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We propose a new entanglement switch of qubits consisting of electric dipoles oriented along or
against an external electric field and coupled by the electric dipole-dipole interaction. The pairwise
entanglement can be tuned and controlled by the ratio of the Rabi frequency and the dipole-dipole
coupling strength. Tuning the entanglement can be achieved for one, two, and three-dimensional
arrangements of the qubits. The feasibility of building such an entanglement switch is also
discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3366522�

Entanglement is a quantum mechanical property that de-
scribes a correlation between quantum mechanical systems.
It has no classical analog and has been lying in the heart of
the foundation of quantum mechanics. The desire to under-
stand, tune, and manipulate quantum entanglement is of fun-
damental importance in the field of quantum information and
computation.1–4 Recently, we studied a set of localized spins
coupled through exchange interaction and subject to an ex-
ternal magnetic field.5–8 We demonstrated for such a class of
one-dimensional magnetic systems, that entanglement can be
controlled and tuned by varying the anisotropy parameter in
the Hamiltonian and by introducing impurities into the
systems.4 In this letter, we propose a new entanglement
switch of qubits consisting of the electric dipole moment of
diatomic polar molecules, oriented along or against an exter-
nal electric field and coupled by the electric dipole-dipole
interaction.

Recent progress in methods for producing, trapping, and
controlling cold polar molecules make them an excellent
candidate for quantum computation.9–12 Trapped polar mol-
ecules was proposed as a novel physical realization of a
quantum computer by a number of authors.12–20 In this pro-
posal, the qubits are the molecular electric dipole moments
which can only orient along ��0�� or against ��1�� the external
electric fields. Each qubit is one polar molecule with equal
spacing along the axis. For such a system, tuning and con-
trolling the entanglement between the dipoles is of great im-
portance.

The Hamiltonian of N-trapped dipoles in an external
electric field reads21

H = ��
i=1

N

�iŜi
z + ��

i�j

N

�ijŜi
+Ŝj

−, �1�

where Ŝ’s are the dipole operators and related to Pauli ma-

trices, Ŝi
+ and Ŝj

− represent dipole excitation and de-
excitation, respectively. �i is the transition frequency of the

dipole on site i, which is a function of dipole moment and
external electric fields at site i.

��i = �d� · E� � , �2�

where d� is the electric dipole moment which we assume the
same for each site. �ij is the dipole-dipole coupling constant
between sites i and j, which is determined by the strength of
dipole moment, the direction of the external electric field and
the lattice constant of the dipole array.

��ij =
�d� �2�1 – 3 cos2 ��

�r�ij�3
, �3�

where � is the angle between r�ij and external electric field.
We will expand the Hamiltonian in pure standard basis,

��00� , �01� , �10� , �11�	, and all the eigenstates will be
obtained by diagonalizing the Hamiltonian matrix. For ex-
ample, for N=2, we obtained the following four eigenvec-
tors: �1= �00� , ��2= �1 /
2���01�− �10�� , ��3= �1 /
2�
���01�+ �10�� , �4= �11� with corresponding eigenvalues:
E1=0 , E2=�−� , E3=�+� , E4=2�. For the ratio � /�
�1, �2 is fully entangled ground state. However, for
� /��1 the nonentangled state �1 is the ground state. Thus,
we have a curve crossing at � /�=1.

The concept of entanglement of formation is related to
the amount of entanglement needed to prepare the state 	,
where 	 is the density matrix. It was shown by Wootters22

that concurrence is a good measure of entanglement.23 The
concurrence C is given by22

C�	� = max�0,
1 − 
2 − 
3 − 
4	 . �4�

For a general state of two qubits, 
i’s are the eigenvalues, in
decreasing order, of the Hermitian matrix R�

		̃
	 where
	 is the density matrix and 	̃ is the spin-flipped state defined
as

	̃ = ��y � �y�	���y � �y� , �5�

where the 	� is the complex conjugate of 	 and is taken in
the standard basis, which for a pair of two level particles is
��00� , �01� , �10� , �11�	.
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In order to calculate thermal entanglement, we need the
temperature dependent density matrix and the density matrix
for a system in equilibrium at a temperature T reads:

	=e−�Ĥ/Z with �=1 /kT and Z is the partition function,

Z=Tr�e−�Ĥ�. In this case, the partition function is

Z�T� = �
i

gie
−�
i, �6�

where 
i is the ith eigenvalue and gi is the degeneracy. And
the corresponding density matrix can be written

	�T� =
1

Z
�

i

N

e−�
i�i��i� , �7�

where �i� is the ith eigenfunction. For pairwise thermal en-
tanglement, we can get reduced density matrix as a function
of temperature in the same way, which leads to temperature
dependent entanglement.

In Fig. 1 we show the tuning of the pairwise entangle-

ment, measured by concurrence, of one-dimensional arrange-
ments of the dipoles as one varies the ratio � /� at different
temperatures for N=9 dipoles. Here we took all transition
frequencies to be the same, �i=�, and the nearest neighbor
dipole-dipole interaction to be the same, �i,i+1=�i,i−1=�.
All other dipole-dipole coupling constants �i,j�i�1 can be
expressed in terms of �. Thus, we have two parameters to
vary, the ratio � /� and temperature kT. At kT0 one has a
constant entanglement over a long ratio � /� and sharp tran-
sitions or jumps to lower values at other values of � /�. It is
worth mentioning that for � /��0.634, entanglement is
only between dipoles 1 and 2. For 0.634�� /��1.14 di-
pole one becomes entangled also with dipole 3 and with
other dipoles until we reach � /�1.74, above this value the
concurrence is zero between all sites. As one increases the
temperature, the curve becomes smoother as mixing occur
with higher states. Calculations for N=3,4 , . . .8 gave similar
behavior of tuning and controlling entanglement as for the
case N=9. To show how the populations changes at the tran-
sition point, we present in Fig. 2 the coefficients of
the wave function for N=4 before and after the transition
point � /�=0.64. When � /��0.64, the ground state wave

FIG. 1. Pairwise concurrence �Eq. �4�� of one-dimensional arrangements of
the dipoles as one varies the ratio � /� at kT=10−4, 10−2, and 10−1 ��,
respectively, for N=9 dipoles.

FIG. 2. Pairwise concurrence �Eq. �4�� and coefficients of the wave function
of one-dimensional arrangements of the dipoles as one varies the ratio � /�
at kT=10−4 �� for N=4 dipoles.

121104-2 Wei, Kais, and Chen J. Chem. Phys. 132, 121104 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



function is ���=0.19�↓↓ ↑↑�−0.51�↓↑ ↓↑�+0.45�↓↑ ↑↓�
+0.45�↑↓ ↓↑�−0.51�↑↓ ↑↓�+0.19�↑↑ ↓↓�, however, when
� /��0.64, the ground state wave function becomes ���
=0.36�↓↓ ↓↑�−0.61�↓↓ ↑↓�+0.61�↓↑ ↓↓�−0.36�↑↓ ↓↓�. Fig-
ures 3 and 4 show a similar phenomena for two and three-
dimensional arrangements of the dipoles. The pairwise en-
tanglement decreases as one increases the dimensionality of
the system and the temperature.

There have been rapid advances made recently in cool-
ing, trapping and manipulating atomic �Rydberg�24–26 and
molecular dipoles.10,11,27–29 For example, a wide variety of
ground state polar molecules with large electric dipole mo-
ments �several debyes, where 1 D 3.3�10−30 C m� have
been cooled to ultracold �mK or below� regime, some even
near quantum degeneracy.29 These developments provide ex-
citing opportunities to experimentally realize the entangle-
ment switch described above, which requires tuning � /�

around 1, and cooling the dipoles to temperatures �T� corre-
sponding to a fraction of the dipole-dipole interaction energy
���.30 For a dipole moment �p� of few debyes, and a typical
experimental electric field �105 V /m, required for the di-
pole moment to actually manifest itself12,31�, dipole-
dipole separation �d� on the order of 10 nm is required for
� /�1. Such d is much shorter than what can be achieved
in typical optical lattices �as envisaged in Ref. 12 which
corresponds to the regime of � /��1�, but can be realized
with arrays of nanoscale plasmon-enhanced electric/electro-
optical traps recently proposed32,33 �where extremely tight,
few-nanometer confinement, and trap frequencies exceeding
100 MHz are shown to be possible�. At such short d, the
dipole-dipole interaction �= p2 /4��0d3 is on the order of
0.1 K. Cooling to a small fraction of such a temperature scale
is easily within the current experimental technology. Further-
more, � /� can be tuned experimentally by the electrical
field, and/or by d �e.g., by varying the microtrap configura-
tion�.

In summary, we presented a new way to construct an
entanglement switch in an optical lattice and discussed the
experimental feasibility of building such switch. The realiza-
tion of such a scheme will have a profound impact on the
implementation of quantum gates in quantum computing
with trapped polar molecules. The similar idea could in prin-
ciple also be applied to other systems with electric dipoles,
such as quantum dots and excitons in nanostructures.
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