaped CPW2, schematically shown in the inset of Fig. 4.1(A).

To orient ourselves, we display in Fig. 4.1(A) a “B-trace” (B-dependent conduc-

tivity) measured at a fixed frequency (200 MHz) and ∼80 mK. We can readily resolve

such FQHE states at 6/5, 4/3, 7/5, 8/5, 5/3, 7/3 and 5/2, attesting to the high qual-

ity of the sample. Panel B shows the B-dependent conductivity measured at three

different frequencies, in field range of 8 to 14 T, through ν = 1. We see the peak-like

“wing” (for example the one near 11T in the middle trace) on the side of ν = 1 has

a small amplitude in the 300 MHz trace (bottom), but is greatly enhanced in the 1.2

GHz trace (middle), and reduces to small amplitude again in the 2 GHz trace (top),

thus displaying a resonating behavior. Such behavior is most clearly seen through the

f -dependent conductivity spectrum Re[σxx(f)]. Panel C shows four spectra measured

at ν=1, 3/2, 1.1 and 1.85 (from bottom to top) respectively, all acquired at about

50 mK and in the low microwave power limit. The reference spectrum (Sec. 2.2.3) is

taken at a much higher power at ν = 1. Both spectra at ν = 1 and ν = 3/2 are flat

within experimental error and can actually be used as alternative references (P0, see

Sec. 2.2.1), giving at most a constant offset in the conductivity obtained but otherwise

1More information on sample R can be found in Sec. 2.1 and Appen. C. We have measured two
(adjacent) pieces cut from the same wafer.

2The orientation is not important for IQHWC, which is isotropic. Dimensions for this CPW
(S20) can be found in Appendices C and D.
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having little influence in the results. In contrast, the spectrum at ν = 1.1(B=11.3T)

shows a strong resonance (near 1.3 GHz) of height more than 10 µS and quality factor

Q (fpk divided by FWHM [full width at half maximum] ∆f) almost 3. Similarly, the

spectrum at ν = 1.85(B=6.7T) also displays a strong resonance, near 1.7 GHz.

This resonance in f -dependent conductivity happens for ν near integers and has

been observed around ν = 1, 2, 3 and 4. In this section we focus mostly on the

resonances around ν = 1, 2 and 3. The resonance around ν = 4 is much weaker

and on one side (ν>4 side) it joins with the “bubble” crystal resonance, as will be

discussed briefly in Sec. 4.2. All data shown below in this section were measured at

∼50 mK, and in the low power limit.

4.1.3 Spectra around ν=1

Fig. 4.2(A) shows Re[σxx(f)] spectra measured at 45 filling factors ranging from 0.78

to 1.22, in equal increments of 0.01. When ν is sufficiently far from 1 (∼0.8 and

1.2) the spectrum is flat with no resonance. A resonance starts to develop when ν is

around 0.84-0.85 (for ν below 1) and 1.15-1.16 (for ν above 1) at frequencies below

1 GHz. The resonance sharpens with increasing peak frequency as ν approaches 1

(from both sides) till becoming sharpest around ν = 0.9 (resonating around 1.2 GHz)

and ν = 1.1 (resonating around 1.4 GHz). As ν further approaches 1 the resonance

weakens but its peak frequency continues to increase; the last visible resonance is

around ν =0.95-0.96 and 1.04-1.05 with frequency reaching nearly 2 GHz. In the

immediate vicinity of ν = 1 (0.96 < ν < 1.04) the spectra are again flat. In panel B

and C of Fig. 4.2 we plot the peak frequency, fpk, and the full width at half maximum,

∆f , of the resonance as functions of ν. Here fpk and ∆f are extracted by fitting the

resonance to a Lorentzian: A0 + A1/(A2 + (f − fpk)
2), with ∆f = 2

√
A2. While fpk

monotonically increases as ν moves closer to 1, ∆f reaches minima when ν is about

0.1 away from 1, where the resonance has quality factor Q = fpk/∆f of more than 3.
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Figure 4.1: Sample R, overview near integer fillings. (A) The B-dependent conduc-
tivity at 200 MHz and ∼80 mK with a slightly elevated microwave power. Several
filling factors are marked. Inset shows the schematic measurement circuit. Dark re-
gions represent the metallic films deposited on the sample to make the CPW. (B)
B-dependent conductivity around ν = 1 measured at three different frequencies as
labeled. Traces appropriately offset vertically for clarity. The temperature during B-
sweep is about 80 mK. Dotted line is a guide to the eye for the resonating behavior.
(C) A few f -dependent conductivity spectra (offset for clarity) measured at ∼50 mK
and at various B fields labeled underneath each trace. Data in both panel B and
panel C are measured with a low microwave power.
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Figure 4.2: (A) Frequency dependent conductivity spectra (Sample R) around ν = 1:
from ν = 0.78 (bottom trace) to ν = 1.22 (top trace). Adjacent traces differ 0.01 in
ν and are offset 6 µS from each other for clarity. Filling factors for selected traces
are labeled at right. Measurements are performed at ∼ 50 mK. (B) fpk versus filling.
(C) ∆f versus filling factor.
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4.1.4 Spectra around ν=2

In Fig. 4.3(A) we display Re[σxx(f)] spectra measured at 51 filling factors between

1.75 to 2.25, again in 0.01 increments of ν. The strongest resonance on each side

of ν = 2 occur at ν ∼ 1.85 (with peak frequency about 1.8 GHz) and ν ∼ 2.12

(resonating at below 1 GHz); the peak frequency of the resonance always increases as

ν → 2. The qualitative features of the resonance are similar to those around ν = 1;

however we notice an evident asymmetry between the two sides of ν = 2 (see also

Fig. 4.6 in Sec. 4.1.6) possibly related to the different wave functions in different

orbital Landau levels (whereas both sides of ν = 1 belong to the same orbital Landau

level). The fpk and ∆f of the resonance are extracted as in Fig. 4.2 and plotted in

4.3(B) and 4.3(C) as functions of ν, respectively.

4.1.5 Spectra around ν=3

Fig. 4.4 displays the spectra around ν=3, again showing a qualitatively similar res-

onance (but generally weaker in strength) to those seen around ν=1 and 2. We will

show the fpk in a different form (as a function of n∗) later in Fig. 4.6.

4.1.6 Discussion

The most natural interpretation of our data is that the resonance we observe is due

to a Wigner crystal phase formed around integer Landau fillings. For clean enough

2DES, WC has been theoretically assumed to be the ground state of the system for

filling factor ν = K + ν∗ with sufficiently small |ν∗|, where K is some positive integer

(MacDonald and Girvin, 1986; Fogler et al., 1996; Haldane et al., 2000; Shibata and

Yoshioka, 2003). Such considerations are often based on the simple physical picture

that electrons (or holes, for negative ν∗) in filled Landau levels can be assumed to be

“inert” and the remaining electrons/holes of “effective filling factor” ν∗ and density
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Figure 4.3: (A) Frequency dependent conductivity spectra (Sample R) around ν = 2:
from ν = 1.75 (bottom trace) to ν = 2.25 (top trace). Adjacent traces differ 0.01 in
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(B) fpk versus ν. (C) ∆f versus ν.
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n∗ = (n/ν)ν∗ = nν∗/(K + ν∗) should Wigner-crystallize when the size of their single

particle wave function (on the order of the magnetic length lB =
√

~/eB) becomes

small compared to their average spatial separation. Due to interaction with (weak)

disorder such a crystalline phase is pinned, rendering the top Landau level insulating,

and supports a pinning mode, as we discussed in Chap. 3, that gives rise to the

observed resonance3.

Our resonance is qualitatively similar to the resonance previously observed at

small filling factors in the LLL Wigner crystal regime of both electrons and holes (Li

et al., 1997; Engel et al., 1997b,a; Ye et al., 2002b; Li et al., 2000a), as well as the

recently discovered resonance from the “bubble” crystal phase in high (ν > 4) Landau

levels (Lewis et al., 2002), all thought to be caused by the pinning mode of domains

of 2DES crystal phases (Chap. 3). The many-particle nature of such a pinning mode

is in fact reflected in several features of our observed resonance. For example, the

resonance at 14 T, ν = 0.89 is observed up to nearly 200 mK4, much higher than

hfpk/kB ∼ 50 mK where fpk ∼ 1 GHz is the resonating frequency. This rules out

the pictures of individual particles trapped by disorder or individual (quasi)particle

localization-delocalization transition giving rise to the resonance5 (Kivelson et al.,

1992). Furthermore, the resonance (at the lowest temperature) can have quality

factor Q more than 3. As discussed in Chap. 3, the collective motion of a large region

of particles can average disorder and allow such a high Q (Fertig, 1999; Fogler and

Huse, 2000).

Additional insights about our observed resonance, in support of the pinned Wigner

3In fact the existence of resonance for ν = 1 − ν∗ as well as (previously known) for ν = ν∗

(with ν∗ a positive number in certain range) can be considered as a manifestation of the particle-
hole symmetry in the LLL. Such a symmetry is difficult to exhibit in dc transport, because at
ν=1−ν∗ (IQHWC), the DC Rxx=0 (dissipationless) due to filled LL (contributing to the edge
conducting channel (Prange and Girvin, 1990)); whereas at small ν (high-B WC), the entire 2DES
goes insulating and has diverging Rxx (at low T ).

4A set of T -dependent spectra can be found in Appendix I.
5In this kind of single particle picture, the resonant frequency is generally associated with the

energy (∆σ) needed to promote a particle to delocalized states and this would predict a temperature
scale TC ∼ ∆σ/kB , above which the resonance would not be seen.
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Figure 4.5: (A): Oscillator strength divided by peak frequency(S/fpk) as a function
of filling factor, for resonance around ν = 1. Thick solid line is the Fukuyama-Lee
result for WC of effective filling factor ν∗ = ν − 1. (B):S/fpk as a function of filling
factor, for resonance around ν = 2. Thick solid line is the Fukuyama-Lee result for
WC of effective filling factor ν∗ = ν − 2. All data from Sample R and at ∼50 mK.

crystal picture, can be gained by integrating the spectrum to extract the oscillator

strength6 S. As we discussed in Sec. 3.1.6, theory by Fukuyama and Lee (Fukuyama

and Lee, 1978) has calculated conductivity Re[σxx(f)] that predicts (see also Ap-

pendix G) S/fpk = |n∗eπ/2B| = |(e2π/2h)ν∗| for pinned 2D WC with density n∗ and

effective filling factor ν∗ under perpendicular B. Fig. 4.5 (A) and (B) display S/fpk

calculated for the resonance in Fig. 4.2 (around ν = 1) and Fig. 4.3 (around ν = 2)

respectively. We see indeed the data follow a straight line over most of its range.

We remark here that the magnitudes of the resonance and S are found to have some

significant variations (up to factor of 2) for different cool-downs and samples (from

the same wafer), but such linear-like behavior in S/fpk versus ν∗ is always observed.

An important feature of our resonance, already evident from the spectra plot, is

that the peak frequency of the resonance always monotonically increases with decreas-

6The integrated intensity of the pinning mode. For experimental spectrum Re[σxx(f)] measured
on a finite frequency range [f0, f1] and often containing a constant background level, we here extract
S by first computing the indefinite integral S(f) =

∫ f

f0
Re[σxx(f)]df for f0 < f < f1, then fitting its

high frequency part(near fe) to a straight line and subtracting the slope from the original Re[σxx(f)],
then recalculating S(f) and taking the difference of its maximum and minimum values as S.
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Figure 4.6: Summary of fpk (of the resonance shown in Figs. 4.2,4.3,4.4) vs n∗ (of
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Landau-holes. All data measured in Sample R at ∼ 50mK.

ing effective density n∗ (in our case the B field has a slight variation, less than 20%,

around each integer filling), as shown below in Fig. 4.6 summarizing fpk as functions

of n∗ around ν=1,2, and 3. This is a key character of the “weak-pinning” picture (Li

et al., 2000a; Ye et al., 2002b).

The data in Fig. 4.6 nearly fall into two branches, according to the orbital Landau

level index (the asymmetry around ν=2 is especially clearly demonstrated). This may

be interpreted as an effect of the different single-particle wavefunction in different

orbital LL giving rise to different effective disorder (Sec. 3.2.2), which determines fpk

of a pinned WC (Sec. 3.1.2).

From the data presented in this section, we notice that the observed resonance is
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IQHWC of Landau (quasi-) elestrons of Landau (quasi-) holes
around ν=1 1.04< ν <1.16 0.84< ν <0.96
around ν=2 2.04< ν <2.15 1.77< ν <1.92
around ν=3 3.04< ν <3.17 2.81< ν <2.92
around∗ ν=4 4.05< ν <4.28 3.81< ν <3.96

Table 4.1: Summary of the ν range where IQHWC resonance is ob-
served on Sample R at 50 mK. The typical uncertainty in ν is
0.01.
∗Note: For 4.15 <∼ ν <∼ 4.28, IQHWC resonance coexists with the “bubble” crystal (BC)
resonance (Lewis et al., 2004b) in the 2nd excited orbital LL.

mostly visible in a ν∗ range of ν∗l < |ν∗| < ν∗u (as summarized in Table 4.1. The range7

can depend on the specific integer filling and even the sign of ν∗). The existence of an

“upper limit”, ν∗u , analogous to the case in LLL Wigner crystal, is probably because

WC is not the ground state of our 2DES at large enough ν∗. For example, away

from ν = 1, as ν → 4/5 or ν → 6/5, the system would enter the FQHE state, which

is an incompressible liquid. This kind of “quantum melting” of the WC state would

account for the observed weakening of the resonance and the drop of S/fpk at large |ν∗|

seen in Fig. 4.5. The existence of a “lower limit”, ν∗l , also corresponding to a “lower

limit” for density n∗l = (n/ν)ν∗l , possibly indicates the “carriers” (electrons/holes)

are individually localized by disorder for densities n∗ below n∗l . This lower limit

of n∗ would also imply that higher density, higher quality (low disorder) samples

can allow such resonances to be observable around higher integer fillings. We have

found resonances around ν=1, 2, and 3, but not around ν=4, in sample WP (with

n=1×1010cm−2). Measurements performed on sample P, an even lower density and

lower mobility sample ( n∼7 × 1010cm−2 and µ∼ 5 × 106 cm2 V−1s−1) have only

found relatively weak resonance around ν = 1 and none around higher integer fillings.

Resonance data from these two samples are presented in Appendix I.

For more disordered 2DES, theories of frequency-driven variable range hopping

conduction in IQHE (Efros, 1985; Polyakov and Shklovskii, 1993) predict a linear

7It is possible that the range could further expand at even lower T than presented here.
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dependence of Re[σxx] on frequency, which has been confirmed in recent experi-

ments (Hohls et al., 2001; Lewis and Carini, 2001) on samples of mobilities up to

5× 105 cm2 V−1s−1. No resonances were seen in these experiments.

In summary, we have observed a microwave resonance around integer fillings in

high quality 2DES. On either side of these integer fillings (ν = K), the resonance fpk

monotonically increases with decreasing |ν∗|, whereas the resonance is strongest at

certain ν away from K. We interpret the resonance as caused by the pinning mode

of a Wigner crystal phase of density n∗ = (n/ν)ν∗ formed by electrons/holes in the

top Landau level, around the corresponding integer fillings.

4.2 Higher Landau Levels: Bubbles, Stripes and

all That

The IQHWC discussed in the last section can be considered as a special case of a

charge density wave (CDW) phase. A rich array of other CDW phases can exist in

higher LLs (Sec. 1.1.4, see also the review articles by Eisenstein (2001) and Fogler

(2003)). For completeness, we give in this section a very brief overview of microwave

spectra of these CDW phases, especially in the second excited (N=2 orbital) LL.

More details can be found in Lewis et al. (2002, 2004b, 2005a). Data presented here

were measured with multiple pieces of Sample R (30nm QW, with n∼3×1011cm−2

and µ∼2.4×106cm2/Vs) using a variety of CPWs.

Fig. 4.7 displays a set of Re[σxx(f)] spectra measured around ν=4 (from ν=3.73

at the bottom to ν=4.29 at the top). For the ν< 4 side, we see the broad, relatively

weak IQHWC resonance, qualitatively similar to the one observed around ν=1,2 and

3. If we increase ν from 4 to enter the ν>4 side, quite a different picture occurs:

initially we also see the IQHWC resonance, but when ν approaches ∼4.25 (quarter-

filled top LL), another lower frequency, and much sharper resonance clearly develops
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and eventually dominates the spectrum. This resonance was in fact found earlier

(than the IQHWC resonance) and identified as the pinning resonance of the “bubble

crystal” (Lewis et al., 2002), thought to be a WC with a pair of electrons (“M=2

electron bubble”) per lattice site (Koulakov et al., 1996; Haldane et al., 2000; Taut,

2001; Shibata and Yoshioka, 2003). Furthermore, there is a finite range of ν in which

both the BC resonance and the IQHWC resonance appear in the spectrum (Lewis

et al., 2004b), indicating coexistence of the two crystal phases during the apparent

IQHWC to BC transition (Lewis et al., 2004b; Gervais et al., 2005a).

The BC resonance seen in Fig. 4.7 (the “electron bubbles”) can be observed up

to ν∼4.38 and reappears on the other side of ν=9/2, for 4.64 <∼ ν <∼ 4.80 (the “hole

bubbles”). Details can be found in Lewis et al. (2002). The BC resonance is strongest

around ν=4+1/4 or 4+3/4, near which DC transport studies found a reentrant IQH

state (Lilly et al., 1999a; Du et al., 1999; Cooper et al., 1999) and theoretical calcu-

lations predicted a M=2 electron bubble crystal phase.

At half-filled higher LLs (such as near ν=9/2), DC transport (Lilly et al., 1999a;

Du et al., 1999) have found highly anisotropic diagonal resistances8. Such an anisotropic

state has been thought to be consistent with the “stripe” phase9 earlier theories pre-

dicted to occur near the center of higher LLs (Koulakov et al., 1996; Fogler et al.,

1996; Moessner and Chalker, 1996). The stripe phase has been suggested to be some

electronic liquid-crystal phase with many interesting properties (Fradkin and Kivel-

son, 1999; MacDonald and Fisher, 2000; Fogler, 2001). Microwave measurements

using straight-line CPWs with different electric field ( ~E) orientations10 are currently

underway to investigate the stripe phase and its transition (when changing ν) to the

BC phase (Lewis et al., 2005b). Some features of our preliminary data have been ad-

8The low resistance direction (which turns out to be <110>) is typically referred to as the “easy”
direction and the high resistance direction (<11̄0>) as the “hard” direction.

9We also note a recent theory (Ettouhami et al., 2005) suggesting an anisotropic Wigner crystal
phase in higher LLs.

10Note for a straight line CPW, the microwave electric field ~E is perpendicular to the longitudinal
CPW direction.
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Figure 4.7: Sample R: Spectra around ν=4. At ν>4 side (second excited LL), the
IQHWC resonance can coexist with the lower f , much sharper bubble crystal (BC)
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dressed by a “quantum depinning transition” theory (Li et al., 2000b) whereas many

other aspects (for example an apparent saturation (Lewis et al., 2005b) of BC fpk

upon ν approaching 9/2 in the “hard” direction data) remain to be explained.

BC resonance (near quarter filled top LL) similar to the one shown above have also

been observed in even higher (N=3, 4) LLs (Lewis et al., 2005b). Measurements also

found a resonance, possibly due to a similar bubble phase (particularly near ν=2.58)

in the 1st excited (N=1) LL (Lewis et al., 2005a).

4.3 Notes and Further Directions

Preliminary measurements11 by Sambandamurthy et al. (2005a) have found that

adding an in plane field (B||) can shift the IQHWC and BC12 pinning resonances

to higher frequency, and the effect appears to be larger for higher LL index. The

mechanism that gives rise to the phenomenon is currently unclear. Possibilities may

include a tilt-induced change of effective vertical confinement (from changing electron

orbital wavefunction in the QW), or change in the electron crystal shear modulus µt

13. DC transport have previously shown that B|| can affect the high LL CDW phases

dramatically (Lilly et al., 1999b; Pan et al., 1999). More recently, a “tilt-induced

delocalization”14 was found Csathy et al. (2005b) in the 1st excited LL15. It is inter-

esting for example, in view of (Csathy et al., 2005b), to examine whether the ν range

of the IQHWC resonance above ν=2 (Table. 4.1) changes under B||.

Away from ν=1, instead of simple Landau quasi-particles with single spin-flip,

11employing an in-situ sample rotator with flexible coax connection.
12IQHWC around ν=2 (both sides) and BC near ν=4+1/4 (all in Sample R) have been measured

by Sambandamurthy et al. (2005a).
13note µt can be highly nonclassical in high LLs (Ettouhami, 2005)
14It was found there, that upon tilting, the “re-entrant IQH” states (Eisenstein et al., 2002)

disappear into rather featureless states (classical Rxy) and the 1/5th FQHE states (in N=1 LL)
merge into nearby (now widened) IQHE plateaus (Csathy et al., 2005b).

15We also note here the theoretical work (Yu and Yang, 2002) that predicted a shifted WC-FQHE
boundary in LLL under B||
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the elementary excitations have been proposed to be skyrmions16 (Sondhi et al.,

1993; Fertig et al., 1994), which have received support from subsequent experiments

(for example, Barrett et al. (1995); Schmeller et al. (1995)). Correspondingly, around

ν=1, a “Skyrme” crystal has been proposed (Brey et al., 1995; Green et al., 1996;

Côté et al., 1997; Green, 2000) and there are some recent experiments hinting at its

existence (Bayot et al., 1996; Desrat et al., 2002; Gervais et al., 2005b). These exper-

iments showed a response (in their quantities related to nuclear spin relaxation) that

has an orders-of-magnitude difference between near ν = 1 and near other integers.

However, our experiments have not found a qualitative difference in the resonance we

observed around ν = 1, 2, and 3; and it remains unclear whether the pinning reso-

nance would be sensitive to any exotic underlying spin structure, such as skyrmions,

in the electron crystal. Investigating tilting (B||) effect on the resonance around ν=1

would be potentially illuminating17.

So far we have never observed any resonance around fractional fillings such as

1/3, in our samples down to T∼ 50mK, although the possibility of crystallization

of fractionally-charged quasi-particles around FQHE was proposed theoretically long

ago (Halperin, 1984). Alternatively, such a “fractionally charged WC” (FWC) may

also be viewed as the “IQHWC” in composite fermion (CF) integer LLs (Goerbig

et al., 2004b). In relation to future efforts to search for such a “FWC”, we make the

following remarks for the case around 1/3 FQHE18 :

1) The formula for fpk in Chitra et al. (2002) gives fpk∝ 1/e3. Simple substitution

of e by e/3 implies the fpk for FWC may be much higher than fpk for electron WC

16A skyrmion can effective reverses several spins by modulating the spin in a more continuous (and
spatially-extended) way and saves exchange energy against Zeeman energy. Skyrmions are thought
to be generally less favorable around other odd integer fillings (skyrmions are irrelevant around even
integer fillings) than 1 (Wu and Sondhi, 1995).

17Particularly interesting are to measure samples WP and/or P, which have their ν=1 at relatively
low B due to the lower n of these samples—this not only enables a large tilting range; it also makes (at
zero-tilt) the “effective (dimensionless) Zeeman energy” gµBB/(e2/4πεlB) to be smaller, a condition
believed to favor skyrmions (Schmeller et al., 1995).

18since 1/3 FQHE is the strongest FQHE in general, and corresponding to ν=1 in CF LL, we
expect here the best chance for observing FWC
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(assuming they are otherwise pinned similarly).

2) If we define ν∗ = ν−1/3, then this correspond to a ν∗CF (partial filling in top CF LL,

here defined as νCF-1, where ν=νCF/(2νCF+1) in our case19) to be ν∗CF = 9ν∗/(1−6ν∗).

Therefore an IQHWC in the 1st CFLL, for example with ν∗CF∼ 0.1 corresponds to a

much smaller ν∗∼0.01 around 1/3.

3) FWC will likely require very clean samples and/or very low T , such that interac-

tion between CFs (or fractionally charged quasipaticles) are sufficiently prominent,

indicated by, for example, well developed CF-FQH states20 (Pan et al., 2003).

Obviously, a lot of further experimental21 as well as theoretical work are needed to

look for and understand such a remarkable phase.

Also interesting for further investigation is the issue of IQHWC-FQHE transi-

tion/competition. For example, the fact that we observe an resonance at ν=1.8

(Fig. 4.2 and Table. 4.1) is consistent with the absence of a 9/5 FQHE state in DC

transport (Pan, 2003). A natural question is, which state (WC or FQHE) is the real

ground state at ν=9/5? Would a 9/5 FQHE state show up at elevated T (Pan et al.,

2002; Gervais et al., 2005a)?

Another issue is to further clarify the nature of the reentrant IQHE state in the 1st

excited LL (Eisenstein et al., 2002; Xia et al., 2004). For example, at least four such

states were found between ν=2 and 3 (Eisenstein et al., 2002), near 2.28, 2.42, 2.57,

2.70 respectively. Although these states could be a similar bubble crystal (Fogler,

2003; Lewis et al., 2005a) like those near the 1/4 filled 2nd excited LL (Lewis et al.,

2002) , the two states (ν∼ 2.28 an 2.70) nearer to IQHE could also possibly be

reentrant IQHWC (Shibata and Yoshioka, 2003) competing with 1/5 FQHE states in

the 1st excited LL. More precise measurements (perhaps at lower T ) of fpk at these

states, and comparing them to fpk of the nearby IQHWC, may be helpful in resolving

19with 1/3 belonging to the “CF-2” series (Jain, 2000)
20such as 4/11, whose νCF=4/3, or even states with 1/5-fillings of CF LL.
21Among our samples, it will be particularly interesting to measure Sample WP (which is known

to show a 4/11 state) in C120, under the low T ( <∼ 35 mK) now available.



CHAPTER 4. SOLID PHASES IN THE TOP LANDAU LEVEL 70

the difference (Lewis et al., 2004b; Goerbig et al., 2004a).

The resonance we observe near quarter filled 2nd excited LL (Fig. 4.7) is identified

to be from the predicted BC of M=2 (two electron per site) bubbles (Lewis et al.,

2004b). Higher order-M bubbles are also predicted in high LLs (Fogler et al., 1996;

Shibata and Yoshioka, 2003). Pushing our measurements to lower T may reveal these

rich phases and elucidate the transitions among them.

So far we have conceptually always treated the filled LL’s as “inert” background.

They can be shown to modify the effective interaction in top LL (Fogler et al., 1996).

More quantitative investigation of the n∗ dependence of IQHWC pinning mode (both

fpk and ∆f) may bring further insights for subtle effects such Coulombic, liquid

background might have on pinned IQHWC.

Finally we would like to point out, that although the microwave resonance we

observed near integer ν constituted the first experimental evidence for IQHWC, sig-

natures of IQHWC can also, at least in principle, be obtained from thermopower

measurements (Faniel et al., 2005) or careful T -dependence measurements of DC

magneto-resistance tensors (Kivelson et al., 1992). Correlating microwave measure-

ments with these other types of experiment could potentially yield additional insights

about IQHWC.



Chapter 5

Solid Phases in the Lowest Landau

Level: “A” and “B”

5.1 Introduction

The fundamental question about a two dimensional electron system (2DES) in a

perpendicular magnetic field (B) is the nature of the ground state (GS) and the tran-

sition/competition between different possible GS. It is generally expected (Lozovik

and Yudson, 1975; Fukuyama et al., 1979) that a Wigner solid (WS) (Wigner, 1934)

should form at sufficiently high B. On the other hand, a 2DES with areal density n

can condense into quantum Hall effect (QHE) states (Prange and Girvin, 1990) with

dissipation-free1 transport at a series of integer or fractional Landau filling factors

ν=(h/e)(n/B), where h/e is the Dirac flux quantum. Calculations (Lam and Girvin,

1984; Levesque et al., 1984; Zhu and Louie, 1995) predicted the transition from the

fractional QHE series (which are incompressible quantum liquids) to WS to occur

around ν=1/5. DC transport studies (Willett et al., 1988; Jiang et al., 1990) on high

quality (low disorder) samples at the lowest temperatures have found ν=1/5 to be

1In local dc ρxx and σxx.

71
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the lowest ν fractional QHE (FQHE) state. At higher B the 2DES enters an insu-

lating phase. Early experiments (see reviews in Chui (1994); Fertig (1997); Shayegan

(1997)) on this high B insulating phase (HBIP) were interpreted as consistent with

an electron solid pinned by disorder. In this chapter, we report our radio frequency

(rf) spectroscopy experiments on extremely low disorder 2DES and present evidence

that the HBIP may consist of not just one, but two different solid phases.

Using rf and microwave spectroscopy (Chap. 2), previous experiments (Ye et al.,

2002b) have measured a high quality 2DES2 down to ν as small as ∼1/25, and ob-

served a single sharp resonance in the frequency (f) dependent real diagonal con-

ductivity (Re[σxx(f)]) of 2DES in the HBIP. Such a resonance, as we have discussed

(Chaps. 1, 3), has been taken as signature of an electron solid and interpreted as due

to the “pinning mode” (the disorder-gapped magnetophonon) (Fukuyama and Lee,

1978; Normand et al., 1992; Fertig, 1999; Fogler and Huse, 2000; Chitra et al., 2002)

of WS crystalline domains oscillating collectively within the disorder potential.

In the experiments described in this chapter, we measured even lower disorder

2DES and observed two different resonances in different regimes of HBIP. One reso-

nance (“A”) is observable for ν<2/9 (and reentrant around ν=1/5 FQHE); it then

crosses over (as ν is reduced below ∼0.18, by increasing B) to the different “B”

resonance which dominates at sufficiently low ν ( <∼ 0.125). We interpret the two res-

onances as coming from two different solid phases (referred as “A” and “B” phases)

which are pinned by disorder. Studying samples with different n has shown that the

transition from “A” to “B” is controlled by ν. Moreover, the “A” resonance is found

to show dispersion with respect to the size of the transmission line, indicating that

the “A” phase has a large correlation length. We suggest that many-body correla-

tions, such as those responsible for the FQHE, are important in giving rise to such

different solids. The “A” phase, which occurs at relatively lower B, is most likely

2Sample P was measured in Ye et al. (2002b).
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to be closely related to FQHE and may be an electron solid possessing substantial

FQHE-type correlation.

Part of the results in this chapter have been published in Chen et al. (2004c).

5.2 Samples and Measurements

The 2DES samples we used were fabricated from WP and QW65, two very high qual-

ity AlGaAs/GaAs/AlGaAs quantum well (QW) wafers grown by molecular beam epi-

taxy. Data from 4 pieces of samples will be presented, and for brevity, will be labeled

as Sample 1, 2a, 2b, 2c in this chapter. Sample 1, cut from wafer WP (Appen. C),

contains a 50nm-wide QW with n=1.0×1011cm−2 and mobility µ∼1×107cm2/Vs.

Samples 2a-2c are from wafer QW65 (Appen. C), each containing a 65nm-wide QW

with n ranging from 5-6×1010cm−2 and µ∼8×106cm2/Vs. A standard meander (M30)

CPW was fabricated on Sample 1, and various types of CPW, to be specified below,

were used for Samples 2a-2c.

The rf/microwave measurement methods have been described in Sec. 2.2. For

data presented in this chapter, even though the 2DES here is not always in its long

wavelength limit as will be seen (therefore Eq. 2.1 does not hold accurately), we

have casted our measured P (relative power absorption of 2DES) into a real diagonal

conductivity which we define Re[σc
xx]=(w/2lZ0) ln(P ), where (Sec. 2.2.1) w and l are

the slot width and length of the CPW respectively and Z0=50 Ω.
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5.3 Observation of Two Different Resonances: “A”

and “B”

5.3.1 “A” and “B” resonances and a ν-induced crossover

Fig. 5.1 shows Re[σc
xx(f)] spectra measured at various B from sample 1, at the

temperature (T ) ∼60 mK. The traces are displayed in increasing order of B from the

bottom (taken at 18.6 T) to the top (at 33 T) and are offset by 3 µS from each other for

clarity. The spectrum is flat at B=18.6T, corresponding to the ν=2/9 FQHE liquid

state. Upon increasing B, a clear resonance (with peak frequency (fpk) ∼150 MHz)

can be observed; the resonance is interrupted briefly (with flat spectra) near ν=1/5

FQHE liquid then reappears at higher B. This resonance, reentrant around ν=1/5

(more details about this resonance near ν=1/5 will be presented in section 5.3.3),

will be referred to as peak “A” hereafter. At 22.9 T, ν∼0.18, another resonance,

labeled as “B”, starts to appear (fpk ∼80 MHz). On further increasing magnetic

field, resonance “B” grows while “A” continues to shift but eventually weakens. By

33 T (ν=0.125), resonance “B” dominates the spectrum and “A” nearly disappears.

From 22.9 T to 33 T (ν from 0.18 to 0.125) the spectra display a clear crossover from

“A” to “B”; moreover, in this crossover region they can show complicated structures,

for example an intermediate peak like the one labeled “C” appearing between “A”

and “B”.

We have also observed higher lying but relatively weak resonances such as the one

labeled as peak “2” in the figure. Although they appear to have some qualitative

similarities with “A” (for example, the qualitative dependence on magnetic field),

their origin is not very clear at present. One possibility is that they may be related

to the higher harmonics3 of “A”. More details of them will be discussed elsewhere

3Although they do not appear to fit simple (integer multiples in frequency or wave vector q)
harmonic series of “A”.
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Figure 5.1: Sample 1 (WP M30): Re[σc
xx(f)] spectra at various B, in increasing order

from B=18.6T (bottom) to 33T (top). Adjacent traces are offset for 3µS from each
other for clarity. Magnetic fields (and selected ν’s) are labeled at right. Measurements
were performed at T ∼60 mK. From left to right, the long dashed, dotted, dot-dashed,
and short dashed lines are guides to the eye, corresponding to peaks “B”, “C”, “A”
and “2” respectively, as explained in the text.
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(Lewis et al., 2005b).

Fig. 5.2 summarizes the B-dependence (plotted in (A)) and ν-dependence (plotted

in (B)) of the peak frequencies (fpk) of the various resonance peaks (“A”, “B”, “C”

and “2”) that we see in Fig. 5.1. We notice (as is already evident from the spectra

plotted in Fig. 5.1) that during the cross-over (from “A” to “B”) regime, fpk of peak

“B” has very weak B-dependence. On the other hand, fpk of peak “A” decreases4

with increasing B.

From now on in this chapter, we will focus on the data from QW65, which typically

gives lower n than WP, allowing a larger ν range to be measured.

Fig. 5.3 shows Re[σc
xx(f)] spectra measured from sample 2a (QW65 with CPW

M30), in which we observe behavior similar to that of sample 1, with one resonance

(“A”) reentrant around ν=1/5 crossing over to a different resonance (“B”) dominating

at sufficiently small ν (the lowest ν measured here is 0.075). We emphasize that,

compared to sample 1, the crossover here occurs at much lower B, but in essentially

the same ν (from ∼0.18 to ∼0.125) range. We plot fpk of the various resonances as

functions of B and ν in Fig. 5.4(A) and (B) respectively, showing qualitatively similar

behavior as seen in Fig. 5.2. For peak “B”, which is now measured down to a smaller

ν than in Fig. 5.2, we clearly see (as already evident in the spectra plot Fig. 5.3) that

after it dominates the spectrum at sufficiently high B (small ν), its fpk decreases with

further increasing B.

The similar ν range of crossover has also been found in other cooldowns of the

same sample with yet different as-cooled n. An example is shown in Fig. 5.5 (A), with

similar “A” and “B” resonances, and the crossover from “A” to “B” again occurring

at ∼0.18 >∼ ν >∼ 0.125.

4The B (ν) dependence of fpk of “A” peak, interestingly, for ν slightly below 1/5 (while “B” has
not yet become significant), is not very far from 1/B (or equivalently, linear in ν); at smaller ν the
dependence weakens. See also Sec. 5.3.3 and later discussions.
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mK.
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clarity. Values of B and ν for each trace are labeled at right. Measurements were
performed at T∼60 mK. The crossover from “A” to “B” occurs in essentially the
same ν range as observed in sample 1 (WP) shown in Fig. 5.1.
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5.3.2 Dispersive Behavior of Resonance “A”

A striking difference between resonances “A” and “B” is seen by comparing Fig. 5.5(A),

to 5.5(B), which shows the spectra measured at five representative magnetic fields

using sample 2b. Sample 2b was cut from the same wafer with sample 2a and only

differs in the slot width (w) of the CPW. Both samples show similar resonances “A”

and “B”, with similar ν range of crossover. However, going from w=30 µm (sample

2a) to 60 µm (sample 2b), we notice that fpk of resonance “A” shifts to lower value

while fpk of resonance “B” is not affected; this is true even when resonances “A” and

“B” coexist (for example, in the spectrum at 14T). The higher-lying resonance (peak

“2”) also shifts to lower f by going from w=30µm to 60µm, and in the latter case

(Fig. 5.5(B)) we can also resolve at least another even higher-lying weak resonance.

We note that in our measurement, CPW confines the electric field (E) mainly in

each slot region of width w (see Fig. 2.3), giving E a step function profile (neglecting

edge effects related to the 2DES (Fogler and Huse, 2000), see also Fig. 2.3), and

introducing a finite wavevector through the dominant Fourier component q∼π/w.

Therefore we are apparently sensing the dispersion (fA(q)) of resonance “A” using

samples with varying w.

5.3.3 Resonance “A” near FQHE

We have seen above that resonance “A” dominates at relatively high ν, from ∼0.18

up to 2/9, except for a narrow ν range around 1/5 where there is no resonance. We

now examine in more detail the behavior of resonance “A” near FQHE states (ν=1/5

and 2/9). This line of inquiry will yield important insights regarding the electron

solid-FQH Liquid transition.

Fig. 5.6 shows a set of spectra in the vicinity of the 1/5 and 2/9 FQHE5. The

data were measured in sample 2c, a piece cut from QW65 and with a straight CPW

5Spectra for ν>2/9 side, where resonance “A” disappears, are not shown
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Figure 5.5: (A) Sample 2a (QW65 M30): Re[σc
xx(f)] spectra at various B, in in-

creasing order from 9.5T (bottom) to 18T (top). Adjacent traces are appropriately
offset for clarity. Values of B and ν for each trace are labeled at right. Measurements
were performed at T∼50 mK. Dash and dot-dashed lines are guides to the eye and
correspond to resonances “A” and “B”, similarly defined as in Fig. 5.1. Compared
to sample 1, sample 2a here has about half the density, and the crossover from reso-
nance “A” to “B” also occurs at about half the B, resulting in the similar ν range of
crossover. (B) Spectra at five representative magnetic fields measured from sample
2b (QW65 M60). Sample 2b, which has a CPW with w=60 µm, is from the same
wafer as sample 2a (which has a CPW with w=30 µm) and measured at ∼50 mK
in a separate cooldown which gave the same density. Traces are appropriately offset
for clarity. Compared to corresponding traces in (A), peaks labeled as resonance “B”
are seen to occur at the same frequencies but those labeled as “A” shift to lower
frequencies. The flat spectrum at ν=1/5 (B=10.5T) is also shown.
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(slot w=80µm). The as cooled n here is 6.1×1010cm−2. The traces are displayed

(and offset for clarity) from the bottom to the top, in increasing order of ν (ranging

from 0.192 to ∼2/9, labeled at right). The spectra clearly show that resonance “A”

weakens and disappears, with decreasing fpk, when ν approaches either 1/5 or 2/9.

Fig. 5.7 plots fpk of observed resonance “A” in sample 2c as a function of ν, down

to ν∼0.18 (corresponding to B∼14T, the highest B measured in this experiment.

Spectra for ν between ∼0.18 to ∼0.19 are not shown in Fig. 5.6.). The precipitous

drop of fpk near 1/5 and 2/9 FQHE is clearly seen. Another interesting feature we

notice is that, when ν is just decreased below ∼ 0.192, fpk decreases almost linearly

with ν. The solid line in Fig. 5.7 shows a linear fit through the fpk data for ν between

∼0.18-0.19. The line has a small intercept (∼20MHz) on the fpk axis. We also show,

for comparison, a dotted line with a strict fpk∝1/B (proportional to ν) behavior

(Fukuyama and Lee, 1978).

5.4 Discussion

Our data thus reveal two distinct regimes in the HBIP characterized by two different

resonances (“A” and “B”): one at 2/9<ν<0.18 (except for a narrow range around6

ν=1/5) where resonance “A” dominates; and another at ν<0.125 (down to the small-

est ν we have accessed) where the rather different resonance “B” dominates 7. We

interpret the two regimes as corresponding to two different (pinned) solid phases,

hereafter referred to as “WS-A” and “WS-B” respectively, each being the preferred

ground state in the respective ν range. Because of interaction with disorder, either

solid is pinned (thus insulating), and can support a pinning mode (Fukuyama and

6This reentrant behavior around ν=1/5 is consistent with the earlier observed “reentrant insulat-
ing phase” (RIP) around 1/5 (Jiang et al., 1990), and has been thought to result from the competition
between the WC energy (monotonic in ν) and FQHE energy (having a “cusp” behavior) (Halperin,
1983, 1984; Jiang et al., 1990).

7Data from sample 2a with a relatively low as-cooled density (4.6×1010cm−2) and up to 33T
shows resonance “B” to evolve continuously down to ν∼0.06. No other resonances are observed in
the spectrum at such small ν.
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Figure 5.6: Sample 2c (65nm QW): Details of “A” resonance near 1/5 and 2/9 FQHE.
Data measured at T∼ 40mK, using a straight CPW (of 80µm wide slots). Filling
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Lee, 1978; Normand et al., 1992; Fertig, 1999; Fogler and Huse, 2000; Chitra et al.,

2002) that gives rise to the observed resonance. The fpk in these samples exhibiting

two resonances and their crossover are nearly an order of magnitude lower than those

seen in previous experiments (Ye et al., 2002b)8, probably due to significantly reduced

pinning disorder.

The striking crossover behavior, which we do not observe for T above9 ∼130 mK ,

is consistent with a magnetic field induced phase transition from WS-A to WS-B and

with coexistence of the two phases (at low T ) in the transition regime (0.18>ν>0.125).

The intermediate peak10 “C” disappears at ∼100 mK, leaving only peaks “A” and

“B” present in the spectra. Though peak “C”, like “A” and “B”, is reproducible in

different cooldowns of the same sample; we have sometimes noticed other delicate

features that appear to depend on the way the sample is cooled (for example, peak

“B” sometimes briefly splits near ν=0.125 before dominating the spectra at lower ν’s).

Such complicated behavior may reflect some delicate competition between multiple

or intermediate phases in the transition regime.

The apparent crossover from WS-A to WS-B is mainly controlled by the Landau

level filling ν=nh/eB=2(lB/r)
2, where the magnetic length lB =

√
~/eB (which

measures the size of electron wavefunction) and the mean separation between electrons

r = 1/
√
πn. This rules out the crossover being caused by interplay of lB with, for

example, some disorder length scale (Chitra et al. (2002), see also Chap. 3) or as

some n-induced transition, but rather points out the important role played by many-

electron quantum correlations, dependent on lB/r.

The dispersion behavior of resonance “A” as seen in Fig. 5.5 requires WS-A must

have a correlation length larger than w of the CPW; otherwise the pinned solid is

8Previous experiments (Ye et al., 2002b) found only one resonance with fpk∼1 GHz or higher.
Our samples show nearly flat spectrum at such high f .

9Typically, the spectrum in the crossover regime displays only a single bump at such high T and
becomes flat for T >∼ 160 mK. For a set of T -dependent traces, see Appendix. J, Fig. J.5.

10There has been interesting suggestions by many people, that the peak “C” may be an inter-
component mode between “A” and “B”, or a “interface mode” of the “A”-“B” domain boundaries.
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effectively subjected to a uniform electric field, therefore can not couple to the finite

q introduced by w. Measurements on sample 2c with w=80 µm have shown that

resonance “A” continues to shift to lower f at the larger w, implying a correlation

length (LWSA) in WS-A at least on the order of ∼100 µm, which is almost two orders

of magnitude larger than what the simple estimate used in Ye et al. (2002b) for the

Larkin length (Lc, see Sec. 3.1.5) assuming a classical WS would give. On the other

hand, the magnetophonon localization length (LB) in both “A” and “B” phases are

estimated (Sec. 3.1.5) to be far exceeding 100µm (see Appendix A), and can not

explain why we have only observed dispersive behavior in “A” but not in “B”. Our

observations suggest that WS-A possesses some long range quantum correlation that

is absent in WS-B.

The decreasing fpk of WS-A upon transition to FQHE, as seen clearly in Figs. 5.6

and 5.7, is inconsistent with the picture of a second-order phase transition from a WC

to FQH liquid (Millis and Littlewood, 1994). In such a picture, the WC is expected to

“soften” (with decreasing shear modulus µT ) upon transition to a FQH state, which

is an incompressible liquid that has no shear. This would, for a weakly pinned solid

(Fogler and Huse, 2000; Chitra et al., 2002), give rise to an increasing fpk (∝1/µT ,

see Sec. 3.1.3) upon such a transition, which is exactly opposite to what we have

observed.

It was recently proposed, based on rather general arguments, that the solid-liquid

transition in a 2DES should occur11 via a series of intermediate phases (Spivak and

Kivelson, 2004). These intermediate phases are suggested to be some electronic

“micro-emulsion” (Spivak and Kivelson, 2004), which consists of short length scale

mixture between solid and liquid. Such a picture has been applied (Spivak and Kivel-

son, 2004) to low n 2DES at B=0 to address the observed apparent metal-insulator

transition (Abrahams et al., 2004). Some recent experiments (Csathy et al., 2004)

11It is suggested that a direct first-order phase transition is generally forbidden in a 2D Coulomb
system (Spivak and Kivelson, 2004).
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in QH regime were also interpreted with such a picture, involving a mixed phase

of WC and FQH liquid. Within this framework, one may interpret our WS-B as

an “ordinary” WC, the expected GS of 2DES at sufficiently high B (Lozovik and

Yudson, 1975)12; and interpret WS-A as such a mixed phase of WC and FQH liq-

uid at relatively high ν when the transition from WC to FQHE occurs. Although

a detailed theory for the collective excitation(s) in such a “micro-emulsion” phase

is not yet available, one can generally expect that its liquid fraction should grow13

upon approaching FQHE; and such FQH liquid fraction, which is not pinned, can

effectively act as a “lubricant” and reduce the total pinning14 experienced by WS-A,

consistent with the observed drop of fpk near FQHE. It is also suggested (Normand

et al., 1992; Millis and Littlewood, 1994) that the FQHE fraction can damp the WC

resonance and reduces the fpk. The significant drop of S/fpk near ν=1/5 that we

have generally observed (see for example, Fig. 3.3 in Sec. 3.1.6. See also further dis-

cussions in Sec. 5.5.) is also consistent with the picture that only part of the 2DES

actually participates in the solid phase near ν=1/5. On the other hand, it remains to

be understood that exactly how WS-A, if indeed it is such a mixed phase, acquires

the apparent long range crystal correlation that gives rise to the observed dispersive

behavior.

It has been thought that correlations responsible for FQHE can still be relevant

(Pan et al., 2002; Yi and Fertig, 1998; Narevich et al., 2001; Chang et al., 2005) even

in the HBIP. More specifically, some theories (Yi and Fertig, 1998; Narevich et al.,

2001; Chang et al., 2005) have considered different types of “correlated” WS (mCWS)

made of “composite fermions” (CF) or “composite bosons” (CB), the quasiparticles

(electrons bound with even or odd number (m) of flux quanta respectively) proposed

12This consistent with the observation that WS-B appears to dominate at the low ν limit, see
footnote 7.

13In this process, the local (microscopic) solid density remains unchanged but the macroscopic
fraction of solid in the system shrinks.

14Especially when the relevant pinning disorder is dilute (Fertig, 1999), see Sec. 3.2.
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to largely capture the FQHE correlations (Jain, 1989, 2000), and offering another

possible interpretation for the different solid phases we have observed. The theories

have predicted a series of phase transitions15 among these different types of CWS as

preferred GS in different regimes of HBIP. Note that in this notation, 0CWS would

be a WS made of “bare” electrons, corresponding to the original case proposed in

(Lozovik and Yudson, 1975) and is the preferred phase at sufficiently small ν. At rel-

atively higher ν, for example near ν=1/5 (corresponding to our WS-A), so far different

theories (Yi and Fertig, 1998; Narevich et al., 2001; Chang et al., 2005) have favored

different types of CWS’s; and a detailed calculation of the dynamical responses of

different CWS’s pinned by disorder is not yet available to allow for a direct compar-

ison with our observed resonances. On the other hand, for any mCWS with m> 0,

one can expect that it may possess long range quantum coherence as in the FQHE

(Chang et al., 2005). Although caution should be taken in comparing these theories

(for disorder-free 2DES) to experiments on realistic samples, some predictions seem to

be consistent with the experiments. For example, ν=0.125, predicted to be a critical

filling separating two different CWS phases (Yi and Fertig, 1998; Chang et al., 2005),

is in good agreement with our phenomenological value below which WS-B resonance

dominates. Generally, it is expected that even modest disorder may have significant

influences on the various CWS phases (Narevich et al., 2001) and may stabilize one

CWS against another16, consistent with the fact that in previous microwave experi-

ments (Ye et al., 2002b) on Sample P, with lower mobility (∼5×106cm2/Vs) than our

QW samples, only one resonance in HBIP were observed. Some other predictions,

however, seem to be at odds with our observations. For example, the shear modulus

of 4CWS (favored in Narevich et al. (2001)) is predicted to significantly decrease as ν

approaches 1/5; this would result in an increasing fpk of the resonance, which is not

15thought to be first order in these theories. See, however, footnote 11.
16For example, it is possible that disorder may make 0CWS the preferred phase for ν< 0.125,

rather than only at much smaller ν as predicted.
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the case we have observed. It is possible, that a mixed phase (Spivak and Kivelson

(2004), as discussed in the preceding paragraph) of CWS and FQH liquid also occurs

near a CWS to FQHE transition.

In summary, although it is not inconsistent with experimental observations to

interpret WS-B as a MIWC of electrons, the microscopic nature of WS-A is much

less clear. However, hinted by our data, we may interpret WS-A as some WS with

substantial “FQHE character”, for example, an intermediate/mixed phase between

WS and FQH liquid, and/or a WS made by CF/CBs. It is likely an electron solid

phase with also macroscopic quantum coherence17, and probably, only a tip of the

iceberg of its novel physics has been revealed thus far.

5.5 Additional Notes and Further Directions

It is of great interest to directly probe the participating density (n∗) of the solid in

the WS-A, particularly in relation to the “mixed phase” picture. One way to do this

is through the oscillator strength S of the pinning mode (more specifically, S/fpk, as

discussed in Sec. 3.1.6). For example, Fig. J.6 in Appendix J shows S/fpk measured

from Sample 2c (Fig. 5.6). It is found that S/fpk drops upon approaching 1/5 or 2/9

FQHE. However, one needs to be careful when comparing the value of S/fpk in WS-A

to the Fukuyama-Lee sum rule, because the 2DES here is not in its long wavelength

limit, whereas Fukuyama-Lee sum rule is derived only for q=0. Measurements using

CPW with even wider w (for example 120µm) than those we have used so far would

be very valuable. Going to wider w may also directly yield the correlation length in

WS-A, as the w above which fpk no longer changes.

It is also interesting to extract the density from the dispersion observed in WS-

A, by fitting fpk vs q=π/w to the predicted (Normand et al., 1992) WC dispersion

17thus can be considered as an electronic supersolid, in the similar sense that a FQH liquid can
be considered as a superfluid (after a Chern-Simons gauge transformation, Kivelson et al. (1992)).
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(Eq. 3.3). Measurements with a few more w (for example, 120µm and 40µm) in

addition to those presented in this chapter (30, 60 and 80 µm) would be desirable for

an accurate extraction of density from the dispersion.

An interesting feature we have noticed about WS-A, when it is well developed

(with resonance “A” dominating the spectrum) at ν sufficiently below 1/5 (away

from the immediate transition regime to FQHE) but not too low (to have WS-B

becoming significant), is that its fpk decreases with increasing B (decreasing ν), in

fact often with a dependence that is not very far from a 1/B behavior (Fig. 5.7 and

Figs. 5.2, 5.4). This suggests that the relevant disorder that pins WS-A must have a

correlation length larger than lB (Chap. 3). On the other hand, the fpk of WS-B, when

it coexists with WS-A, generally shows much weaker B-dependence and sometimes

even increases with increasing B (Figs. 5.2, 5.4). One very interesting possibility is

that WS-A is less subject to short-range disorder, which apparently still exists in the

system and is relevant for the pinning of WS-B. Recent experiments18 by Li (2005)

have suggested that FQHE can be relatively insensitive to a moderate amount of

short range disorder. Thus our speculation that WS-A is a solid with “substantial

FQHE character” appears to be not inconsistent with the experimental findings so

far. It will be illuminating, to measure a wide QW, similar to WP or QW65 but with

a small amount of Al alloy disorder introduced, and see how this may affect WS-A

and WS-B resonances respectively.

We have found (on sample QW65 M30) that when the 2DES n is lowered by

a backgate to below ∼ 4×1010cm−2, the two phases WS-A and WS-B become not

well-resolved19 (see Figs. J.1, J.2, J.3 in Appendix J). Interestingly, we found fpk to

also deviate more from the 1/B-like behavior at lower n, as shown below in Fig. 5.8.

18In the experiments, it was found that adding a small amount of Al alloy disorder (which is short
range) in the 2DES channel appear to have little effect on the FQHE characteristics, despite having
significantly lowered the electron mobility at B=0.

19It will be illuminating to measure the dependence on w (CPW) at such low n, and check if one
can still observe dispersive behavior in the spectrum at ν where WS-A is well resolved at high n.
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Figure 5.8: As n is lowered (by backgating) in QW65, into the regime where “A” and
“B” are not well resolved, fpk of the observed resonance deviate more from a 1/B
dependence.

This suggests an increased significance of short range disorder (possibly due to the

wave function being pushed closer to one interface by the back gate voltage) at such

low n, and also suggests that the 1/B like behavior in fpk is associated with a better

developed “A” phase. Further measurements using both a total front gate and a total

back gate (so one can change the wavefunction symmetry without changing n) can

be illuminating.

Preliminary measurements (on QW65 M30) by Sambandamurthy et al. (2005a)

have found that, applying a small negative DC bias on the CPW metal films (used

as a front gate to deplete electrons underneath) does not affect fpk in WS-A but shift

fpk in WS-B to higher f (see Fig. J.4 in Appendix J). We do not yet understand

such observations 20. It will be illuminating to perform measurements (and consis-

20However, if the insensitivity of fpk in WS-A to electron depletion under the CPW is somehow
related to the macroscopic quantum coherence in WS-A, it will be interesting to look for, for example,
Josephson-like phenomena using the gated CPW center conductor as an effective junction between
WS-A under neighboring slots.
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tency check) with DC-biased CPW on samples with straight line CPW and on more

disordered samples (such as sample P) where only one resonance is found in HBIP.

In the following we briefly list some more directions for future experiments:

1) Combining T -dependence and w-dependence (dispersion) measurements. This may

give insights, for example, on how the correlation length (LWSA) of WS-A evolve with

T .

2) Using CPW with much narrower21 w than those have been used, to probe, for

example, the dispersion of WS-B, and WS-A dispersion in high-q regime, as well as

possibly the WC dispersion in more disordered sample (with only one resonance in

HBIP, such as sample P).

3) The origin of the high lying peaks such as peak “2” (and even higher f peaks such as

those seen in Figs. 5.5 and 5.6) remains to be clarified. They may be some higher har-

monics of “A” resonance, but other possibilities, such as some multi-(magneto)phonon

mode (Murthy, 2004), have been suggested. More systematic studies on n and w de-

pendence of these peaks can be helpful.

4) Although we have been focused on spectroscopy (Re[σc
xx(f)] ) measurements. AC

magneto-conductivity (see Appendix F) measured at various f can also be inter-

esting. For example, it remains to be seen, whether features associated with low

rational fraction filling such as 1/7 and 1/9 (Pan et al., 2002) may appear in high-f

magnetoconductivity (Lee et al., 1991).

The data presented in this chapter suggest that multiple quantum phases can

exist and compete in the LLL. We expect that pushing all our measurements to even

lower T can generally be very profitable. Not only can we gain more insights about

the transition between the various phases discussed so far, lower T may potentially

reveal many more new phases22 and a plethora of rich physics in the HBIP.

21some modification or improvement in microwave technique are likely to be needed for going to
CPW with very narrow w.

22For an example of multiple phases only revealed at very low T in the 1st excited LL, see Xia
et al. (2004).



Chapter 6

Melting of a 2D Quantum Electron

Solid

6.1 Introduction

The melting temperature (Tm) of a solid is generally determined by the ambient

pressure, or indirectly by its density (n) through the equation of state. This remains

true even for helium solids (Wilks, 1967), where quantum effects often lead to unusual

properties (Kim and Chan, 2004b). It is also true for a classical two dimensional

(2D) solid formed by electrons (Grimes and Adams, 1979), which melts at Tcm =

e2
√
n/(4πεkBΓ) (where ε is the dielectric constant, kB the Boltzman constant and

Γ∼130). In this chapter, we present experimental evidence which shows that for

a 2D quantum electron solid formed under a perpendicular magnetic field (MIWC)

(Shayegan, 1997), its Tm (in a given sample) is not determined by n, but by quantum

correlation between the electrons through the Landau level filling factor ν=nh/eB.

At a fixed ν, which is a measure of the quantum mechanical wave function overlap

between the electrons, Tm is found to be insensitive to n. To our best knowledge, this

constitutes the only example of a solid whose Tm has been shown to mainly depend on

93
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inter-particle quantum correlation, which can be readily tuned (here by a magnetic

field) independently of the solid density. Moreover, we found that Tm is increased

for a 2D electron solid subject to stronger vertical confinement or pinning disorder,

opposite to the phenomenon of “melting point depression” (Christensen, 2001) of

most solids when subject to geometric confinement or stronger pinning.

We know that electrons are expected to crystallize into a solid (“Wigner crystal”

(Wigner, 1934) ) when the (Coulomb) interaction energy between the electrons suf-

ficiently dominates over the kinetic energy. One example of such an electron solid

was found in a very low density (n) two dimensional electron system (2DES) realized

on helium surfaces (Grimes and Adams, 1979). Because of the low n, the quantum

zero-point motion (given by the Fermi energy Ef = nh2/2πm where m is the electron

mass) is negligibly small and at finite temperatures (T ) as in the experiment (Grimes

and Adams, 1979) the kinetic energy originates mainly from the classical thermal

motion (kBT ). The melting of such a “classical” 2D electron solid is determined

only by the competition between the thermal kinetic energy and Coulomb interac-

tion (e2
√
n/4πε) and is thought to be describable by the Kosterlitz-Thouless theory

of 2D melting (Kosterlitz and Thouless, 1973; Young, 1979; Nelson and Halperin,

1979). Experimentally, the melting was found to occur (Grimes and Adams, 1979) at

Tcm = e2
√
n/(4πεkBΓ) with Γ∼130, in excellent agreement with theoretical predic-

tions (Morf, 1979; Chui and Esfarjani, 1991).

The 2DES as realized in high-quality GaAs/AlGaAs structures in our experiments

has comparably high n, thus (in the absence of magnetic fields) the quantum zero-

point motion (Ef ) is significant and the 2DES does not solidify even at T=0. However,

it is well known that a sufficiently strong perpendicular magnetic field (B) tends to

suppress the kinetic energy of 2D electrons and induce the solidification (Lozovik and

Yudson, 1975; Fukuyama et al., 1979). On the other hand, at finite B the motion

of electrons is quantized into Landau levels (LL) and delicate many-body quantum
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correlations (Laughlin, 1983; Kivelson et al., 1987) among electrons can cause the

2DES to condense into fractional quantum Hall (FQH) (Tsui et al., 1982) liquid

states at certain rational fractional values of Landau level filling factor ν = nh/eB.

Experimentally, the “magnetic field induced Wigner cystal” (MIWC, reviewed in

Shayegan (1997); Fertig (1997)) forms at sufficiently small ν, following the termination

of FQH states at low T . It is a DC insulator due to pinning by disorder and, as we

have seen, has a characteristic resonance (Chap. 3) in its frequency (f) dependent

real part diagonal conductivity (Re[σxx(f)]) due to the “pinning mode” of domains of

the elastic solid oscillating collectively around the disorder (Fertig, 1999; Fogler and

Huse, 2000; Chitra et al., 2002).

Previously, the melting of a MIWC has been studied in various experiments (Glat-

tli et al., 1990; Goldman et al., 1990; Williams et al., 1991; Paalanen et al., 1992b;

Goldys et al., 1992; Kukushkin et al., 1993) and it was commonly presumed (Glattli

et al., 1990; Williams et al., 1991; Goldys et al., 1992) that at a fixed ν the melting

should be similar to that of a classical electron solid (the expected exact ground state

for a 2DES at infinite B) and thus Tm would be determined by n, as is in Tcm. In this

chapter, we show unambiguously that this is not the case, and in fact Tm in mainly

determined by ν, not n and is unrelated to Tcm.

In our experiments we have studied the T -dependence of the pinning mode reso-

nance of the MIWC in its Re[σxx(f)] spectrum measured by microwave spectroscopy

(Sec. 2.2). No resonance can be observed when T is raised above some characteristic

Tm, taken as the melting T of the electron solid. By systematically measuring Tm

while varying both n and B, we found that within the experimental resolution (and

in a given sample), Tm is only a function of ν (i.e., Tm(n,B) = Tm(n/B)) down to ν

as small as ∼0.05 attained in our experiments. At a fixed ν, Tm is insensitive to n.

Since ν = nh/eB = 2(lB/r)
2, where the magnetic length lB =

√
~/eB is a measure

of the size of the single electron wavefunction and r = 1/
√
πn is the mean separation



CHAPTER 6. MELTING OF A 2D QUANTUM ELECTRON SOLID 96

between the electrons, our findings reflect the quantum nature of the 2D electron

solid formed at finite B and demonstrate that its melting (Tm) is mainly determined

by the inter-electron quantum correlation through ν.

We have performed the melting studies on samples from three different wafers: P

(heterojunction), QW15 (15nm wide QW) and QW65 (65nm wide QW). By back-

gating and/or different cooldowns, the electron densities (n) in these samples can be

tuned to various extents, to be specified below. Typically at their respective as-cooled

n, sample P has mobility µ∼6×106cm2/Vs, QW15 has µ∼1×106cm2/Vs and QW65

has µ∼8×106cm2/Vs.

6.2 T -dependence of WC pinning resonance and

determination of Tm

Fig. 6.1 shows T -dependence of the microwave resonance of the electron solid and the

determination of Tm at two different values of n in sample P with ν fixed at a repre-

sentative value of 0.128. In Fig. 6.1a, n=5.6×1010cm−2(B=18T) and the Re[σxx(f)]

spectrum displays a clear resonance near 600MHz at low T (∼50mK). As T is in-

creased, the resonance weakens. The resonance disappears into the noise background

at ∼250mK, taken as the melting Tm of the electron solid. The inset of Fig. 6.1a

shows that the resonance amplitude (obtained from a Lorentzian fit) extrapolates to

zero at a similar Tm. From the spectra, one can see that at elevated T (but below

Tm), fpk also decreases slightly from the base T (50 mK) value, but by no more than

20%, indicating that the electron solid remains well pinned1. In Fig. 6.1b, n has been

reduced to 2.1×1010cm−2(using a backgate voltage of −300V) while B is also reduced

to 6.86T to keep ν the same value as in Fig. 6.1a. In this case the resonance of the

1We also notice that Tm is much lower than the temperature scale corresponding to the pinning
frequency ω0 (Fukuyama and Lee, 1978; Normand et al., 1992; Chitra et al., 2002), calculated from
the resonance frequency (fpk=ωpk/2π) as (ωpkωc)1/2∼2π×70 GHz∼3 K.
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electron solid occurs near 1.6GHz at low T and disappears at a Tm∼ 270mK, which

is similar to that in Fig. 6.1a, within the experimental uncertainty in determining Tm

(typically ∼10%).

6.3 Melting Temperature of MIWC

We have measured Tm in 4 different cooldowns of sample P at an extensive number

of combinations of n and B, at which a resonance from the MIWC can be detected.

We plot all these Tm data as a function of ν in Fig. 6.2. Sample P has a particularly

large range of tunable n, from ∼1.2−8.1×1010cm−2, covering a ν range from ∼0.21

down to ∼0.03. For nearly fixed ν, we have always found Tm to be insensitive to

n, within the experimental error in Tm (typically less than 10%). Tm can vary from

cooldown to cooldown by up to ∼15% (at similar ν) but this does not affect our

conclusion. We thus find Tm to be mainly determined by ν and Tm vs ν as plotted

in Fig. 6.2 defines a melting curve for the electron solid. A linear fit of Tm vs ν

gives a guide to the eye shown as the dashed line, which lies within 20% from all the

(Tm, ν) data points and within 10% from a majority (70%) of them. In the inset of

Fig. 6.2 we plot the “reduced” tm = Tm/Tcm from two similar cooldowns versus ν,

where Tcm = e2
√
n/(4πεkBΓ) is the melting T of a classical 2D electron solid defined

earlier (we have taken the value (Morf, 1979; Chui and Esfarjani, 1991) of Γ=127). In

contrast to Tm, tm can vary significantly (sometimes by a factor of 3) for nearly fixed

ν. Thus tm versus ν does not give a well defined melting curve for the electron solid,

confirming that Tm is not determined by n or Tcm. At a fixed high B, Tm decreases2

with increasing n, in contrast to Tcm, which always increases with increasing n.

Fig. 6.3 shows the (Tm,ν) melting curve measured on QW15 (15nm wide QW).

Sample QW15 has a tunable n=2.7-4×1010cm−2. Likely due to the relatively narrow

2We notice that this is also in contrast to the “thermal depinning temperature” of WC domains
(Tdp), which can be estimated (Fertig, 2005) as Tdp∼(1/kB)mω2

0ξ
2(Lc/a)2∝n3/2 (where ξ is the

disorder correlation length, a the WC lattice constant and Lc the Larkin domain size (Chap. 3)).



CHAPTER 6. MELTING OF A 2D QUANTUM ELECTRON SOLID 98

Re
[σ

xx
] 

   
(µ

S)

4321
f (GHz)

T=265mK
T=212mK
T=167mK
T=148mK
T=131mK
T= 89mK
T= 53mK

Re
[σ

xx
] 

   
(µ

S)

1.51.00.5
f (GHz)

T=249mK
T=221mK
T=174mK
T=135mK
T=103mK
T= 77mK
T= 50mK

16

12

8

4

0

A
m

pl
itu

de
 (

µS
)

25020015010050
T (mK)

a b

n=5.6x1010cm-2, B=18T, ν=0.128
(Sample P)

n=2.1x1010cm-2, B=6.86T, ν=0.128
(Sample P)

 Tm=250±30mK
 

 Tm=270±30mK
 

10
 µ

S

5 
µS

Figure 6.1: Temperature (T ) dependence of the microwave spectra of the 2D electron
solid measured from sample P at two different densities (n) with the same Landau
filling factor (ν). a, T -dependence of the spectra at n=5.6×1010cm−2with ν=0.128
(magnetic field B=18 Tesla). Spectra at a series of representative T ’s are shown and
offset for clarity. The pinning resonance of the electron solid observed at T=50mK
is seen to weaken with increasing T and disappear at ∼250mK, taken as the melting
temperature (Tm) of the electron solid. The ripples seen in the spectra and the weak,
broad bumps (near 0.3 GHz and 0.65 GHz) visible in the high-T spectra are due
to experimental artifacts. Inset shows the amplitude of the resonance extrapolates
to zero at the similar Tm. b, T -dependence of the spectra at n=2.1×1010cm−2with
ν=0.128 (B=6.86 Tesla). The low T resonance disappears at a Tm similar to that
shown in a (n=5.6×1010cm−2), despite here that n has been reduced by more than a
factor of 2. A negative voltage between the backgate and the 2DES enables in-situ
reduction of n from the as-cooled values.
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Figure 6.2: (Tm,ν) phase diagram for the electron solid in sample P. The Tm’s are
measured in a total of 4 cooldowns (shown as diamonds, circles, squares and triangles),
over a wide range of densities (n=1.2−8.1×1010cm−2) and magnetic fields. Within
the experimental uncertainty, Tm versus ν gives rise to a well-defined melting curve
of the electron solid. The dashed line is a guide to the eye, obtained by a linear fit
through all the data. Typical error bars in Tm are less than 10%. The inset shows
the “reduced” tm versus ν from two cooldowns. tm is defined as Tm normalized by
the classical 2D electron solid melting temperature Tcm = e2

√
n/(4πεkBΓ) (where we

take Γ=127). tm versus ν does not result in a well-defined melting curve, indicating
that the melting temperature Tm is not determined by n or Tcm.
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Figure 6.3: (Tm,ν) melting curve of the electron solid measured in QW15, a narrow
QW of width 15nm. QW15 has a tunable n=2.7-4×1010cm−2 and enters an electron
solid phase at ν< 0.3.

width3 of the QW, this sample enters the solid phase for ν<0.3 (Sec. 3.2.1) and the

typical fpk observed is ∼6-8GHz. We found Tm again to be mainly determined by ν,

though the value of Tm is higher than in sample P at similar ν.

We have measured Tm in QW65 (a 65nm QW) and also found a well-defined (Tm,ν)

melting curve as presented below in Fig. 6.4. Data shown are measured using multiple

pieces from the same wafer (with different CPWs) and from multiple cooldowns. The

range of n is from 4.0 to 6.0×1010cm−2. The variation of Tm due to different pieces

or cooldowns is less than 10% and does not affect our conclusions. QW65 has been

3see also Yang et al. (2003).
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shown to have two different resonances (Chen et al. (2004c), and this thesis, Chap. 5)

in its Re[σxx(f)] spectrum, dominant in different regimes of ν and interpreted as

from two different electron solid phases (“A” and “B”). Solid “A” is dominant for

0.18 <∼ ν<2/9 (but reentrant around ν=1/5) and solid “B” is dominant for ν <∼ 0.1,

with the two solids coexisting in the transition regime4 (0.1 <∼ ν <∼ 0.18). These

different ν regimes are separated with dashed vertical lines in Fig. 6.4. Tm is seen

to drop as ν approaches 1/5 and 2/9. This is consistent with the ground states of

2DES being FQH liquids at ν=1/5 and 2/9 (both labeled as dashed arrows in the

figure). We also notice that Tm tends to depend on ν more weakly at ν <∼ 0.1 (where

“B” phase dominates) than at higher ν. The typical fpk of the resonances are on the

order of only ∼ 100 MHz (Chen et al., 2004c), attesting to the much reduced pinning

disorder in the sample. Compared to sample P (Fig. 6.2), QW65 has lower Tm at

similar ν.

6.4 Discussion

Recent theories (Yi and Fertig, 1998; Chang et al., 2005) and experiments (Chen

et al. (2004c), and this thesis, Chap. 5) have suggested that quantum correlation

between electrons are still important in the solid phase terminating the FQH states.

Our findings reflect the quantum nature of such an electron solid and indicate its

melting is also determined by the inter-electron quantum correlation through ν. The

well-defined (Tm,ν) melting curve we obtained thus constitutes the phase boundary

between a quantum solid and a correlated quantum liquid (Chitra et al., 2002). At

certain special fractional ν such as 1/7 and 1/9, the melted phase of the solid has

been suggested to be a FQH liquid (Price et al., 1993; Pan et al., 2002). We have not

observed special features (Price et al., 1993; Kukushkin et al., 1993) in the measured

4In this regime, Tm (at which the spectrum becomes flat) measured is the characteristic T above
which no solids are detected in the system (i.e., both solids “A” and “B” have melted).
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Figure 6.4: (Tm,ν) melting curve of the electron solids measured in QW65 (multiple
pieces). QW65 is a 65nm wide QW, with a tunable n=2.6-5.9×1010cm−2. The data
shown are measured in multiple cooldowns and from multiple pieces cut from the
same wafer. QW65 can have two different solid phases (“A” and “B”, as lableled in
the figure), dominant in different regimes of ν and an “A”-“B” coexistence regime
at intermediate ν. As solid “A” approaches ν=1/5 or 2/9 FQH liquid state, its Tm

drops. At ν<0.1, where solid “B” dominates, Tm has weaker ν-dependence than at
low ν.
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(Tm,ν) melting curve near ν=1/7 or 1/9. We note at such ν, the 2DES can be a

mixture of more than one solid phases, as observed in the low disorder QW65. Our

measured Tm is the temperature at which all the solids in the system have melted.

Theories for Tm involving such mixed phases have been lacking so far.

The Tm we measured in three samples are of the same order of magnitude as the

melting temperature of other samples estimated previously using various experimental

techniques (Glattli et al., 1990; Goldman et al., 1990; Williams et al., 1991; Paalanen

et al., 1992b; Goldys et al., 1992; Kukushkin et al., 1993). At similar ν, samples

QW65, P and QW15 have successively lower Tm and the typical fpk in their observed

pinning mode resonance is also successively lower. The different fpk’s of the three

samples reflect the different strengths of pinning disorder, which has been suggested to

come mostly from the interfaces (Fertig, 1999) confining the 2DES (see also Sec. 3.2).

Thus the stronger pinning disorder tends to stabilize (Tsukada, 1977) the 2D electron

solid to higher Tm. Such behavior is opposite to what is usually found in other solids,

for example in the vortex solid in a high-temperature superconductor subjected to

artificial pinning centers (Paulius et al., 2000) or a helium solid in a porous glass

(Beamish et al., 1983), where a reduction (Christensen, 2001) of Tm due to increased

disorder is found in both cases.

It is also interesting to compare the quantum nature of our 2D electron solid to

the quantum solids of helium (Wilks, 1967; Dobbs, 2001; Adams, 2004). In a helium

solid, the size of atoms is fixed by nature and the quantum parameter is the De Boer

parameter λ∼h/(a
√
Mv) (where M is the atomic mass, a the inter-atomic distance

and v the inter-atomic potential strength) which is fixed at fixed n. The Tm of helium

solids is only determined by n. In the case of a 2D electron solid formed in high B,

the size of single electron wavefunction (lB) is readily tunable by B, independently

of n. The quantum parameter here is ν=nh/eB and we have found that Tm of such

an electron solid is mainly determined by ν rather than n.
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6.5 Additional Notes and Further Directions

In this chapter, we have focused on the melting temperature (Tm) of the MIWC,

and shown that Tm is mainly controlled by ν, or the quantum correlation between

electrons. Many interesting issues about the melting of a WC remain to be better

understood. For example, how exactly does the melting process occur? What is the

nature of the melted phase?

We have performed extensive measurements (the details will be presented else-

where) of the T -dependence of the WC pinning mode resonance, particularly on sam-

ple P. One interesting feature we found (in sample P, at relatively low n) is another

characteristic temperature T1<Tm, such that fpk of the resonance does not change ap-

preciably below5 T1 but decreases with increasing T above T1. An example is shown

here in Fig. 6.5. Interestingly, we have also noticed that most of the T1 we have

measured appear to be around 2hf0
pk/kB, where f 0

pk is the fpk at base T (∼50mK).

It remain to be understood, whether T1 may be related to a two-stage WC melting

process considered theoretically (Kosterlitz and Thouless, 1973; Nelson and Halperin,

1979; Young, 1979; Fertig, 1997), or is mainly a finite-T property of the pinning mode

(Yi and Fertig, 2000), and whether it is related to characteristic temperatures found

in some other experiments (Goldys et al., 1992; Kukushkin et al., 1992; Li et al.,

1995a, see also Shayegan (1997), Fig. 9.10).

Additional insights on the melting of WC may be obtained from systematically

examining the T -dependence of various correlation lengths of WC (Lc, LB (Chap. 3),

and in the case of WS-A phase, LWSA (Chap. 5) from the dispersion measurements).

Performing T -sweeps (for example, from above to below Tm) and monitoring the

conductivity at fixed B and f may also be illuminating (Sambandamurthy, 2004).

More accurate extraction of quantities (for example S and S/fpk) from the spec-

5Note that we have checked (using on-block thermometers as well as features in the measured
signal, such as the amplitude of the resonance shown in the inset of Fig. 6.1) that the sample did
cool below T1. Also note we can only observe T1 if it is above the base T (typically 50-60mK).
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Figure 6.5: Sample P: fpk as a function of T measured at n=3.2×1010cm−2 and
B=18T.

tra at elevated T (when features in the spectra are often weak)6 can be generally

very valuable. Systematic investigations of the spectrum at T>Tm could also yield

information on the melted WC. It may also be interesting to perform (f ,T ) scaling

type of measurements (Engel et al., 1993) either near the thermal melting (T∼Tm)

or quantum melting (transition to FQHE) of WC.

For sample WP, DC transport studies (Pan et al., 2002) have found FQHE features

at small rational fillings such as 1/7 and 1/9, only at elevated T (above some charac-

teristic Tm, interpreted by Pan et al. (2002) as the temperature where the WC melts

into a FQH liquid). Careful corroborating the microwave spectroscopy measurements

and the DC measurements7 at elevated T can be illuminating.

In the limit of infinite B (ν→0), a MIWC is expected to behave as a classical

6Appropriately choosing the reference spectrum (Sec. 2.2.3) is especially important.
7And/or AC magnetoconductivity measurements (Append. F). So far, our preliminary measure-

ments of AC magneto-conductivity in sample WP at elevated T have not found FQHE features at
1/7 or 1/9.
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WC (with Tm∝
√
n, instead of being controlled by ν as we found in this chapter).

Extending our measurements to the highest possible B is of obvious interest8.

8It is particularly interesting to measure QW65, whose Tm tends to saturate at the low ν end in
Fig. 6.4, to higher B than what we have used (the highest B in Fig. 6.4 is 33T).



Chapter 7

Summary and Perspectives

7.1 Summary

In this thesis, we have studied the solid phases of 2DES subjected to a perpendicular

magnetic field (the quantum Hall system) using microwave spectroscopy. For each of

the isotropic, pinned electron solid phases studied, we have measured its characteristic

pinning mode resonance due to the collective oscillation of the solid around disorder.

Some important generic features of such a resonance, supporting its identification as

an electron solid pinning mode, are recollected here:

• The resonance is not observed when a solid phase is not expected, for example,

in FQH liquids (see, for example, Fig. 5.6), or at sufficiently high T (Chap. 6);

• The resonance frequency (fpk) is generally higher for more disordered samples.

We have found that the most important source of pinning disorder appears to

be from the interface (Chap. 3), consistent with theories by Fertig (1999). On

the other hand, the resonance is not observed for samples too disordered to

show FQHE, consistent with the expectation that localization of electrons by

disorder in these samples occur individually, instead of collectively via Wigner

crystallization.

107
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• Behavior of fpk can be largely understood within the framework of collective

“weak pinning” theory of WC (Fertig, 1999; Fogler and Huse, 2000; Chitra

et al., 2002), especially using the interface pinning model (Fertig, 1999), as we

discussed in Chap. 3.

• The resonance can survive up to a temperature that significantly exceeds the

T scale corresponding to the fpk (hfpk/kB), ruling out the individual particle

excitation as giving rise to the resonance (Kivelson et al., 1992). Such a feature

is more evident for samples of lower pinning disorder. For example, in sample

QW65 (Sec. 3.2.1, Chap. 5 and Chap. 6), the typical resonance can survive to

100mK or higher, whereas its fpk is on the order of 100 MHz (hfpk/kB∼ 5mK)

only.

• The resonance is relatively narrow (with Q=fpk/∆f generally well above unity).

This is now understood (Fertig, 1999; Fogler and Huse, 2000) as a combined

effect of high magnetic field (B) and long range Coulomb interaction (Chap. 3),

where collective motion of large regions of the solid can effectively average dis-

order and produce a sharp resonance.

• The integrated intensity (“oscillator strength”) S of the resonance, when the

solid phase is well developed (for example, sufficiently far away from FQHE)

agrees with in a factor of 2 (see, for example, Fig. 3.3 and Fig. 4.5) with the

pinning mode sum rule derived by Fukuyama and Lee (1978) (provided also,

that the 2DES is in its long wavelength limit).

In low disorder samples, there is a plethora of electron solids, or more general

charge density wave (CDW) phases we have studied with microwave spectroscopy.

They include:

• WC in the LLL, following the termination of FQHE at high B. We have found

(in wide QW samples with very low pinning) in fact, two different solid phases
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(Chap. 5), WS-A and WS-B, in different regimes of ν: WS-A dominant for

2/9>ν>0.18 (but reentrant around 1/5), and WS-B for ν <∼ 0.12. In the tran-

sition regime (0.18 >∼ ν >∼ 0.12), the two phases coexist.

• WC around IQHE (Sec. 4.1): ν near 1, 2, 3, 4. These are WC formed by

electron/holes in the partially filled top LL.

• A series of CDW phases in the higher LLs (Sec. 4.2), including the “bubble”

crystal (BC) at ν near K+1/4 and K+3/4, where K=4, 5, 6, 7; the re-entrant

IQHE states in the 1st excited LL, in particular at ν∼ 2.58, probably also a BC

phase (Lewis et al., 2005a). Studies of the “stripe” phase1 at ν near 9/2, 11/2,

13/2, and 15/2 are also underway (Lewis et al., 2005b; Sambandamurthy et al.,

2005a).

One highlight in our studies is the finding of the importance of many-body quan-

tum correlations in the 2DES solids, even in the LLL, where the overlap between single

particle wavefunctions can be quite small (Maki and Zotos, 1983). Such many-body

correlations appear to determine the transition between WS-A and WS-B (Chap. 5).

In particular, WS-A is found to have a very large correlation length, apparently ab-

sent in WS-B, and may be a solid phase with substantial FQH-liquid-like correlation

(Chap. 5).

Our systematic studies on the melting of WC in the LLL (Chap. 6) have found that

the melting temperature (Tm) is a function of Landau filling ν, therefore determined

by the many body correlation between electrons, in contrast to a classical 2DWC

where Tm is determined by density n. This again confirms the quantum nature the

electron solid we studied.

In addition to revealing many physical properties of the quantum electron solids,

studies of the pinning mode resonance have enabled us to learn important information

1The stripe phase has been suggested to be a liquid crystal-like phase (Fradkin and Kivelson,
1999), or an anisotropic WC (Ettouhami et al., 2005).
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about disorder (Chap. 3), such as its correlation length and even its statistics. We

have shown that the vertical confinement of the 2DES can greatly affect the pinning

of a WC, and an important source of pinning disorder is likely from the interface.

Our data has provided support for the interface pinning model given in Fertig (1999),

which suggests that pinning is provided by some dilute “pits”, the size of which can

reach below ∼10 nm.

7.2 Perspectives

Quantum Hall systems have been extensively investigated for over two decades, re-

vealing an extremely rich array of physical phenomena. Among them, the pinned

electron solid phases, the subject of this thesis, represent a regime where both inter-

action and disorder are equally important (Tsui, 1999). There are ample reasons to

believe, that many new and novel physics are yet to be uncovered, and much more

remain to be learned about these electron solids. Microwave spectroscopy, as we have

seen, is a particularly powerful tool to study such pinned solid phases, which have

been difficult to probe with conventional DC transport.

We have listed many open questions and directions for further research, specific for

the topics presented, at the end of earlier chapters. Numerous uncharted territories

can be explored by extending the experimental parameter space in many ways, for

example, going to lower temperature (T ), higher magnetic field (B), wider ranges of

wave vector (k), frequency (f), density (n) and adding an in plane magnetic field

(B||). In addition to the resonance, investigating other aspects of the spectrum, for

example, its low f tail can be interesting as well (see, for example, Fogler (2002)).

One can also readily go beyond Re[σxx(f)] and look at the full complex σxx(f) (see

Appendix D). Other than the continuous wave (CW) mode, one can also perform

pulsed microwave measurements, which may be particularly interesting to study the
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magnetophonon dynamics2.

There is also a wide variety of new samples that can be interesting to study with

microwave spectroscopy. In addition to samples with controlled disorder (for example,

Al alloy) and varying structure parameters (for example, QW width) mentioned in

Chaps. 3 and 5, one may also go beyond the single layer 2DES samples, and study the

Wigner crystal phase(s) in 2DHS3 (Santos et al., 1992; Li et al., 1997), bilayer electron

(Manoharan et al., 1996) and bilayer hole4 (Tutuc et al., 2003) systems, and even 1D

WC5 (Schulz, 1993). In addition, novel physics may also arise when one ventures

into samples based on other materials (than GaAs), such as AlAs (Shkolnikov et al.,

2005), whose 2DES can have anisotropic effective mass (Gunawan et al., 2004), or

Si/SiGe system (Lai et al., 2004).

Other than the magnetic field induced WC, the WC (realized at sufficiently low

n) at B=0 (Chitra and Giamarchi, 2004) is also interesting in many ways, especially

in relation to the apparent 2D metal-insulator transition (Yoon et al., 1999; Abra-

hams et al., 2004; Spivak, 2002; Spivak and Kivelson, 2004; Kravchenko and Sarachik,

2004). It will be interesting to see if the new generation of samples with very low

n and high quality6 have pinning frequency7 ω0 (Chap. 3) low enough (to be within

the measurable f range) so the (B=0) pinning mode can be studied with the mi-

crowave. Microwave spectroscopy can also yield unique information in other regimes

2For an example of studying a classical Coulomb crystal using a chopped (optical) source to, see
Nunomura et al. (2000, 2002).

3Although the microwave resonance in the 2DHS WC was measured by Li et al. (1997), the new
generation of high quality hole samples may yield new physics not seen in earlier samples.

4The bilayer WC is a particularly interesting direction (see Appenix K). In a bilayer system, the
layer index can play the role of spin and one may realize such novel phases as a anti-ferromagnetic
(AFMWC) and ferromagnetic WC (FMWC). The FMWC is an interlayer coherent WC and may also
be considered as an electronic supersolid (see Appenix K for details.). Another potentially interesting
situation is when two layers have highly unbalanced n, such that one layer is a (pinned) WC and
the other in a liquid state. Microwave studies on bilayer hole systems are currently underway by
Wang et al. (2005).

5Perhaps using an array of quantum wires (Demel et al., 1988; Fukui et al., 1990).
6see, for example, Csathy et al. (2005a)
7At B=0, one expects that the pinning mode ωpk=ω0 (Fukuyama and Lee, 1978; Chitra et al.,

2002).
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of quantum Hall systems, for example at IQHE or near QH transitions, involving the

localization physics (Hohls et al., 2001; Engel et al., 1993), and near ν=1/2, involving

the composite fermion physics (Evers et al., 2001).

Placed in the more general context of condensed matter physics, microwave ab-

sorption/transmission spectroscopy has been utilized to study various interesting sys-

tems, such as charge density waves (Grüner, 1988), spin density waves (Quinlivan

et al., 1990), electron glasses (Helgren et al., 2004) and superconductors (SC) (both

conventional SC (Biondi et al., 1958; Tinkham, 1974) and high-Tc SC (Turner et al.,

2003; Gaiffulin et al., 2000; Basov and Timusk, 2005)). The powerful ability for such

a tool (especially broad band microwave spectroscopy) to probe charge ordering, dy-

namics (including collective excitations) and disorder effects (such as pinning) can

make it a particularly promising tool for studying many rich and complex phenom-

ena in strongly correlated electron systems (see for example, Dagotto (2005)). It can

be illuminating to apply the microwave tool to study, for example, superconductor-

insulator transitions (Sambandamurthy et al., 2005b), the rich vortex physics (Blatter

et al., 1994), and the recently observed (in high-Tc superconductors) “checker-board”

pattern (Hoffman et al., 2002; Vershinin et al., 2004; Hanaguri et al., 2004) that has

been suggested by many to come from some Wigner cystal of cooper pairs (see, for

example Franz (2004); Chen et al. (2004a); Tešanović (2001); Demler et al. (2004)).

One of the fundamental tasks of condensed matter physics is to discover and study

various quantum matter, such as quantum gas, quantum liquid and quantum solid, in

both atomic and electronic systems. Macroscopic quantum phenomena (such as su-

perfluidity, superconductivity, and FQHE) often occur as one of the most fascinating

aspects of these quantum matter. Recently, evidences for a “supersolid” have been

found in the quantum solid of helium (Kim and Chan, 2004b,a; Leggett, 2004). One

particularly exciting possibility that has emerged from this thesis, is that some anal-
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ogous supersolid 8 may also exist in the quantum solids of electrons we studied (see

Chapter 5 and Appendix. K). An electronic supersolid has also been also proposed

for the cooper-pair Wigner crystal (Anderson, 2004; Franz, 2004), in relation to the

afore-mentioned checker-board pattern, and could hold the key to many mysteries of

high-Tc superconductivity.

What we have learned is a handful

What we haven’t learned is an ocean

——Thiruvalluvar (1st century BC)

8more broadly defined as a phase with both long range crystal order and phase coherence, or
with both diagonal and off-diagonal long range order, see for example Leggett (1970)



Appendices

114



Appendix A

Physical Quantities

For convenience we list here certain physical quantities used and their representative

values under typical situations, along with their parameter dependence. The values

given should be assumed to provide a general guidance rather than high precision.

In the following ε means ε0ε∗ (ε∗=13 for GaAs) and m means m0m∗ (m∗=0.068

for GaAs electrons) where ε0 and m0 are vacuum dielectric constant and bare electron

mass respectively. The permeability of GaAs is taken to be close to be that of vacuum

(i.e. µ∗=1).

All energies are given in Kelvin through E/kB, and the conversions among tem-

perature, frequency and energy scales are:

1 K = 20.8 GHz = 86 µeV

1 GHz = 48 mK = 4.1 µeV

1 µeV = 11.7 mK = 244 MHz = 1.6×10−25 Joule

All angular frequencies ω below are given in Hz (after dividing ω by 2π).
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quantity formula representa- evaluated at material
-tive value

mean electron
separation r 1/

√
πn 564 Å n=1×1010cm−2

triangular

lattice constant a (2/
√

3n)1/2 1075 Å n=1×1010cm−2

Coulomb Ec e2/4πεr=e2
√
πn/4πε 23 K n=1×1010cm−2 GaAs

Fermi energy Ef πn~2/m 4.1 K n=1×1010cm−2 n-GaAs
rs r/aB=me2/(4πε~2

√
πn) 5.6 n=1×1010cm−2 n-GaAs

n=1×1010cm−2

ν nh/eB 0.417 B=1 T

lB (~/eB)1/2 257 Å B=1 T

El e2/(4πεl) 128 K l=100 Å
if l=lB:
e2(eB)1/2/(4πε~1/2) 50 K B=1 T GaAs

cyclotron ωc eB/m 411 GHz B=1 T n-GaAs
~ωc ~eB/m 19.7 K B=1 T n-GaAs
Zeeman energy gµBBtot 0.3 K Btot=1T n-GaAs
plasmon freq. n=1×1010cm−2

ωL

√
ne2q/(2mε) 162 GHz q=2π/µm n-GaAs

shear freq. (0.245n1/2e2

4πmε
)1/2q n=1×1010cm−2

ωT [assuming classical µT ] 25.4 GHz q=2π/µm n-GaAs

pinning (ωpkωc)
1/2 fpk=1 GHz

freq. ω0 =(2πfpkeB/m)1/2 161 GHz B=10 T n-GaAs
S/fpk neπ/(2B)=νπe2/(2h) 6.08 µS ν=0.1

Larkin (2πµT/(neBfpk))
1/2= fpk=1 GHz

length Lc (0.245en1/2/(2εBfpk))
1/2 1.32 µm n=1×1010cm−2 GaAs

[assuming classical µT ] B=1 T
magnetophonon ν(e2/h)(4ε∆f)−1= ν=0.1
localization LB (ne/B)(4ε∆f)−1 8.5 µm ∆f=1 GHz GaAs
classical WC e2

√
n/(4πεkBΓ)

melting Tcm with Γ=127 179 mK n=1×1010cm−2 GaAs
microwave λ c/(f

√
µ∗ε∗) 8.3 cm f=1 GHz GaAs

microwave |σxx|=1µS

penetration ξ
√
|σxx|d/ωε 0.37 µm f= ω

2π
=1 GHz GaAs

(Chap. 2) d=0.1 µm

Table A.1: Selected quantities relevant for 2DES solids. Universal physical constants
c,e, h and ~ have the usual meaning. n is the 2DES density. B is the perpendicular
magnetic field. aB is the Bohr radius of the system and rs=r/aB is also equal to Ec/Ef

(In D dimensions, r/aB=π221−2/DK−4/D(Ec/Ef ), where 1/(KrD) = n). Quantities
dependent on ε are calculated for GaAs and those dependent on m for GaAs electrons
(n-GaAs). For Zeeman energy we use the g=0.44, also for n-GaAs. Formula for LB

is according to the estimate in Fogler and Huse (2000).
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Appendix B

Sample Processing Procedures

B.1 General Steps

B.1.1 Wafer Cleaving and Thinning

Use scriber and glass slides to cleave a rectangular piece of sample from the wafer.

The typical size is ∼3×5 mm and should be checked before cleaving to make sure it

fits appropriately with the CPW pattern to be fabricated, as well as any DC contacts

to be put on.

We often thin our sample (typically down to ∼150 µm) to facilitate tuning the

2DES density with a backgate in the experiment. The steps are:

1. Glue sample (front side) with black wax on the grinding chuck;

2. Grind the back side of the sample with SiC (power mixed with water) on glass

plate;

3. Polish the back side with Al2O3 (powder mixed with water) on polishing pad;

4. Dissolve wax with warm TCE then take sample out carefully;

5. Clean the sample (see Section B.1.3 below for cleaning steps).
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Now the samples is ready for putting on ohmic contacts. In the case when the wafer

is “fresh” to start with (for example recently out of MBE) with no backside thinning

done, sample cleaning, with organic solvents, is not needed and not recommended

before the ohmic contacts step.

B.1.2 Ohmic Contacts

Most of our samples have ohmic contacts1. For them, we use indium (simply put by

hand with solder iron on the edge of the sample). The contacts are then “alloyed”

in an alloy station (with forming gas flowing) at 440◦C for 10mins. Afterwards the

residual indium on the surface should be scraped away (for example using a wooden

tip) before the lithographical fabrication of CPW (next step).

B.1.3 CPW Fabrication

1. Sample cleaning: in acetone for 30 then 15 then 5 secs (if more substantial

cleaning is desired to give an even cleaner surface for patterning, instead of just

acetone, clean with TCE, acetone then IPA, 5mins and 80◦C (hotplate) heating

in each one); blow dry;

2. Glue on a thin cover glass: with any photoresist (PR), bake on 110◦C hotplate

for 10mins for better adhesion.

3. Spin-on PR: used PR 4210, 4000RPM for 30sec2.

4. Bake: in over 90◦C for 20 mins (or hot plate 110◦C for 2 mins).

1These contacts are needed in the experiment to ground the 2DES and enable tuning the electron
density with a backgate. They also provide a cooling mechanism for the electrons (via DC wires).

2Since our CPW typically has relatively large feature sizes ( >∼ 10µm), fabrication parameters
such as these have a quite decent tolerance window. For example we also used 3500RPM, 60sec and
the results were just fine. PR4110 was found to work well too.
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5. Expose with mask aligner: 8-10 secs (if using the exposure-filtered mask aligner

in Princeton-POEM clean room, 30-50 secs)

6. Develop: in AZ350 (or AZ400):H2O (3.5:1) for 60secs in total (develop till the

pattern is clear and continue for 15 secs more); flush in DI; blow dry.

7. Evaporate: with thermo-evaporator, evaporate 200 Å of Cr (to enhance Au

adhesion) followed by ∼ 3000 Å of Au. The center conductor of CPW should

have a sheet resistance on the order of 0.1 Ω or lower. Thicker Au film has the

advantage of reducing the CPW center conductor resistance (thus reducing the

signal loss) but may make lift-off more difficult.

8. Lift off in acetone: heat in 80◦C acetone for 20mins followed (if needed) by

careful and gentle ultrasonic agitations (for as short as possibly needed).

The CPW (see Chapter 2.2.1 for consideration in its designing) masks we used

were either home made (for the straight CPW patterns) or ordered from Advance

Reproduction Co. (ARC, 978-685-2911, North Andover MA).

B.2 Other Issues

B.2.1 Etching

Occasionally it is desirable to etch away the 2DES, for example, near the “taper”

regime where the CPW meets the edge of the sample (the etching can thus give a

uniform slot width under which the 2DES is measured). The place where the etching

is desired should be patterned using the standard lithography steps (Williams, 1990)

similar to the ones described in Sec. B.1.3, with the area to be protected from etching

covered by a hard-baked (for example 110◦C hotplate for 4 min or 90◦C oven for

30min) layer of PR.
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The etchant used is H2SO4:H2O2:H2O (1:8:160), which (in the case of our n-type

GaAs samples grown along <100> direction) has an etch rate ∼ 0.26µm per min

(Williams, 1990). The growth sheet of the wafer should be consulted to determine

the depth to be etched.

B.2.2 Alloyed CPW

Although CPW is usually used to capacitively couple to the 2DES, as in all the

measurements presented in this thesis, sometimes we alloy the CPW to contact the

2DES directly and use the CPW itself as the Ohmic contacts. This is beneficial in very

low frequency applications (for example to study the “stripe” phase (Chapter 4.2).

In this case, we lithographically pattern the CPW as in Sec. B.1.3, then deposit,

preferably with an e-beam evaporator, 400Å of Ge, followed by 800Å Au, then 100Å

Ni, then 2000Å Au to make the CPW films (instead of the usual Cr-Au ones) and

then alloy the CPW in the alloy station (440◦C 10min) as we do with usual Ohmic

contacts (Sec. B.1.2).

B.2.3 p-type GaAs

The procedures described so far were used to process our GaAs 2DES samples (n-

type). The CPW (capacitively coupled) fabrication (Sec. B.1.3) is generic and can be

used on p-type samples (for example the wafers grown by Shayegan group) as well.

For Ohmic contacts on p-type, InZn instead of indium is used (and if using alloyed

CPW as ohmic contact, evaporate Au-Be-Ni-Au or Au-Zn-Ni-Au films), and to etch

p-type GaAs grown along <311> direction, H3PO4:H2O2:H2O (1:1:40), with an etch

rate ∼0.1µm per min (refer to Williams (1990) or Shayegan group recipe for details)

is used.
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Appendix C

Supplementary Sample

Information

C.1 General Information

C.1.1 Cool-down Procedures

The general principle here is to try to cool the 2DES in a way that is as reasonably

“adiabatic” as possible, so the 2DES can arrive at a good “state” (appropriate density,

good homogeneity, etc.) at the end of the cooldown.

Typically, we cool our samples from 300K to 77K in at least one hour ( <∼ 4

K/min); then from 77K to 4K in another hour or more ( <∼ 1 K/min). The cooling

from 4K to base T (∼ 50 mK) is determined by dilution fridge (DF) operation and

usually takes a few hours.

During the cool-down, we usually ground all DC contacts and also attenuate the

coax ports. In the case of cooling into a top-loading DF, direct grounding of the

probe-top to the cryostat is also recommended.
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C.1.2 Effects of Light

Most samples studied were cooled in dark and LED illumination is generally found

to hurt the 2DES state, likely due to the CPW metal films present. The exception

is Sample WP (see Sec. C.4), for which LED illumination is necessary to give a good

as-cooled 2DES state.

Except for Sample P (see below), extended waiting in darkness at room T before

starting the cooling is not necessary and has little effect on the final 2DES state

arrived.

C.2 Sample P

Sample P (Pfeiffer wafer # 2-12-97-1) is a GaAs/AlGaAs heterojunction. Its schematic

structure is shown in Fig. C.1 (not the actually growth sequence, only layers close to

the 2DES and most important for its properties are shown). The wafer was rotated

(7 RPM) during the MBE growth.

Sample P has the peculiar property that its as-cooled n can vary significantly by

simply varying the length of time (τw) the sample is kept in darkness at room T

before the starting of cool-down. The longer the τw, the lower the as-cooled n. For

example, when cooled in “SCM1” fridge1 τw∼ 20 mins typically results in as-cooled

n∼1×1011cm−2, whereas τw∼ 120 mins results in as-cooled n∼6×1010cm−2.

Sample P was thinned and a backgate voltage of−100 V can deplete∼1.1×1010cm−2

electrons.

The piece we studied has a meander shape CPW “M30”, with length l=28mm

and slot width w=30 µm. The CPW information for all samples are also summarized

in Appendix D (Table D.1) for convenience.

1As-cooled n can also vary somewhat between the cryostats used (“C120”, “SCM1” and “PDF”
(see Chap. E.1 for a description of the different cryostats).
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surface

GaAs    10 nm

2DES

GaAs    >1000 nm

(mainly) Al0.24Ga0.76As      100 nm

δ-doped Si

(mainly) Al0.24Ga0.76As      150 nm

...
...

Figure C.1: Structure schematics for Sample P (not the full growth sequence).
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surface

GaAs    10 nm

2DESGaAs    30 nm

(mainly) Al0.24Ga0.76As      100 nm

δ-doped Si

(mainly) Al0.24Ga0.76As      80 nm

(mainly) Al0.24Ga0.76As      80 nm

δ-doped Si

(mainly) Al0.24Ga0.76As      100 nm
...

...

Figure C.2: Structure schematics for Sample R (not the full growth sequence, only
layers most important for the 2DES properties are shown).

C.3 Sample R

Sample R (Pfeiffer wafer # 7-21-00-1) is a 30nm wide AlGaAs/GaAs/AlGaAs quan-

tum well (QW), whose schematic structure is shown in Fig. C.2. The wafer was

rotated (10 RPM) during the MBE growth.

Totally four pieces of sample R cut from the same wafer were studied. The CPW

used are “S20e” (straight CPW with l=2mm and w=20 µm and the electric field

along the “easy” direction <110>),“S20h” (straight CPW with l=2mm and w=20

µm and the electric field along the “hard” direction <11̄0>), “S80h” (straight CPW

with l=4mm and w=80 µm and the electric field along the “hard” direction <11̄0>)

and “M30” (meander l=28mm and w=30 µm) respectively. When distinguish is

needed we label the pieces as R S20e, R S20h, R S80h and R M30 respectively. The

different orientation were selected to allow the studying of the anisotropic stripe phase

(Chap. 4.2).
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surface

GaAs    10 nm

2DESGaAs    50 nm

(mainly) Al0.24Ga0.76As      100 nm
δ-doped Si

(mainly) Al0.24Ga0.76As      220 nm

(mainly) Al0.24Ga0.76As      220 nm

δ-doped Si

(mainly) Al0.24Ga0.76As      100 nm
...

...

Figure C.3: Structure schematics for Sample WP (not the full growth sequence, only
layers most important for the 2DES properties are shown).

C.4 Sample WP

Sample WP (Pfeiffer wafer # 7-20-99-1) is a 50nm wide AlGaAs/GaAs/AlGaAs QW,

whose schematic structure is shown in Fig. C.3. The wafer was rotated (10 RPM)

during the MBE growth.

LED illumination at T∼10K was needed to induce a good quality 2DES. The

dosage used was rather large (compared to the one usually used in DC samples)

likely due to the CPW metal films present. The as cooled density n has found to be

tunable from ∼ 6×1010cm−2 to 1×1011cm−2 , with the amount of current used in the

LED (typically ∼ 6-11 mA for 1-2 mins)

The piece we studied has a meander shape CPW “M30”, with length l=28mm

and slot width w=30 µm.
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surface

GaAs    10 nm

2DESGaAs    65 nm

(mainly) Al0.24Ga0.76As      100 nm
δ-doped Si

(mainly) Al0.24Ga0.76As      440 nm

(mainly) Al0.24Ga0.76As      440 nm

δ-doped Si

(mainly) Al0.24Ga0.76As      100 nm
...

...

Figure C.4: Structure schematics for Sample QW65 (not the full growth sequence,
only layers most important for the 2DES properties are shown).

C.5 Sample QW65

Sample QW65 (Pfeiffer wafer # 8-30-99-1) is a 65nm wide AlGaAs/GaAs/AlGaAs

QW, whose schematic structure is shown in Fig. C.4. The wafer was rotated (10

RPM) during the MBE growth.

Five pieces cut from the same wafer were studied, labeled respectively as QW65 M30,

QW65 M60, QW65 S80, QW65 S20 according to the CPW used (M30: meander l=28

mm, w=30 µm; M60: meander l=15.5 mm, w=60 µm; S80: straight l=4mm, w= 80

µm; S20: l=4mm, w= 20 µm. The orientation of the straight CPW is not important).

C.6 Sample QW15

Sample QW15 (Pfeiffer wafer # 10-09-01-1) is a 15nm wide AlGaAs/GaAs/AlGaAs

QW, whose schematic structure is shown in Fig. C.4 and only differs from that of
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surface

GaAs    10 nm

2DESGaAs    15 nm

(mainly) Al0.24Ga0.76As      100 nm
δ-doped Si

(mainly) Al0.24Ga0.76As      440 nm

(mainly) Al0.24Ga0.76As      440 nm

δ-doped Si

(mainly) Al0.24Ga0.76As      100 nm
...

...

Figure C.5: Structure schematics for Sample QW15 (not the full growth sequence,
only layers most important for the 2DES properties are shown).

QW65 in the width of QW. The wafer was rotated (10 RPM) during the MBE growth.

The piece we studied has a meander shape CPW “M30”, with length l=28mm

and slot width w=30 µm.
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Appendix D

Coplanar Wave-Guide

D.1 Characteristic Impedance

This appendix summarizes a few basic facts about Coplanar Wave-guide (CPW) as

a transmission line. More complete treatments can be found in (Russer and Bieble,

1994; Wen, 1969) and the general transmission line theory is covered in (Liao, 1990).

Consider a CPW (schematically shown in Fig. D.1 for a local cross section) with

s as the center conductor width, w the slot width and fabricated on a substrate of

thickness h and relative dielectric constant εr. The surrounding is assumed to be

vacuum or air (εr∼ 1, which is also a good approximation for helium) .

In our usual applications, s,w,h� λ (the microwave wavelength). Also the CPW

metal films have very small resistance and the side planes can be treated as effectively

infinitely extended. In this case, the CPW, when not loaded by 2DES, can be modeled

by a standard, loss-less transmission line with two parameters L′ and C ′ (or vph and

Z0), where L′ is the inductance per unit length, C ′ is the capacitance per unit length

(between the center conductor to ground). For the standard transmission line theory

(Liao, 1990, chapter 3, section 1), we have vph=1/
√
L′C ′ as the phase velocity and

Z0=
√
L′/C ′ the characteristic impedance. L′ and C ′ (or alternatively, vph and Z0) are
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w s w

h εr

(ε ~ ε0)

(ε ~ ε0)

Figure D.1: Schematic CPW (local cross section).
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only determined by the CPW geometry and εr. An excellent approximation can be

obtained with conformal mapping (Wen, 1969), giving the following analytic formula

(Russer and Bieble, 1994, p.40) for vph and Z0 (from which one can solve1 for L′ and

C ′):

vph = c/
√
εeff (D.1)

where

εeff = 1 +
εr − 1

2

K(k′)

K(k)

K(k1)

K(k′1)
(D.2)

Z0 =
η0

4
√
εeff

K(k′)

K(k)
(D.3)

where η0 =
√
µ0/ε0.

In the above equations, K(k) is the complete elliptic function of the first kind, with

k =
√

1− k′2 = s/(s+ 2w)

and2

k1 =
√

1− k′21 =
sinh πs

4h

sinh π(s+2w)
4h

In practice, it is often convenient to use an online-available CPW designing cal-

culator, for example

http://www1.sphere.ne.jp/i-lab/ilab/tool/cpw e.htm

1For example, typical values (calculated for the meander “M30” CPW we used) are L′=0.44µH/m
and C ′=176 pF/m (Li, 1999).

2In most situations, h is large compared to s and w, then k1∼k and εeff can be further approx-
imated as simply (1 + εr)/2.

130



Wafer CPW CPW CPW CPW center
code length l slot width w conductor width s remark

P M30 28 mm 30 µm 45 µm
R M30 28 mm 30 µm 45 µm

S20e 2 mm 20 µm 30 µm CPW
along <11̄0>

S20h 2 mm 20 µm 30 µm CPW
along <110>

S80h 4 mm 80 µm 120 µm CPW
along <110>

WP M30 28 mm 30 µm 45 µm
QW65 M30 28 mm 30 µm 45 µm

M60 15.5 mm 60 µm 90 µm
S20 4 mm 20 µm 30 µm
S80 4 mm 80 µm 120 µm

QW15 M30 28 mm 30 µm 45 µm

Table D.1: Summary of CPW parameters used in all samples. In the case of R and
WQ65, multiple pieces of samples were made from the same respective wafer but with
different CPW and each sample is referred to using the joint wafer and CPW name
(for example “WQ65 S20”) when distinguish is needed.

D.2 List of All CPW’s used

For convenience, we list in Table D.1 all the CPW’s that have been used in all samples

we studied.

D.3 From S parameters to Conductivity

The vector network analyzer can measure any one of the (complex) S-parameters

of a two-port network. The meaning of S-parameters3 is illustrated in Fig. D.2,

which shows a two-port network as a part of a transmission line. The ai (bi) are the

(complex) voltages of the waves propagating through the network, in the directions

labeled by the corresponding arrows. In our case when the network is the sample with

CPW, the two ports are the center conductor and side plane (ground) respectively.

3For more detailed discussion on S-parameters, see Hewlett-Packard Application Note 154 “S-
Parameter Design”; HP Application Note 95-1 “S-parameter Techniques for Faster, More Accurate
Network Design”.
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a1 a2

b1 b2

2-port network

S11 S12

S21 S22

b1

b2

=
a1

a2

Figure D.2: S parameters of a two-port network.
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In our experiments, we always put the analyzer in the mode that measures S21,

the (complex) forward transmission coefficient. For a sample with a CPW of length

l, S21 is related to the “propagation constant” γ as S21=e
−γl. Applying the standard

transmission line theory (Liao, 1990, chapter 3, section 1) to our situation (see also

Fig. 2.2 and the discussions in Sec. 2.2.1), γ=
√

(iωL′)(iωC ′ +G′) where G′=2σxx/W .

It turns out that a binomial expansion gives a fairly good approximation of γ under

our experimental conditions and one has:

γ = iω
√
L′C ′(1 +

σxx

iωWC ′ ) = σxxZ0/W + iω/vph (D.4)

Since |S21|2 gives the relative power transmission P=Pout/Pin (note that S21 is a

voltage ratio), this leads to Eq.2.1 which we have used to extract Re[σxx].

D.3.1 Imaginary Part of σxx

In this thesis we have focused exclusively on Re[σxx], which is relatively easy to

interpret and compare to the theories. We mentioned in the above that the network

analyzer measures the complex transmission S21 (see Appendix D), which gives both

the power absorption P and the phase shift Θ, from which we can extract the real and

imaginary part of σxx respectively (under appropriate conditions, usually satisfied in

our experiments, as discussed in Sec. 2.2.1). Our measurement scheme is generally

more sensitive to Re[σxx] than Im[σxx] (Engel et al., 1993; Li, 1999), nonetheless we

obtain them simultaneously4. This is demonstrated below in Fig. D.3(A). The pinning

mode resonance in the WC manifests in Re[σxx(f)] as a peak and in Im[σxx(f)] as a

zero-crossing. One can even make a parametric (versus f) 2D plot of the full complex

σxx, as shown in Fig. D.3(B). In this case, a circle5 is traced counterclockwise as f

4For spectroscopy, in principle (if the f range is large enough), Re[σxx(f)] and Im[σxx(f)], related
by KK relation, contain the same information.

5One can show, following Fukuyama and Lee (1978), that the area (A) enclosed by this circle is
in fact related to the line width (∆f) of the resonance (A∝1/∆f2)
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increases.

Previously, Li et al. (1995a) extracted dielectric constant ε0xx from the slope of

measured Im[σxx(ω)]) vs ω. He found a giant ε0xx in the 2DES re-entrant insulating

phase (near ν=1/5) and studied its T dependence, and interpreted the findings as

consistent with the expected behavior of a pinned WC.

We also mention here, that measurements of the T -dependence of dielectric func-

tions could be used to probe the “electron glass”, see, for example6, Park et al. (2005).

D.4 Some Other Practical Issues

We have shown in Fig. 2.4 a picture of an actual sample mounted on a block. The

CPW on the sample are connected with indium bridges to the circuit-board CPW on

the block. These indium bridges also press the sample against the Cu backgate pad

(with a Kepton tape between the sample and the gate). The 90 degree turn of the

circuit-board CPW (along the edge of the block), visible at the right hand side, is

actually made by electrically joining two such circuit board CPW with silver epoxy

(the substrates (appropriately wedged) are joined with a nonconducting glue, such as

“hysol”).

The substrate (thickness h=25 mils) of the circuit board has a relative dielectric

constant 10, and the circuit board CPW currently used typically has the slot width

(w) of 22 mils and the center conductor width (s) of 16 mils. To push the microwave

measurements to higher7 f (above ∼ 20 GHz, for example), one may need to reduce

the dimensions of the circuit board CPW (perhaps fabricated with lithography), such

that s,w,h � λ (Sec. D.1) remains safely satisfied.

6They found a temperature, interpreted as the glass-freezing temperature, below which ε drops
substantially.

7The main limit of pushing the measurements to lower f (below ∼ 10 MHz, for example), on the
other hand, comes from the capacitive coupling of the CPW on the sample to the 2DES. A CPW
alloyed to directly contact the 2DES (see also Sec. B.2.2) is perhaps more appropriate at such low
f .
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Figure D.3: (A): An example of the real and imaginary parts of conductivity spectrum
measured in Sample P in the WC regime. (B): The same data in (A), now plotted
in the complex plane, showing the trajectory of the complex conductivity as the
frequency (f) is sweeped.
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To push the temperature T (more specifically, the electron temperature) to even

lower values than currently achieved (below ∼ 30mK, for example), one may need to

carefully consider the cooling of the CPW, with possibly on-block microwave atten-

uation (Sambandamurthy et al., 2005a).
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Appendix E

Setups in NHMFL

E.1 Cryostats and Magnet Cells

In this section we note some issues specific for the magnet cells/cryostats used in

NHMFL.

E.1.1 C120 (14T)

In C120 we have a vacuum-loading dilution fridge (DF), and a superconducting mag-

net, both made by Oxford Instruments. The mixing chamber (MC) of the fridge

can reach a base T of sub 10mK. However, the sample/block (sitting in vacuum and

thermally connected to the MC via a copper strip) can only be cooled to ∼ 35mK (∼

60mK if using the sample rotator). The main heat load comes from the coax cables.

Over the years, such heat load has been reduced using, for example, superconducting

(Nb) coax cables and connectors to block the heat conduction in various places in the

DF.

The C120 magnet has a maximum B-field of 14T (16T if pumping the λ plate).

The maximumB sweeping rate that will not heat the sample appreciably is∼0.08T/min.
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However, in spectroscopy measurements, faster1 sweep rates (up to 0.3-0.4 T/min)

have been often used as long as sufficient stabilization time (∼1min) is given prior to

measuring each spectrum.

The temperature is currently read by a ruthenium oxide thermometer on the MC,

which is far from the magnetic field region. We have confirmed that the sample/block

(using both an on-block thermometer and measured features from the 2DES) temper-

ature can follow the MC temperature down to ∼ 35mK (without the rotator). The

temperature can be raised using an externally controlled MC heater. A temperature

stabilization time of ∼ 20 minutes is found to be generally sufficient. In addition, a

powerful on-block heater enables rapid thermal cycling of the sample without pulling

the fridge.

Currently, microwave measurements in C120 can be fully automated with Labview.

E.1.2 SCM1 (18T)

In SCM1 we have a top-loading DF, and a superconducting magnet, both from Ox-

ford. The sample/block is immersed in the 3He-4He mixture and can be in thermal

equilibrium with the MC down to ∼ 45-50 mK, as we have checked.

The magnet has a maximum B-field of 18T (20T if pumping the λ plate). We

have typically used B sweep rate of 0.2-0.4T/min without noticing significant heating.

For accurate B-trace measurements the sweep rate is more limited by the possible

hysteresis of the magnet than the heating concern.

In SCM1, the microwave response of the semirigid coax cables (in the probe) has

a non-negligible dependence on the helium level (particularly when the level is near

80%) in the dewar (this is in contrast to C120, where the fridge coax is in vacuum and

the microwave response has negligible helium level dependence). For accurate spec-

troscopy measurements, such a dependence needs to be taken into account and can

1Note that the first sweep (after cool-down) to high B for a superconducting magnet often needs
to be significantly slower, <∼ 0.1T/min.

138



be corrected by, for example, careful calibration of the reference spectrum (Sec. 2.2.3)

at different helium levels.

The ruthenium oxide thermometer in MC (which is subjected to B) has a signif-

icant, almost linear positive magnetoresistance for B >∼ 3T (below 3T, the magne-

toresistance, although can be anomalous, is generally weaker (especially when T is

above ∼ 100mK) ). A reasonably good approximation we have used to correct for the

magnetoresistance is given as the following:

R0 = R(B)/(1 + 0.11×B/18) (E.1)

in which B is in Tesla and R(B) is the resistance reading at B>3T, and R0 is the

estimated resistance reading at 0T and can be converted to a temperature using the

B=0 R-T calibration.

The temperature can be raised with an externally controlled MC heater. A tem-

perature stabilization time of ∼ 10-15 minutes is found to be generally sufficient for

T <∼ 400mK. Above ∼400mK, long term T stabilization is more difficult. However,

for the relatively short time to measure each spectrum (typically 2-3 minutes), this

usually does not pose a significant problem (which we have checked both from moni-

toring in real-time the T reading and from measured features in the 2DES). We have

also noticed that the efficacy of the heater does have some dependence on the fridge

state (for example the still power used).

E.1.3 Resistive (33T) and Hybrid (45T) Cells

The resistive cells have Florida-Bitter resistive magnets with maximum B=33T. The

hybrid cell has at present the world’s highest DC B-field magnet, using a 11.5 T su-

perconducting magnet outsert and a 33.5T resistive magnet insert to give a combined

maximum field of 45T.
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When doing experiments in one of these cells, we have used a top loading portable

dilution fridge (PDF) inserted in the magnet bore. With our microwave probe, the

sample can typically be cooled to ∼ 55-70 mK. Although the resistive magnet (and

the resistive insert of the hybrid magnet) can be sweeped much faster than a super-

conducting magnet, we have normally kept the sweep rate below 1T/min to prevent

heating. The magneto resistance of the ruthenium oxide thermometers (on the probe)

can be corrected for in similar ways as in (E.1).

Setups in the resistive or hybrid cells often need considering the significant fringe

B field present in the cells, and the fact that (for safety reasons) the user is pre-

vented from getting near the probe/cryostat when the resistive magnet is energized.

Automated data acquisition and remote control are particularly valuable in these

environments.

E.2 Automation Programs and Data Deposit

Automatic data acquisition (batch enabled) are enabled by a set of Labview programs

which control/communicate with a number of instruments (for example the analyzer,

magnet, and the instruments to change the temperature or gate voltage). These

programs are under (accessible from the NHMFL intranet)

https://tesla.magnet.fsu.edu/ychen/ExpRes/Magwav

and can be made available upon request (although with no claim of any guarantee

for using these programs).

All the raw data and their analysis, including all the Igor programs written for

analyzing the data (batch enabled), are deposited at (accessible from the NHMFL

intranet)

https://tesla.magnet.fsu.edu/ychen/PeideMac DataAnabk/DataAna

and are available upon request.
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Appendix F

AC Magneto-conductivity

We have focused on “f-traces” data (Re[σxx(f)]) in this thesis. In this appendix we

give representative B-traces (AC magneto-conductivity) for samples WP, P, QW15

in the following self -explanatory figures; and QW65 in the reprint of a paper1, also

published as Chen et al. (2004b) (with discussions on some insights the B-traces

can provide). Representative B-traces for Sample R (30nm QW) have been given in

Fig. 2.5 in Chap. 2 and Fig. 4.1 in Chap. 4.

1QW65 is the sample 1 (QW65 M30) in the paper. The other sample presented in the paper is
not discussed in this thesis.
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Appendix G

Fukuyama-Lee Sum Rule

It turns out that in Fukuyama-Lee (Fukuyama and Lee, 1978), they made a (trivial)

error of factor of 2 in the spectral weights (and thus the sum rule). In this appendix,

we re-derive the pinning mode sum rule from Fukuyama and Lee (1978), for a 2D

WC with density n in a perpendicular magnetic field B.

Start from the equation (4.3a) in their paper (hereafter referred to as FL), which

gives the expression for σxx(ω) (neglecting any damping):

σxx(ω) = −ne
2

m

iω(ω2 − γ2)

(Ω2
− − ω2)(Ω2

+ − ω2)
(G.1)

Here γ is the impurity pinning frequency (as we usually write as ω0) and Ω± are the

frequencies of the two modes (pinning mode Ω− and cyclotron mode Ω+) given in

(3.22) of FL:

Ω2
± =

1

2
[ω2

c + 2γ2 ± ωc(ω
2
c + 4γ2)1/2] (G.2)

The σxx(ω) in above (1) is obviously purely imaginary at ω 6= Ω± and has singularities

at Ω±—the corresponding real part of σxx(ω) will be delta function(s) at Ω±. For
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example, when ω is near Ω−, we rewrite σxx(ω) as

σxx(ω) = −ne
2

m

i

(Ω− − ω)

ω(ω2 − γ2)

(Ω− + ω)(Ω2
+ − ω2)

Since ω is near Ω−, we perform the standard substitution for the singular term i
Ω−−ω

:

i

Ω− − ω
←→ πδ(Ω− − ω)

to extract its real part, and simply setting ω = Ω− in the rest of the expression

(non-singular terms) and therefore obtain the real part of pinning mode conductivity:

Re[σxx(ω)] = −ne
2

m
πδ(Ω−−ω)

Ω−(Ω2
− − γ2)

(Ω− + Ω−)(Ω2
+ − Ω2

−)
= −ne

2π

m

(Ω2
− − γ2)

2(Ω2
+ − Ω2

−)
δ(ω−Ω−)

from which we can read off directly (in Fukuyama-Lee’s notation) that

Re[σxx(ω)] =
ne2π

m
A−δ(ω − Ω−) (G.3)

with

A− = −
Ω2
− − γ2

2(Ω2
+ − Ω2

−)

putting in (2)
========== −ω

2
c − ωc(ω

2
c + 4γ2)1/2

4ωc(ω2
c + 4γ2)1/2

=
1

4
{1−[1+4(γ/ωc)

2]−1/2}

This A−is exactly half the value of (4.4b) in FL. (In similar procedure, for the

cyclotron mode part (ω near Ω+) one obtains A+ = − Ω2
+−γ2

2(Ω2
−−Ω2

+)
= 1

4
{1 + [1 +

4(γ/ωc)
2]−1/2}, also half the value given in (4.4b) of FL). The corresponding ap-

proximation formular in high magnetic field limit of A± (4.5ab) of FL should also be

corrected to

A− ∼
1

2
(γ/ωc)

2 (G.4)

and A+ ∼ 1
2
(1 − (γ/ωc)

2). The right-hand axis scale in Fig. 4 of FL should also be
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multiplied by 1/2 (with the two ticks now reading 0.5 and 0.25). Their results for

peak frequencies Ω± and (half) widths Γ± are not affected. Anyway, with (3) and (4)

we obtain, in strong magnetic field regime (ωc � γ), the oscillator strength of pinning

mode

S ≡
∫ ∞

0

Re[σxx(f)]df ≡ 1

2π

∫ ∞

0

Re[σxx(ω)]dω =
ne2

2m
A− ' (

ne2

4m
)(
γ

ωc

)2

Since Ω− ' γ2/ωc ((4.5a) of FL), we have

S/fpk '
(ne2

4m
)( γ

ωc
)2

Ω−/(2π)
=

ne2π

2mωc

=
neπ

2B
(G.5)

This is the same result that has been pointed out by M. M. Fogler earlier.
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Appendix H

Supplementary Data on High-B

WC Resonance in Sample P

(Heterojunction)

H.1 Summary of Key Experimental Observations

• The high-B WC resonance of sample P was previously studied by Ye et al.

(2002b) in B up to 18T (SCM1). It was found (see Fig. 3 in Ye et al. (2002b))

that as ν is decreased from 1/5, fpk initially increases, then reaches a peak and

decreases with increasing B. The drop in fpk near ν=1/5 is probably an effect

mainly related to the 1/5 FQHE (see also Sec. 5.3.3). The decreasing fpk (with

increasing B) at higher B was interpreted in Ye et al. (2002b) at that time as a

precursor of the “classical” (Fukuyama and Lee, 1978) behavior (fpk∝1/B, see

also Sec. 3.1). However...

• When we later measured sample P in a resistive magnet (up to 33T), we found

(see Fig. H.1,H.2 and H.3) that at high n, the decreasing fpk with increasing

B found in Ye et al. (2002b) did not continue for B above ∼ 20T, instead, the
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behavior changes to increasing with increasing B, up to 33T; at low n, however,

the decreasing fpk with increasing B found in Ye et al. (2002b) continues to 33T,

but even here fpk has not shown the “classical” (1/B, or being proportional to

ν, at fixed n) behavior (see Fig. H.3 (f)). Then...

• When sample P was later measured (by G. Sambamdamurthy) in the hybrid

magnet (up to 45T), it was found (Fig. H.4) that (above ∼30T) the low-n fpk

also starts to become increasing with increasing B !

Some other important aspects found on sample P include good agreement of S/fpk

at small ν (see Fig. 3.3 and discussions thereof) with the Fukuyama-Lee sum rule

(such agreement indicates that all electrons are participating in the pinned WC), and

a weakening n-dependence of fpk seen at lower n (Fig. H.5)1.

Problems posed by the data:

The complicated B-dependence (which also depends on n) of fpk we observed appears

to challenge the recent theories on disorder pinned WC and the pinning mode (Fertig,

1999; Fogler and Huse, 2000; Chitra et al., 2002). These theories proposed two regimes

(Sec. 3.1): the “classical”, where lB<ξ0 (the disorder correlation length), and fpk is

expected to decrease (∝1/B) with increasing B; and the “quantum”, where lB>ξ0

and fpk is expected to increase (the details can depend on disorder statistics and vary

among theories, however, our experimental data appear to support the existence of

a dilute disorder as in Fertig (1999) which predict an almost linearly increasing fpk

with B in this regime, as discussed in Chap. 3.) with increasing B. Therefore as B

is increased, one can imagine a quantum-to-classical crossover (lB crossing over from

above to below ξ0) according to the theories, with fpk changing from increasing with

B to decreasing with B. However, we have observed (in all n) an opposite crossover

with (as B is increased) fpk changing from decreasing with B to increasing with B.

1Interestingly, the n below which the n-dependence of fpk significantly weakens roughly corre-
sponds also the apparent n below which the B-dependence (see Fig. H.3) of fpk changes qualitatively
for B between ∼20 to 33T.
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Such a behavior is not expected by the theories and the B at which where the said

fpk changes its B-dependence is seen to strongly depend on n and thus does not

correspond to a fixed lB.

We will next demonstrate that, if one allows the simultaneous presence of two

kinds of disorder with different correlation lengths, the complex behavior we observed

may be understood qualitatively with a phenomenological model, which we present

in Sec. H.2, in the framework of current pinning theories.

H.2 A Phenomenological “Two-Disorder” Model

In this section we briefly describe the “two-disorder” model. To compare with the

experimental data, we will only be interested in the fpk between, for example, ∼ 10

to 45T. We also neglect any FQHE effects.

We assume in this model that

1. There are two kinds of disorder in the sample, one with a long range correlation

length (ξl) larger than, for example, ∼100 Å (note that lB∼80Å at B=10T); and

the other with a short range correlation length (ξs) shorter than, for example,

∼30 Å (note that lB∼38Å at B=45T). The long range disorder alone would

give (Chap. 3, see also Fukuyama and Lee (1978)) a fpk
(L)= a/B, where a is a

phenomenological parameter (independent with B). We assume the short range

disorder to be a dilute disorder similar to the one proposed by Fertig (1999).

We discussed in Sec. 3.2.2 that existence of such dilute disorder is consistent

with our experimental observations. We assume that with such short range

disorder alone, it would results in a fpk
(S)= bB (Sec. 3.2.2), where b is another

(B-independent) phenomenological parameter.

2. When both disorder are present, their joint effect will give rise to a fpk (larger

than either fpk
(L) or fpk

(S)), which, in this crude model, we simple take to be
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Figure H.1: Selected spectra measured from sample P (heterojunction) at
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fpk
(L)+fpk

(S)=a/B + bB.

We see that the “joint” fpk=a/B + bB must have a minimum at Bm=
√
a/b, at

which fpk has the value 2
√
ab. Thus the behavior that with increasing B, fpk goes

from decreasing with B to increasing with B is naturally produced in this model.

We also notice that the minimum position Bm=
√
a/b is controlled by the relative

contributions of the two disorder to fpk. The experimental observation that Bm is

higher at lower n can thus be explained if we assume a smaller relative contribution

of the short range disorder part (b) at lower n (perhaps due to, for example, a lower

“occupation” fraction of such dilute, short range, pit-like disorder sites at low electron

density. This would also be consistent with the weakening n-depenence observed at

low n, Fig. H.5).

Fig. H.6 demonstrates the “simulated” fpk with this model, using appropriate

chosen phenomenological parameters (a and b) to match the typically observed fpk

values and Bm values. (A) and (B) are for a high-n case and (C) and (D) for a low-n

case.

At sufficiently high B (lB<ξs), we expect fpk to enter the “classical” (1/B) regime.

Since our data did not show any indication of such a classical regimes even at 45T,

we infer that ξs must be shorter than 38Å (lB at 45T).

Although this model is motivated largely by the complicated data from sample P,

the “two-disorder” picture can be quite general. This is consistent, for example, with

the behavior of fpk decreasing with increasingB, but slower than the 1/B-dependence,

that we often observed in other samples as well (Chap. 5, for example, Fig. 5.8). It

will be very interesting to push the measurements at higher B and examine whether

such a behavior will change to fpk increasing with B, as would be expected within

the “two-disorder” model.
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Appendix I

Supplementary Data on IQHWC

162



30

20

10

0

Re
[σ

xx
(f

)]
 (

µS
)

1.51.00.5
f (GHz)

ν=0.707

0.727

0.747

0.767

0.788

0.808

0.828

0.848
0.868

0.889

0.909

0.929
0.949

0.969

0.990

1.010

1.030

1.050
1.070

1.091

1.111

1.131

1.151

1.171

1.192
1.212

1.232

1.252

1.272

1.293

1.313

Sample WP (50nm QW):  T≈50mK; n=1x1011cm-2

traces offset

Figure I.1: Resonance around ν=1 in Sample WP.
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Figure I.2: Resonance around ν=2 in Sample WP.
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Appendix J

Supplementary Data on “A” and

“B” phases
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Figure J.2: Spectra measured from sample QW65 M30 at back gate V=-300V and
n=3.4×1010cm−2. Traces are offset for clarity. Filling factor (ν) of each trace is
labeled at right.
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Figure J.4: Effect of CPW front gate voltage on the spectrum measured from sample
QW65 M30 (n=5.3×1010cm−2, T 70mK) at 4 different magnetic fields (A): 11.5T;
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Appendix K

Pinned Bilayer Wigner Crystals

with Pseudospin Magnetism

This appendix is a preprint of the article (Chen, 2005) (slightly updated version)

Abstract: We study a model of pinned bilayer Wigner crystals (WC) and focus

on the effects of interlayer coherence (IC) on pinning. We consider both a pseu-

dospin ferromagnetic WC (FMWC) with IC and a pseudospin antiferromagnetic WC

(AFMWC) without IC. Our central finding is that a FMWC can be pinned more

strongly due to the presence of IC. One specific mechanism is through the disorder

induced interlayer tunneling, which effectively manifests as an extra pinning in a

FMWC. We also construct a general “effective disorder” model and effective pinning

Hamiltonian for the case of FMWC and AFMWC respectively. Under this frame-

work, pinning in the presence of IC involves interlayer spatial correlation of disorder

in addition to intralayer correlation, leading to enhanced pinning in the FMWC. The

pinning mode frequency (ωpk) of a FMWC is found to decease with the effective layer

separation, whereas for an AFMWC the opposite behavior is expected. An abrupt

drop of ωpk is predicted at a transition from a FMWC to AFMWC. Possible effects

of in-plane magnetic fields and finite temperatures are addressed. Finally we discuss
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some other possible ramifications of the FMWC as an electronic supersolid-like phase.

K.1 Introduction

Two dimensional systems (2DS) of electrons (or holes) subjected to a strong per-

pendicular magnetic field (B) have been among the most studied strongly-correlated

systems in the past two decades, with such many-body phenomena as fractional quan-

tum Hall effects and quantum Wigner crystals (WC) (both reviewed in Ref. (Das

Sarma and Pinczuk, 1997)). Additional degrees of freedom introduced by bringing

two parallel 2DS in close separation to form a bilayer system (BLS) can lead to new

phenomena (see reviews in Refs. (Das Sarma and Pinczuk, 1997; Simon, 2005)) with

no counterpart in the single layer case. The best known example is the bilayer ex-

citonic condensate state (Fertig, 1989; Wen and Zee, 1992) (BECS) at total Landau

filling νtot=1, which displays quantum Hall effect (Murphy et al., 1994) and counter-

flow superfluidity (Kellogg et al., 2004; Tutuc et al., 2004). Carriers in such a state

reside simultaneously in both layers and possess interlayer (phase) coherence (IC).

The IC can even exist in the limit of vanishing interlayer tunneling (characterized by

the symmetric-antisymmetric energy gap ∆SAS ∼0) and solely due to the interlayer

Coulomb interaction (Simon, 2005). Alternatively, the IC can be described using a

pseudospin (Yang et al., 1994; Moon et al., 1995) langauge, where pseudospins repre-

sent layer indices. The BECS is a pseudospin ferromagnet (Yang et al., 1994; Moon

et al., 1995) and the associated Goldstone mode has indeed been observed (Spielman

et al., 2001).

At sufficiently small νtot, the ground state of the BLS is expected to be a bilayer

Wigner crystal1 (BWC) (Oji et al., 1987). It is natural to ask whether IC can also

exist in the crystal state. Such a possibility has been theoretically considered (Zheng

1WC-type phases have also been considered at νtot=1 as possible competing phases (Brey, 1990;
Chen and J.Quinn, 1992; Côté et al., 1992; Demler et al., 2001; Veillette et al., 2002; Yang, 2001)with
BECS at intermediate layer separation.
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and Fertig, 1995; Narasimhan and Ho, 1995), for finite as well as vanishing interlayer

tunneling. It was found (Zheng and Fertig, 1995; Narasimhan and Ho, 1995) that

when d/a (the effective layer separation, where d is the interlayer spacing and a is the

mean intralayer spacing between carriers) is small, the BWC can be an one-component

Wigner crystal with IC. This corresponds to a WC which is also a pseudospin easy-

plane ferromagnet (Narasimhan and Ho, 1995). For larger d/a, on the other hand, the

BWC is expected to be a two-component WC (TCWC) (Narasimhan and Ho, 1995).

The two components (corresponding to the two layers) are “staggered” from each

other in order to minimize interlayer Coulomb interaction. If interlayer tunneling is

small, such a TCWC has negligible IC and is an easy-axis antiferromagnet2 in pseu-

dospin space. A rich array of crystal structures (Zheng and Fertig, 1995; Narasimhan

and Ho, 1995; Esfarjani and Kawazoe, 1995; Goldoni and Peeters, 1996) was shown

to be possible with a TCWC other than the standard hexagonal lattice (Bonsall and

Maradudin, 1977). Dynamical properties of a BWC have been calculated (Goldoni

and Peeters, 1996; Falko, 1994; Klironomos and Dorsey, 2005).

So far theories (Zheng and Fertig, 1995; Narasimhan and Ho, 1995; Esfarjani and

Kawazoe, 1995; Goldoni and Peeters, 1996; Falko, 1994; Klironomos and Dorsey, 2005)

on BWC have focused on the clean case. However, in real samples a BWC is always

pinned by disorder and is therefore an insulating phase as observed in experiments

(Manoharan et al., 1996; Tutuc et al., 2003). Disorder can also introduce a pinning

gap in the magnetophonon excitation of a WC (Fukuyama and Lee, 1978; Normand

et al., 1992). Such a “pinning mode” (Fertig, 1999; Fogler and Huse, 2000; Chitra

et al., 2002) has been taken as a well-defined characteristic signature for a pinned

WC measured in the single layer case (Li et al., 1997; Hennigan et al., 1998; Ye et al.,

2002b; Chen et al., 2004c).

In this article we study pinned BWC and in particular, we focus on the effect

2With finite tunneling, it was shown (Narasimhan and Ho, 1995) that the TCWC can have a
mixed ferromagnetic-antiferromagnetic order with a (small) net pseudospin magnetization.
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of interlayer coherence (or pseudospin magnetism) on the pinning mode and experi-

mentally detectable signatures that can qualitatively distinguish a pseudospin ferro-

magnetic (FM) WC from a pseudospin antiferromagnetic (AFM) WC in real bilayer

systems.

After a brief review of the pinning mode in a single layer (SL) WC in Sec. K.2,

we develop a simple model of pinned BWC in Sec. K.3 to calculate the pinning

mode properties both with and without IC. First we demonstrate that local tunneling

induced by disorder (such as barrier fluctuations) manifests as an effective pinning in

the presence of IC and can lead to enhanced pinning in the FMWC. Then we present

a more general model, where the concept of effective disorder, which depends on the

electronic state, is emphasized. Under this framework, pinning in the presence of IC

involves interlayer as well as intralayer spatial correlation of disorder, whereas only

the latter is relevant for the pinning for a SL WC or a BWC without IC. The effect

of d/a on the pinning mode frequency (ωpk) is discussed in Sec. K.4. Qualitatively

opposite behaviors are found for a FMWC and an AFMWC. We also predict an

abrupt ωpk drop associated with a FM-to-AFM transition. In Sec. K.5 we discuss

possible effects of in-plane magnetic fields (B||) on a pinned FMWC. A proposal of

performing “disorder tomography” using B|| is presented. We also briefly discuss

finite-temperature (T ) effects. We discuss some other interesting properties (and

their connection with pinning) of FMWC in Sec. K.6 before summarizing the paper

in Sec. K.7.

K.2 Pinning of a Single Layer WC

In the presence of disorder3, a WC cannot have true long range positional order

(Chitra et al., 2002). Its long wavelength and low energy excitation is the “pinning

mode” (Fukuyama and Lee, 1978; Normand et al., 1992; Fertig, 1999; Fogler and

3Provided it is sufficiently “weak”, which perturbs (deforms) but does not destroy the WC.
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Huse, 2000; Chitra et al., 2002), which represents the collective oscillation of WC

domains in the disorder potential. Such a pinning mode is manifested as a resonance

in the frequency-dependent real diagonal conductivity (Re[σxx(ω)]), measurable from

the power absorption spectrum of the WC subjected to an AC electric field (Li et al.,

1997; Ye et al., 2002b). Major results from the current understanding of the pinning

mode resonance are summarized below, where we consider a WC with density n

subject to a (weak) disorder potential V (~r) (where ~r denotes the position vector in

the 2D plane) and a strong perpendicular B:

(i) The frequency of the pinning mode resonance (ωpk) is only determined by the

static deformation (from the ideal lattice in the clean case) of the WC through

its Larkin domain size (Fertig, 1999; Fogler and Huse, 2000; Chitra et al., 2002).

An explicit formula for ωpk(in the high B limit) as given in Ref. (Chitra et al.,

2002) is4

ωpk = C
W

ξ6

1

µ

1

B
(K.1)

In this formula C is a constant involving only the carrier charge (e), µ is the

shear modulus of the WC, W and ξ are the strength and correlation length of

the (effective) disorder (see (v) below) potential (V (~r)). They are defined from

the two-point spatial correlator

〈V (~r)V (~r′)〉 = WDξ(|~r − ~r′|) (K.2)

where Dξ(r) is the correlation function with characteristic decay length ξ.

For an ideally 2D (infinitely thin) WC in high B, µ is expected to be close to

4Different theories (Fertig, 1999; Fogler and Huse, 2000; Chitra et al., 2002) so far differ on the
exponent of ξ appearing in Eq. (K.1) but this, as will be seen, is unimportant for our purposes.
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its classical value (Bonsall and Maradudin, 1977)

µ = α
n3/2e2

ε
(K.3)

where ε is the effective dielectric constant of the medium and α a constant set

by the crystal structure (∼0.02 for the hexagonal lattice). Thus the expected

n-dependence of ωpk is

ωpk ∝ n−γ (K.4)

with γ=3/2. Experimentally measured (Li et al., 2000a) γ varies from 1/2 to

3/2. Its precise value is not qualitatively important for this work.

(ii) The determination of the line width (∆ω) of the pinning mode resonance is less

straightforward. It is now believed (Fertig, 1999; Fogler and Huse, 2000) to be

a truly dynamical quantity and determined by the magnetophonon localization

length. In general, (at a fixed B), ∆ω increases with increasing disorder, but

decreases with increasing Coulomb interaction strength.

(iii) The integrated intensity (S) of the pinning mode resonance directly reflects the

participating density of the WC. It is shown (Fukuyama and Lee, 1978) that

S = (ne/4B)ωpk.

(iv) It has been suggested (Fertig, 1999) that the physical disorder responsible for

the pinning comes mainly from the roughness associated with the interface

that vertically confines the WC. Such disorder gives rise to a calculated (Fertig,

1999) ωpk comparable to that observed experimentally (Li et al., 1997; Ye et al.,

2002b).

(v) Although the physical disorder is assumed to not to depend on the electronic

state, the effective disorder (V (~r)) which determines the Wigner crystal pinning,

is electronic state dependent. More specifically, V (~r) is the physical disorder
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appropriately convoluted with the electron form factor (wave function) (Fertig,

1999; Fogler and Huse, 2000; Chitra et al., 2002) . As a consequence, the disorder

correlation length ξ appearing in (K.1) above is that of the physical disorder

(ξ0) only when ξ0 > lB (valid at sufficiently high B), where the magnetic length

lB =
√

~/eB is the size of one electron wave function. Otherwise (if ξ0 < lB),

ξ should be set as lB.

K.3 Pinned Bilayer Wigner Crystals with Pseu-

dospin Magnetism

Now consider a BWC of equal densities (n) of electrons in each layer, with interlayer

separation d and in a strong perpendicular B. We assume the disorder in the “top”

layer (V t(~r)) and that in the “bottom” layer (V b(~r)) to be similar5:

V t(~r) ∼ V b(~r) ∼ V (~r) (K.5)

where V (~r) obeys the disorder characteristics defined in Eq. (K.2) and already incor-

porates the appropriate intralayer electron form factor. Therefore, in the absence of

the other layer, each would form a SL pinned WC with the same pinning mode as

described in Sec. K.2. In the following we will use the superscripts “n0” to denote

quantities associated with the pinning mode of such a SL WC, and “nn” for those

associated with the BWC. We use N to denote the number of electrons in each layer

(N=nA with A being the sample area) and pseudospin “↑” and “↓” for “top” and

“bottom” layer indices respectively (we also assume both layers to be infinitely thin,

located at z=+d/2 and z=−d/2 respectively, where (x, y, z)=(~r, z) are 3D Cartesian

coordinates for a 2D (intralayer) vector ~r). We can ignore the real spin degree of

5Rigorously, we are assuming that V t(~r) and V b(~r) are two realizations of the same random field
V (~r).
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freedom for electrons in high B (the lowest Landau level).

Our model can be presented clearly in the first quantized language. We start with

the total Hamiltonian for the pinned BWC

Ĥ =
N∑

i=1

(Ĥs(~ri, ↑) + Ĥs(~ri, ↓)) + Ûint + V̂dis (K.6)

In the above Ĥs is the single-particle part of the Hamiltonian, which also includes

a neutralizing positive charge background (to keep the total Coulomb energy finite)

but does not include disorder effects.

The Coulomb interaction among all electrons is

Ûint =
N∑

i<j

e2

|(~ri, ↑)− (~rj, ↑)|
+

N∑
i<j

e2

|(~ri, ↓)− (~rj, ↓)|

+
N∑
i,j

e2

|(~ri, ↑)− (~rj, ↓)|
(K.7)

in which the first two terms represent intralayer interaction, the third term represents

interlayer interaction, with |(~ri, ↑) − (~rj, ↑)| = |(~ri, ↓) − (~rj, ↓)| = |~ri − ~rj| and |(~ri, ↑

)− (~rj, ↓)| =
√
|~ri − ~rj|2 + d2.

The disorder part, V̂dis, has two parts V̂dis = V̂pin + T̂dis. One is the pinning within

each layer

V̂pin =
N∑

i=1

(V t(~ri, ↑) + V b(~ri, ↓)). (K.8)

Note we have explicitly written out the configuration space coordinates above

((K.6)- (K.8)) to reflect its layer (pseudospin) dependent actions. For example,

V (~r, ↑)|ψ(~r)⊗ ↓〉 = V (~r, ↓)|ψ(~r)⊗ ↑〉 = 0 (K.9)

for a single-particle state ψ.

The other part in V̂dis reflects effect of disorder induced (local) tunneling and is
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given by

T̂dis = T (~r)F̂ (K.10)

where F̂ is simply the pseudospin flip operator

F̂ |ψ(~r)⊗ ↓〉 = |ψ(~r)⊗ ↑〉, F̂ |ψ(~r)⊗ ↑〉 = |ψ(~r)⊗ ↓〉 (K.11)

and the amplitude T (~r) is generally related to V t(~r) and V b(~r).

We first notice that if there were no interlayer coupling (for example d�a∼1/
√
n),

both the interlayer interaction term in (K.7) and disorder induced tunneling (K.10)

can be neglected and Ĥ decouples into two identical (only shifted in z) SL Hamil-

tonians. In this case the system reduces to two independent layers and its pinning

mode resonance (Re[σxx(ω)] spectrum) is simply the superposition of those of two

identical SL WC, i.e, Re[σxx(ω)]nn=2Re[σxx(ω)]n0 with ωnn
pk = ωn0

pk , ∆ωnn=∆ωn0 and

Snn=2Sn0.

In this article we are mainly interested in interacting bilayers and we focus on

the effect of IC on the pinning mode of a BWC, in particular on ωpk, which is the

quantity that can be most accurately measured in experiments (Li et al., 1997; Ye

et al., 2002b). To this end, we will consider and compare two idealized cases of a

BWC with no IC (referred to as an “AFMWC”) and a BWC with IC (“FMWC”), to

be specified by the many-body Ansatz (K.13) and (K.19) in the following respectively.

Our approach is to construct an effective Hamiltonian that maps the problem into a

single layer one, with an effective disorder that captures the pinning physics in each

case (AFMWC vs. FMWC), highlighting the difference made by IC, and calculate

quantities such as ωpk.

We also make the following additional assumptions, which greatly simplify the

analysis but still keep the essential physics.

1. Assume small or vanishing interlayer tunneling (∆SAS) in absence of disorder.
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We also assume the neutralizing positive charges are far away from the BWC.

Together with the high B condition (which allows us to neglect the cyclotron

kinetic energy of the electrons), the Ĥs part in Ĥ is nearly constant and can be

neglected all together. Physically, this means that pinning is only determined by

the electron-electron interaction (Ûint) and electron-disorder interaction (V̂dis):

the static deformation is given by the configuration that minimizes the energy

expectation of Ûint + V̂dis.

2. Assume d � a. This in particular allows us to effectively set d∼0 in the

Coulomb interaction term (Ûint) in (K.7) and treat the inter and intralayer

interactions on an equal footing. In this limit we can also assume the underlying

lattice structure (in absence of disorder) to be the same (hexagonal) for the

AFMWC and FMWC (Narasimhan and Ho, 1995).

3. Assume the following simple form for the disorder induced tunneling amplitude:

T (~r) = g̃V (~r) (K.12)

where g̃ ≥ 0 is a small (we only consider the effect of disorder being weak

perturbation) parameter. This is plausible because we expect the main source

of relevant disorder in realistic, epitaxially-grown samples to come from the

defects or fluctuations in the thin barrier separating the two layers. Such de-

fects can constitute disorder in both layers, as well as facilitate local tunneling

(Tutuc et al., 2004; Shayegan, 2005), in proportional to the strength of such

defects/fluctuations in the weak disorder limit. The positive sign of g̃ comes

from the fact that such a tunneling-facilitating defect draws an electron closer

into the barrier and farther away from the corresponding positive charged back-

ground/dopants, therefore constituting a positive disorder. We also expect g̃ to

decrease with increasing effective layer separation d/a and go to zero at large
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d/a (the decrease of g̃ with decreasing a reflects the Coulomb-blocking effect on

the tunneling).

Later on we will briefly discuss the implication when the above assumptions are

relaxed, which nonetheless will not change our qualitative conclusions.

Case 1. AFMWC (no IC).

A schematic picture (1D cross section) is shown in Fig. K.1(a). This corresponds

to a “bipartite” (Narasimhan and Ho, 1995) lattice {~Ri}2N
i=1 (deformed slightly from

the ideal lattice {~R0
i }2N

i=1). We have relabeled the indices such that i = 1, . . . , N

correspond to the “↑” electrons and i = N + 1, . . . , 2N correspond to “↓” electrons.

The many-body state of the AFMWC can be well approximated by the following

ansatz (Narasimhan and Ho, 1995; Maki and Zotos, 1983) (after appropriate anti-

symmetrization)

ΨAFMWC =
2N∏
i=1

|ψ~Ri
(~ri)⊗ ρi〉 (K.13)

in which

ρi =↑ for i = 1, . . . , N and ↓ for i = N + 1, . . . , 2N (K.14)

and the single-particle Gaussian (up to a phase)

ψ~R(~r)= 1√
2πlB

exp[− |~r−~R|2
4l2B

] exp[−i ẑ·(~r×
~R)

2l2B
] (where lB=

√
~/eB is the magnetic length

and ẑ the unit z-vector.)

With our index relabeling (and assumption d� a) we can rewrite

Ûint =
2N∑
i<j

e2

|~ri − ~rj|
(K.15)

Following Eq. (K.5,K.8,K.9,K.13,K.14) we easily see

V̂pin|ΨAFMWC〉 ∼
2N∑
i=1

V (~ri)|ΨAFMWC〉 (K.16)
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Figure K.1: Schematic (1D cross section, not to scale, d assumed to be �a) for an
AFMWC (a) and a FMWC (b). Both have total densities 2n and the same underlying
lattice structure (when not deformed by disorder). In (a) half the lattice electrons
belong to the top layer (labeled as ↑) and the other half to the bottom layer (labeled
as ↓). Electrons are only pinned by disorder from the individual layer. In (b) all
electrons simultaneously belong to both layers (being in pseudospin state | →〉=
1√
2
| ↑〉+ 1√

2
| ↓〉), and are effectively pinned by the joint disorder (see the text for

details) from both layers.
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We also notice that, for the pseudospin flip operator F̂ , 〈ψ(~r)⊗ρ|F̂ |ψ(~r)⊗ρ〉=0 for a

single particle state ψ(~r) and ρ=either ↑ or ↓. Therefore in the case of an AFMWC,

the disorder induced tunneling T̂dis does not affect the pinning (static deformation)

of the crystal6.

The effective Hamiltonian for the pinned AFMWC is

Ĥpin
AFMWC =

2N∑
i<j

e2

|~ri − ~rj|
+

2N∑
i=1

V (~ri) (K.17)

where the pseudospins have dropped out. Thus as far as pinning is concerned, the

system maps to a SL of 2N electrons crystallizing in the effective disorder potential

V (~r). The static deformation of such a crystal can be obtained in principle by min-

imizing the energy with respect to {~Ri}2N
i=1, using the many-body Ansatz ΨAFMWC

(K.13) with this Hamiltonian. For its pinning mode we simply have (from Sec. K.2)

ωnn
pk = ωn0

pk/2
γ, ∆ωnn < ∆ωn0, and Snn = Sn0/2γ−1 (K.18)

Case 2. FMWC (with IC). A schematic (1D cross section) is shown in Fig. K.1(b).

In contrast to Case. 1, whose lattice is bipartite with the AFM order, here the lattice

is one-component with all electrons in the pseudospin state | →〉 (= 1√
2
| ↑〉+ 1√

2
| ↓〉).

Such FM order breaks the U(1) symmetry7 of pseudospins (either explicitly by finite

∆SAS or spontaneously (only due to interlayer Coulomb interaction) for ∆SAS∼0)).

The many-body ansatz for such a FMWC is

ΨFMWC =
2N∏
i=1

|ψ~Ri
(~ri)⊗ →〉 (K.19)

(where ψ~R(~r) is the same kind of Gaussian wavepacket used earlier).

6In a first order approximation (with small g̃), we can neglect the effect of T̂ modifying the spin
structure of the crystal.

7The full SU(2) symmetry of pseudospins is already broken explicitly by the bilayer capacitive
charging energy.
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Compared to Case 1, now T̂dis has a very different effect: it is easy to see that

T̂dis(~r)|ψ(~r)⊗ →〉 = g̃V (~r)|ψ(~r)⊗ →〉 (K.20)

for a single particle state ψ(~r). This means that, in contrast to the case of AFMWC

(without IC), where T̂dis does not affect pinning as seen earlier, the disorder induced

tunneling T̂dis in the presence of IC effectively acts as a pinning term (this in fact holds

even for a general tunneling disorder (K.10)). In our case, this pinning is in addition

to the original “intra-layer” pinning from V (~r), thus leads to enhanced pinning of a

FMWC (K.19).

Now we construct a general effective disorder model in which the system is mapped

into 2N electrons crystallizing in a single “→” layer, and pinning effects such as that

due to T̂dis above are absorbed in an effective disorder, given by the following “joint”

disorder8 ansatz (the reason for the choice will be soon apparent):

V J(~r) =
1√
2
(V t(~r) + V b(~r)) (K.21)

with the effective pinning Hamiltonian being

Ĥpin
FMWC =

2N∑
i<j

e2

|~ri − ~rj|
+

2N∑
i=1

V J(~ri). (K.22)

The spatial correlator for such a “joint” disorder V J now contains (in terms of

8One may explicit write V J as V J(~r,→) to emphasize that it is an effective disorder acting
on “| →〉” electrons. V J may also be formally thought as resulting from a kind of “convolution”
in pseudospin space. However, a rigorous definition of such a convolution requires appropriately
defining an invariant measure on a pseudospin algebra, and is beyond the scope of this paper.
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the original bilayers) both intralayer (Eq. (K.2)) and interlayer disorder-correlation:

〈V J(~r)V J(~r′)〉

=
1

2
[〈V t(~r)V t(~r′)〉+ 〈V b(~r)V b(~r′)〉

+〈V t(~r)V b(~r′)〉+ 〈V b(~r)V t(~r′)〉]

= W (1 + g)Dξ(|~r − ~r′|) (K.23)

in which we have introduced a phenomenological “coupling” parameter g between the

disorder from the two layers:

〈V t(~r)V b(~r′)〉 = 〈V b(~r)V t(~r′)〉 = gWDξ(|~r − ~r′|). (K.24)

Again we expect g to depend on the effective layer separation (d/a): g decreases

for increasing d/a and drops to 0 at sufficiently large d/a. Now we see that V J has

disorder strength W J=(1+g)W and the same correlation length (ξ) as V (~r). Thus we

obtain for the bilayer pinning mode properties (expressed in terms of corresponding

SL “n0” quantities):

ωnn
pk =

1 + g

2γ
ωn0

pk , Snn =
1 + g

2γ−1
Sn0. (K.25)

In contrast, the interlayer disorder-correlation (K.24) has no relevance for pinning of

the AFMWC (K.17-K.18) or the SL (“n0”) WC (Sec. K.2). Therefore the presence of

IC has effectively enhanced the pinning disorder in the FMWC. This tends to increase

both ωpk and ∆ω from the respective SL values. On the other hand the doubled n

(and strengthened Coulomb interaction) from the SL case will decrease ωpk and ∆ω.

Due to the two competing effects, ωpk (K.25) and ∆ω for the FMWC can be either

higher or lower than the ωn0
pk and ∆ωn0. In contrast, ωpk and ∆ω for the AFMWC are

always lower than the SL values. Detailed calculations (Chen et al., 2005) (following
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Ref. (Chitra et al., 2002)) show that for the FMWC, if ωnn
pk =ωn0

pk , ∆ωnn<∆ωn0.

The “effective disorder” model we give above does not directly specify the source

of the inter-layer correlated disorder (such as barrier fluctuations) with the enhanced

pinning mechanism. However it carries, through the choice of the “joint” disorder

(K.21), the simple physical picture that, in the state of FMWC, since electrons have

lost their original layer identity and move in both layers simultaneously and coher-

ently, they are pinned by disorder from both layers. Such a general framework turns

out to be convenient to analyze the BWC pinning properties in Sec. K.4 and K.5

below.

K.4 Effects of d/a and FMWC-AFMWC transi-

tions

As seen from the above, for the FMWC, ωpk will decrease when the effective layer

separation δ(=d/a) increases, due to the decrease of g (Eq. (K.25)). It has been shown

(Zheng and Fertig, 1995; Narasimhan and Ho, 1995) that at some small critical δc, a

transition from a FMWC (favored at δ<δc) to an AFMWC (favored at δ>δc) occurs.

Since pinning in the AFMWC (without IC) does not involve g, such a transition

would result in a sudden reduction of pinning and would give rise to an abrupt drop

of ωpk (see Fig. K.2, in which we plot the schematic dependence of ωpk (normalized

by the SL ωn0
pk) on d/a).

If δ is further increased (in an AFMWC) such that d becomes comparable to or

even larger than a, the interlayer Coulomb interaction will be reduced. This reduces

the total Coulomb interaction (K.7) and effectively reduces the shear modulus (µ) of

the BWC. From (K.1), this will give rise to an increase of ωpk. In the limit of d�a,

the system reduces to two independent SL WC and ωnn
pk /ω

n0
pk → 1.

Thus we have shown (Fig. K.2) that ωpk can have opposite behavior in the FMWC
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Figure K.2: Schematic (d/a)-dependence of η (BWC ωnn
pk normalized by SL ωn0

pk),
showing an abrupt FMWC to AFMWC transition (characterized by a sudden drop
in ωnn

pk ) and a continuous AFMWC to independent-layer cross over. The asymptotic
values of η for d/a→0 in AFMWC and d/a→∞ (independent layer limit) are 1/2γ

and 1 respectively (see Sec. K.3).
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(ωpk decreasing with increasing d/a) from that in the AFMWC (ωpk increasing with

increasing d/a), and ωpk drops abruptly at a FMWC-AFMWC transition. Such behav-

ior can qualitatively differentiate a FMWC from an AFMWC and signal the transition

between the two.

In Ref. (Narasimhan and Ho, 1995) it is found that if tunneling (∆SAS) is finite,

the BWC at δ>δc, although two-component, can have mixed AFM-FM order, corre-

sponding to |ρi〉=| ↗〉 (i=1,...,N) and |ρi〉=| ↘〉 (i=N+1,...,2N) in (K.13), where

(pseudospin direction) “↗”(“↘”) is “↑”(“↓”) tilted toward “→” by angle θ. θ=π/2

for the FMWC (δ<δc) and drops abruptly to a finite value (0<θ<π/2) at the transi-

tion (at δc) (Narasimhan and Ho, 1995). Therefore we expect the abrupt drop of ωpk

associated with the transition to survive even with a moderate ∆SAS , although the

amplitude of the drop will be smaller than the ∆SAS∼0 case.

At finite δ>δc, Ref. (Narasimhan and Ho, 1995) also found several possible lattice

structures (without disorder) and a continuous evolution among them as a function

of δ. The evolution is gradual and is not expected to change the qualitative picture

shown in Fig. K.2, in particular the presence of the abrupt drop of ωpk at the FM-AFM

transition.

Since the enhancement of pinning in the FMWC is associated with the presence of

IC, we expect the abrupt ωpk drop to be a generic feature whenever IC (or equivalently,

ferromagnetism) is destroyed, even if it is driven by some other mechanisms (such as

changing νtot (Narasimhan and Ho, 1995), or possibly with sufficient layer imbalance

(Tutuc et al., 2003; Chen et al., 2005)).
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K.5 Effects of In-Plane Magnetic Fields and Finite

Temperatures

In-plane magnetic fields (B||). It is well known that B|| can profoundly affect bilayer

physics (Yang et al., 1994), particularly in relation to interlayer phase coherence and

pseudospin magnetism. In the case of a bilayer FMWC (with finite d), Zheng and

Fertig (Zheng and Fertig, 1995) studied the effects of B|| and found that applying

a small B|| can “twist” the IC, such that the charge distribution in one layer is

shifted relative to the other layer, as shown in Fig. K.3. The relative shift is along

the B|| direction (x̂), and is given (Zheng and Fertig, 1995) by ~b|| = l2B(d/l2B||
)x̂ =

d(B||/B)x̂. In such a case, the interlayer disorder coupling induced by IC can also

become “twisted” (Fertig, 2005), now involving interlayer disorder-correlation

〈V t(~r)V b(~r′ +~b||)〉 = gWDξ(|~r − ~r′ −~b|||), (K.26)

and this will duly affect the pinning. Therefore, measuring ωpk while varying both

the direction and magnitude of B|| allows one to possibly probe a 2D “tomography”

of the disorder!

At larger B|| , an incommensurability-driven transition to an “untwisted” state is

expected to occur, when the energy cost of interlayer Coulomb interaction exceeds

the energy gain from interlayer hopping (Zheng and Fertig, 1995). We expect such a

transition to cause also an abrupt change of ωpk in the pinning mode.

Finite temperatures (T ). So far we have considered only T=0. Finite T is expected

in particular to smear the abrupt drop in ωpk associated with the FMWC-AFMWC

transition as described in Sec. K.4. Above some characteristic T (T∗), such a drop

would become unobservable. The typical energy difference between a FMWC and

AFMWC has been shown (Zheng and Fertig, 1995; Narasimhan and Ho, 1995) to
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Figure K.3: A FMWC is “twisted” under a (small) in-plane magnetic field (B||),
which can also “twist” the IC-induced interlayer disorder coupling (now involving

〈V t(~r)V b(~r′ + ~b||)〉, where V t(V b) is the top(bottom) layer disorder. The “twist”
~b||=d(B||/B)x̂, where x̂ is the direction of B||.
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be on the order of ∆E ∼10−3−10−2e2/εlB. From this, we can make a (very rough)

estimate of T∗ to be on the order of ∆E/kB∼0.5K (using a typical experimental

lB∼100Å and ε=13 for GaAs)9.

K.6 More Remarks on FMWC

Finally we remark on two interesting aspects of the FMWC (K.19), particularly in

the case of vanishing ∆SAS, and speculate on effects in relation to pinning. We may

rewrite the many-body state (K.19) in second-quantized form as

ΨFMWC =
1√
2

∏
i

(c†~Ri,↑
+ eiφc†~Ri,↓

)|0〉, (K.27)

with φ = 0 for all i, where c†~r,↓ (c†~r,↑) is the second-quantized operator that creates an

electron localized at ~r in down (up) layer. The ansatz (K.27) is formally analogous

to that of the bilayer excitonic condensate state (BECS) (Simon, 2005; Fertig, 1989)

( 1√
2

∏
i(c

†
~ki,↑

+ c†~ki,↓
)|0〉) with single-particle states labeled with momenta (~ki) replaced

by those with lattice point positions (~Ri). The FMWC (K.27) possesses both long

range positional order (broken translational symmetry) and phase (φ) coherence (bro-

ken U(1) symmetry), thus resembling a supersolid (Leggett, 1970; Yang, 2005) phase.

If phase rigidity (Fertig, 2005) can exist in such a phase, superfluidity would occur.

The superflow would be exhibited in the counterflow channel, similar to the case ob-

served in the BECS (Kellogg et al., 2004; Tutuc et al., 2004). Although in practice

such a superflow in the FMWC is likely to be suppressed by the pinning (at least

in a linear response theory), it would be an interesting experiment to examine the

counterflow with finite current above the depinning threshold, or under a sufficiently

strong parallel magnetic field (B||) which can reduce the effective pinning associated

9Also assuming the BWC has not melted at such T .
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with IC or disorder induced interlayer tunneling10 described in (K.10).

The Goldstone mode associated with the (spontaneously) broken U(1) symmetry

represents an oscillatory wave in φ. Since φ is conjugate to the density difference

between the two layers (∆n), such a U(1) mode inevitably involves interlayer charge

transfer (oscillation in ∆n) and will be coupled to the longitudinal and transverse

phonons (which are hybridized in B) of the WC (Klironomos and Dorsey, 2005).

We expect that such coupling to the U(1) mode (which disperses linearly in k) can

not only renormalize the pinning gap (with enhanced pinning, as we have seen),

but also the dispersion of the pinning mode (as the lowest lying hybridized mode)11.

Such a dispersion change may be detectable in the k-resolved microwave spectroscopy

experiments (Hennigan et al., 1998; Chen et al., 2004c) and also be used to identify

the FMWC phase.

K.7 Conclusion

BWC can display a rich array of (pseudospin) quantum magnetism from FM to AFM

order (Narasimhan and Ho, 1995). They are in many ways analogous to 3He solid

(Adams, 2004), which has many remarkable physical properties related to its quantum

magnetism. For example, the AFMWC of triangular lattice structure may serve as

a model system for frustrated spin system (Levitov and Novikov, 2005), and the

FMWC may even be considered as an electronic supersolid-like phase as discussed

above. In this article we have focused on the effects of pseudospin magnetism on

the pinning by disorder, which always exists in a real BWC. Electrons in a FMWC

have interlayer coherence (IC) and lose their individual layer identities, similar to

the situation in the νtot = 1 quantum Hall state. We have shown that such IC can

10Disorder in tunneling is expected to be particularly detrimental to counterflow superfluidity
(Wen, 2005). A parallel magnetic field can suppress interlayer tunneling (Zheng and Fertig, 1995).

11Analogous couplings have been studied for the helium supersolid, see for example (Cheng, 1981;
Dorsey et al., 2005).
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take advantage of the interlayer correlation of disorder (such as through disorder in

the barrier and the interlayer tunneling induced by such disorder) and enhance the

effective pinning in the FMWC. The IC-enhanced pinning is a novel mechanism that

has no counterpart in a single layer WC and is absent in a AFMWC without IC.

For the pinning mode resonance, this has important consequences which may be used

as experimental signatures of the different magnetic phases and phase transitions in

BWC. For example, we predict ωpk to decrease with d/a in a FMWC but to increase

with d/a in a AFMWC, with an abrupt drop of ωpk at a FMWC-AFMWC transition.

We have also considered effects of B|| and finite temperatures. Many predictions of

our model are found to be consistent with a recent experimental work by Z. Wang et

al. (Wang et al., 2005).
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